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Abstract
The evolution of cover collapse is a severe hazard in karst regions. The main objective 
of the present work was to develop a novel approach that combined both subjective and 
objective methodologies to evaluate sinkhole susceptibility. Based on the comprehensive 
analysis of the mechanisms for sinkholes, a typical subjective method was first built using 
the analytic hierarchy process (AHP) with a hierarchical structure that included nine fac-
tors. Considering the apparent disadvantage of AHP, the catastrophe theory was integrated 
to determine the weight of the criterion factors. To further improve and avoid the bias of 
the assignment of weights, the entropy method was then integrated into the model to objec-
tively and reasonably determine the order of the index factors and weights of the sub-fac-
tors in the index layer during the calculation of the catastrophe model. The verification 
results showed that the combination of the subjective and objective approaches was indeed 
suitable to indicate collapse susceptibility. The sensitivity analysis results indicated that the 
thickness of the overlying layer and karst development were the most sensitive parameters, 
as indicated by the high rate value using the subjective method. The karst collapse area 
was then classified into very high-, high-, medium-, and low-susceptibility areas, which 
accounted for 20.09%, 19.82%, 38.58%, and 21.51% of the total area in the study region. 
The extraction of groundwater, especially mine draining, was the most important factor, 
causing more severe hazards, especially in the very high- and high-susceptibility areas.
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1 Introduction

Sinkholes are a common geological hazard in karst regions and are known as one of the 
most dangerous natural hazards (Yechieli et al. 2006). There are six basic types of sink-
holes: solution, soluble bedrock collapse, caprock collapse, cover subsidence, buried, 
and cover collapse. Cover collapse sinkholes are the most destructive geological haz-
ards among sinkholes and generally result from the development of soil cavities in areas 
underlain by limestone bedrock (Waele et al. 2011; Siska et al. 2016; Jia et al. 2019). 
The unexpected and rapidly developing phenomena are widespread, especially in popu-
lated areas, and pose serious safety, economic, and environmental hazards (Galve et al. 
2009; Filin et al. 2011; Xiao et al. 2016; Panno and Luman, 2018).

Karst collapse occurrence is induced by numerous factors that, in turn, influence each 
other and are difficult to predict (Wu et  al. 2018). Cover collapse sinkhole formation 
and development are closely related to many factors, such as the overburden conditions, 
groundwater level, and karst topography. Karst aquifers have unusual flow and storage 
conditions compared to granular aquifers that create a complex subsurface system for 
groundwater flow. In recent years, anthropogenic activities, in particular groundwater 
withdrawal, have increased the frequency of sinkholes in many regions (Taheri et  al. 
2018). Research has been focused on the mechanisms and development features of karst 
collapses (Tharp 1999; Santo et al. 2019). However, it is difficult and complex to obtain 
regional data. Karst collapse susceptibility assessment is a useful and easily accessible 
tool for decision-makers and engineers for managing this hazard, particularly in the case 
of regions without sufficient research (Galve et al. 2009).

Initially, the research on sinkhole susceptibility was mainly based on qualitative anal-
ysis. The wide application of geographic information system (GIS) and various algo-
rithms have provided the conditions for quantitative evaluation and prediction. There 
are several studies of sinkhole susceptibility development around the world, which can 
be roughly divided single-factor and multifactor approaches (Duman et al. 2005; Galve 
et al. 2009; Taheri et al. 2015; Zhou et al. 2016; Wu et al. 2018; Jia et al. 2019). Meth-
ods include the one-factor model, spatial overlay analysis, probabilistic modeling, con-
ditional probability, analytic hierarchy process (AHP), logistic regression modeling, and 
machine learning. The results of related studies have shown reasonable prediction abil-
ity and can be used to assess sinkhole susceptibility problems.

Using AHP to generate a geological hazard susceptibility map is one of the most 
widely used methods (Ercanoglu et  al. 2003; Chowdary et  al. 2013; Feizizadeh et  al. 
2014a). AHP has the apparent value of permitting a hierarchical structure of the criteria, 
which can provide a better focus on specific criteria and sub-criteria (Saaty 1980). Con-
sidering the interactive effects of disaster-causing factors to a sinkhole, the AHP method 
is  indeed suitable  and  effective. However, weights of conditioning factors are made 
through building a pairwise matrix, which is dependent on opinions or experiences 
of assessment experts (Chowdary et  al. 2013). Many authors have proposed improved 
models to overcome this issue such as integrating fuzzy logic mathematics, ordered 
weighted averaging, Monte Carlo simulations, catastrophe theory, sensitivity and uncer-
tainty analysis, global sensitivity analysis, Dempster–Shafer theory, and machine learn-
ing into the model (Feizizadeh et  al. 2014a, b; Sadeghfam et  al. 2016; Ghorbanzadeh 
et al. 2017; Negahban 2018; Shokati and Feizizadeh 2018; Taheri et al. 2018). However, 
little has been published on the actual evaluation of the karst collapse susceptibility 
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using these models. It is necessary to explore highly reliable evolution approaches for 
sinkhole susceptibility for better prediction capabilities.

Catastrophe theory is designed for discontinuous dynamic systems governed by a poten-
tial energy-like function. This fits well with karst collapse, as they have obvious sudden 
characteristics that can be adequately represented by catastrophe theory (Kuniansky et al. 
2018; Santo et al. 2019). The catastrophe approach also does not involve the decision-mak-
er’s opinion in assigning weights to the factors; rather, it calculates the importance of one 
criterion over others by its inner mechanism. Many studies have tried this method to avoid 
subjectivity in assigning weights such as groundwater susceptibility, flood susceptibility, 
and landslide susceptibility (Sadeghfam et al. 2016; Sun et al. 2019). However, there is an 
inevitable disadvantage to this theory: The order of factors during its normalization process 
has a significant influence on the final result.

In information theory, entropy is a measure of uncertainty in a random variable. The 
entropy index can represent the relative importance of factors without any consideration of 
the decision-makers’ preferences, allowing for an objective evaluation method (Kornejady 
et al. 2017; Zhao et al. 2017). When the value of a factor to be evaluated is small, and the 
entropy value is considerable, this index has no obvious effect on the system (Constantin 
et al. 2011). Entropy theory can be used to calculate the relative importance of the index 
system to determine the importance order of parameters. Therefore, to overcome the dis-
advantage of the catastrophe model, the order of factors can be objectively and reasonably 
determined first using the entropy theory; then, the catastrophe theory can be integrated 
into the final model for prediction.

The main objective of this study is to develop a novel approach for tackling uncertainty 
and imprecision when analyzing sinkhole susceptibility. AHP was first selected to build the 
structure model according to the judgment of experts, which fully considers the sinkhole 
occurrence mechanisms. The objective methods (catastrophe theory and information the-
ory) were then combined to calculate a weight-based only on the observation data without 
any consideration of subjectivity. The innovative aspect in the present work is the joint use 
of subjective and objective approaches to better divide the spatial regions of sinkhole sus-
ceptibility. The methods adopted and the result obtained can be used as a tool to help with 
suitable measures for sinkhole guidance.

2  Study area

The study area is located in the Qixia economic development zone, Shandong Province, 
China, as shown in Fig. 1. The study area, within 120 °59′ 03′′–121° 05′ 09′′ east longitude 
and 37° 25′ 41′′–37° 32′ 16′′ north latitude, is an area with a high probability of karst col-
lapse. The region mainly consists of alluvial plains and piedmonts, covering an area of 
105 km2. The altitude reaches more than 260 m above sea level in the piedmont region and 
decreases toward the central area in the river beds. The climate is semiarid, with 648 mm 
of average annual precipitation and a mean annual temperature of 11.4 °C. The major river 
is the Baiyang River, which is an intermittent stream during seasonal droughts, as shown 
in Fig. 2.

The exposed bedrock consists of Proterozoic to Mesozoic successions that include sedi-
mentary and volcanic rocks (Fig. 1). The oldest rocks exposed in this area are Paleo-pro-
terozoic schist, marble, quartzite, and amphibolite. Paleozoic sediments are not exposed 
in this region. The Neo-proterozoic succession mainly consists of limestone, marlstone, 
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Fig. 1  Location and geological condition of the study area

Fig. 2  Features within the study area
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and shale. The main lithologies of the Cretaceous units include sandstone, andesitic tuff 
breccia, and sandstone, which are only exposed sporadically in the study area. The Qua-
ternary sediments consist of alluvial deposits from rivers, followed by proluvial and dilu-
vial deposits, which mainly consist of clay, silt, and sand. Fracture structures are relatively 
developed in this region, especially in the central area (Fig.  2). Furthermore, cracks are 
well developed in the rock near the fault zones.

Groundwater in the study area mainly includes pore water in loose sediment (uncon-
fined aquifers) and fracture karst water in the carbonates (semi-confined and confined aqui-
fers). Karst water is the target aquifer of intensive exploitation. The plains aquifer consists 
of Pliocene to Holocene-aged loose sediment aquifers, mainly distributed in the central 
and valley areas. It is primarily comprised of sand, sandy gravel, and gravel. The aquifer 
thickness varies from less than 5 m in the low-lying areas to as much as 30 m in the valley 
region, with burial depths varying from 10 to 1.6 m. The slope primarily governs the gen-
eral flow direction of the groundwater in the Quaternary aquifer. Precipitation and surface 
runoff are the main sources of groundwater recharge. The groundwater discharge is mainly 
extraction, runoff, and evaporation. The karst aquifer is mostly located in the eastern and 
southern regions with the study area and is also the aquifer in the central-southern region 
below the Quaternary overburden. The burial depth of this aquifer varies from 5 to 60 m 
and has favorable water abundance. In the overburden region, the karst aquifer receives 
recharge from the Quaternary aquifer. Topographic and tectonic conditions mainly con-
trol the flow of the karst groundwater in the area. Mine dewatering of the cement plant is 
the major groundwater exploitation activity. The location of the cement plant is shown in 
Fig. 2.

According to the statistical data, annual groundwater extraction has continuously 
increased, especially the cement plant mining activities since 2005, causing a dramatic 
lowering of the water level. The first sinkhole appeared in 2005, corresponding to an 
intense period of exploitation. At present, two groundwater depression cones induced 
by over-pumping have formed in the northeast and east of Zhongqiao village. Figure  2 
shows the distribution of the overall 12 recorded karst collapses in the study area, and nine 
recorded karst collapses (accounting for 75% of the total) have occurred since 2016. Most 
of the karst collapses are located in or around the village region, and more than one hun-
dred houses have been cracked or tilted since 2016. Overall, this hazard seems to be more 
serious recently. Most of the sinkholes are circular or elliptical shape in plain view. Fur-
thermore, the number of sinkhole occurrences is more significant in the summer than in 
the other seasons. The karst and overlying layer conditions such as lithology of the layer of 
karst formation, condition of the overlying layers, and tectonic conditions are the primary 
conditions for cover collapse. Groundwater extraction is the primary inducing factor. The 
buried karst area, covered by rock not easily dissolved and clastic rocks, is not threatened 
by this hazard in this area. Generally, the basic pattern of karst collapse occurrence shows 
that sinkholes consist of typical cover collapse sinkholes in the study area. The boundary 
of susceptibility assessment is shown in Fig. 2.

3  Methodology

The occurrence of karst collapse is induced by many factors and is a complex process. The 
complexity and obvious anisotropy of karst aquifer systems pose challenges for analyzing 
the susceptibility of cover collapse. Hazard susceptibility is, therefore, a multi-objective 
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and multi-criteria problem. A novel method for karst collapse susceptibility consists of 
combining both subjective and objective methods to consider the advantages and disad-
vantages of both methods. AHP was first introduced into the model, which offers a flexible, 
effective, and easy implementation for intricate decision-making problems (Saaty 1980). 
To avoid the subjectivity of decision-makers during the process of AHP, the combined 
objective methods based on entropy and catastrophe theories were introduced to further 
determine the factor weights. GIS software was used, and all factors were prepared as a 
raster dataset in the GIS environment.

Generally, the following steps were applied to reach the final susceptibility map:

a. The effective factor related to the cover collapse susceptibility map was selected and 
collected according to the occurrence mechanism and knowledge of local experts, and 
those factors were then arranged in hierarchic order. Meanwhile, the rating was synthe-
sized to determine the score of the factors in the index layer of AHP.

b. The factors were ranked based upon the importance, and the weights of sub-factors were 
determined in the index layer based on entropy theory.

c. The weighting of the criterion factors of the AHP model was calculated based on the 
catastrophe theory according to the rank result of the index layer using the entropy 
model.

d. All the spatial data were then overlaid on to a map, and the susceptibility map was 
generated in the GIS environment.

3.1  The AHP model

The AHP model developed by Saaty (1980) is a decision support system that is designed 
for dealing with complex and multi-criteria decisions through a hierarchical structure. AHP 
consists of targets to be attained, criteria to be used for decision making and alternatives 
to be selected (Pourghasemi et  al. 2012; Mallick et  al. 2018). A satisfactory evaluation 
consists of a karst collapse susceptibility model and the related factors that induce cover 
collapses. This method is coupled with the knowledge of experts or users to determine the 
parameter and criteria (Neshat et al. 2014).

According to the formation conditions and mechanisms of karst collapse, an evaluation 
factor set of this hazard was determined based on experts’ expertise as well as a literature 
review (Tharp, 1999; Kaufman and Quinif 2002; Galve et al. 2009; He et al. 2013; Papado-
poulou-Vrynioti et al. 2013; Siska et al. 2016; Taheri et al. 2018; Jia et al. 2019; Wu et al. 
2018). The occurrence of sinkholes in the study area was the combined effect of several 
factors typical of covered collapse sinkholes. The major influencing factors were the karst 
development conditions, overburden characteristics, and groundwater level. Karst develop-
ment was the most fundamental condition for collapse, which consists of the storage place 
and transfer channel for the collapse materials. Overburden conditions consisted of the 
material source and were the main controlling factor of soil holes. Groundwater extraction 
and mine dewatering were primary inducing factors for karst collapse. The dynamic load, 
generated by the fluctuation of the groundwater table, impacted the soil cap, which could 
also cause soil erosion damage.

Finally, the hierarchical structure included three layers. The topmost layer of the struc-
ture was the goal layer, called the susceptibility of karst sinkhole (A). The second layer 
was the selected category factors, which had significant impacts on layer A, and called the 
criterion layer (B). The third layer explained the concrete meaning of the second layer and 
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called the index layer (C). Generally, B was mainly composed of the three main group fac-
tors: karst condition (B1), overlaying layer condition (B2), and hydrological condition (B3). 
Each criterion factor also consisted of several sub-factors, i.e., B1 included the degree of 
karst development (C1) and the distance from faults (C2). B2 included the lithology of the 
overlying layer (C3), structures within the overlying layer (C4), and the thickness of the 
overlying layer (C5). B3 included the relative location between the groundwater and bed-
rock (C6), groundwater abundance (C7), the rate of groundwater level drawdown (C8), and 
the distance from the river (C9). Figure 3 shows the detailed assessment index system of 
this model.

There were divided four classes in this process: very high, high, medium, and low, 
where the corresponding score values were 6, 4, 2, and 1, respectively. According to the 
subjective relevance of all the selected factors in the AHP model to determine the occur-
rence of karst collapse, the rating scores values also could be further determined.

3.2  Entropy theory

Entropy information is a concept from information theory and indicates the amount of 
information contained in the data (Constantin et  al. 2011; Kornejady et  al. 2017; Zhao 
et al. 2017). The entropy method is an unbiased and accurate quantitative weight-assigning 
method compared to subjective techniques. The entropy index, the information content, is 
the average unpredictability in a random variable. If an event can be predicted precisely, 
the value of entropy will be small. Therefore, the entropy weights also can present the rela-
tive importance of factors.

Fig. 3  AHP model structure
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In this study, to overcome the difference due to the ranking of indicators during the eval-
uation process of the catastrophe model, the entropy method was used to rank the impor-
tance of indicators before the final catastrophe evaluation. The index and weights of the 
nine factors C1, C2, C3, C4, C5, C6, C7, C8, and C9 were calculated for the three index 
layers, respectively, in the built AHP.

The procedure for assigning weights and relative importance of factors using entropy 
theory was as follows:

a. The matrix formation was first built. Supposing that the target area was divided into n 
areas, and m was the number of evaluation parameters, the data related to the factors 
would then be in the form of matrix X. The decision-making matrix X could be defined 
using Eq. (1).

where i = 1,2,…,n; j = 1,2,…,m; xij is the value of ith region with regard to parameter j.
b. The data were then standardized. In order to eliminate the influence resulting from the 

difference in the units of the characteristic parameters, values were normalized and 
transformed using Eq. (2).

where rij is the standardization data of xij; xij is the actual value of the sample; and n is 
the number of evaluating objects.

c. The entropy value for index  Ej (for the jth evaluating indicator) was then defined using 
Eqs. (3) and (4).

where n is the number of evaluating objects, note that if fij = 0, Ej = 0.
d. The weight and relative rank for each index (variables) were finally estimated using 

Eq. (5).

where wi is the index weight of ith parameter and m is the number of the evaluating 
indicators.
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3.3  Catastrophe theory

Catastrophe theory originated from the topology branch of mathematics. This theory was 
developed to study the nonlinear behavior of a dynamic system, particularly to assess discon-
tinuities (Kuniansky et al. 2018; Santo et al. 2019). In catastrophe theory, the system func-
tion variables can be divided into dependent state variables and control variables. The state 
variable generally represents the behavior state of a system, while control variables are the 
influencing factors. The dependency of state variables on the control variables is determined 
by catastrophic fuzzy membership functions rather than weights assigned by the users. Table 1 
shows the number of control parameters and state variables for the standard catastrophe 
model. For the butterfly function, xa, xb, xc, and xd are the state variables corresponding to 
the control parameters (a, b, c, and d). In addition, different control variables have different 
impacts on the state of the variables (Wang et al. 2011). Therefore, the weight determined by 
this theory is more realistic.

To delineate the susceptibility zones by using the catastrophe theory, four steps were 
involved: (a) data preprocessing; (b) data standardization; (c) normalization; and (d) calcula-
tion of susceptibility index.

(a) Data preprocessing: To avoid the catastrophe progression of a control variable that may 
be too dispersed, which would influence the calculation accuracy, the average value of 
the index was used. The original data were preprocessed using Eq. (6).

where rij is the original data of the ith indicator of jth evaluating object and m is the 
number of evaluating objects. xi is the average value of the indicator i.

(b) Data standardization: The different thematic indices have different units of measure-
ment. The standardization process makes the data dimensionless, which is a necessary 
step in catastrophe theory. To avoid the catastrophe progression of a control variable 
being too high, the following equations were used to standardize the indices.

For the cost type, where larger is better, data values were directly proportional to the sus-
ceptibility index. The data were standardized using Eq. (7).

(6)xi =
rij

1

m

∑m

j=1
rij

(7)yi =
xi − xi(min)

xi(max) − xi(min)

Table 1  Normalization formulas for catastrophe theory

Number of control 
variables

Number of state 
variables

Name Normalization formula

2 1 Cusp xa = a1/2 and xb = b1/3

3 1 Swallowtail xa = a1/2, xb = b1/3and xc = c1/4

4 1 Butterfly xa = a1/2, xb = b1/3, xc = c1/4 and xd = d1/5

5 1 Wigwam xa = a1/2, xb = b1/3, xc = c1/4, xd = d1/5 and xe = e1/5
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For the efficiency type, where smaller is better, the susceptibility index inversely varied 
proportionally to the data layer values. This type of layer was standardized using Eq. (8).

where i is the index or attribute, xi is the original value of index i, and xi(max) and xi(min) are 
the maximum and minimum values of original data of index i, respectively.

(c) Normalization: The data normalization was implemented using the catastrophe models 
listed in Table 1. The catastrophe progression of each control variable was computed 
from the initial fuzzy subordinate function based on the normalization formulas. When 
applying the normalizing formula to perform recursive computations, one of the two 
principles was selected: complementary and non-complementary (Sadeghfam et al. 
2016). When the control variables were independent of each other, and each control 
variable could not offset the other, the non-complementary principle was selected. The 
minimum value of normalized control parameters was selected as the state variable 
value of the whole system, i.e., x = min(xa + xb + xc + xd), for the butterfly function. 
Conversely, when a control variable was complementary to the other, the mean value 
was selected, i.e., x = (xa + xb + xc + xd)/4 for the butterfly function.

In the sinkhole susceptibility assessment, the complementary principle is satisfied. Con-
sidering the structure of the AHP model, the swallowtail function was selected to calculate 
the final weight of the criterion layer. The weights of the selected nine index factors based 
on the above entropy theory were further used in this process. Adding the weight of the 
factors in the same index layer, the weights of the three criterion factors B1, B2, and B3 
were obtained using the normalization formulas (Table  1). Finally, the rank of the nine 
basic factors was determined based on the superimposed principle.

(d) Calculation of susceptibility index: In the final step, the total susceptibility index of 
an element in a given location was obtained by integrating individual variable scores 
with estimated weight values, as shown in the following equation.

where Si is the sinkhole susceptibility index for area i, wj is the final calculated weight 
of parameter j, rij is the grading value of area i of factor j, and n is the total number of 
criteria parameters.

4  Sensitivity analysis

The use of sensitivity analysis can improve the uncertainty of model accuracy and evalu-
ate the relative importance of different parameters on the assessment results (Feizizadeh 
and Blaschke 2013). In the present work, two methods for sensitivity analysis were imple-
mented: single-parameter sensitivity analysis and map removal sensitivity analysis. These 
were used to test the sensitivity of the index factors in the AHP model (Huan et al. 2018; 
Patra et al. 2018).

(8)yi =
xi(max) − xi

xi(max) − xi(min)

(9)Si =

n∑
j=1

wj × rij
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The single-parameter sensitivity analysis was used to assess the influence of the indi-
vidual input parameter on the susceptibility index. Equation (10) is used to calculate the 
effective weight of each parameter.

where Wi is the effective weight of the ith parameter; ri and wi are the given rating and 
weight of the ith parameter, respectively; and S is the susceptibility index.

The map removal sensitivity analysis provided the sensitivity associated with the 
removal of one or more indicator layers. The removal of parameter sensitivity also can be 
used to examine the contribution of parameters to the susceptibility index.

The index of the removal of a parameter was defined as follows.

where SA denotes the sensitivity index; S and S′ are the unperturbed and perturbed suscep-
tibility indices, respectively; and N and n are the numbers of factors used to compute S and 
S′.

5  Results

5.1  Data collection and preparation

To identify karst collapse susceptibility zones, the criterion layer of karst conditions, over-
lying layer conditions, and hydrological conditions were prepared in the AHP model. Gen-
erally, nine important causative factors were selected, and the corresponding thematic data 
layers were prepared in GIS with a resolution of 10 m. Furthermore, the kriging spatial 
interpolation technique was applied to transform the discrete spatial data into a continu-
ous surface, which simultaneously considered both the distance and the degree of variation 
between values of known data points (Goovaerts 1997). Input data were mainly obtained 
from field study investigation, topographic maps, boreholes logs, well logs, and field tests.

5.1.1  Karst conditions

Karst collapse is affected by the degree of karst development and geological structures. 
Karstification in carbonate rocks is significant, causing the appearance of karstic forma-
tions (Papadopoulou-Vrynioti et  al. 2013). Karstification of the underlying bedrock was 
active in the study area, especially in the covered karst area. Of the 56 boreholes drilled in 
active karstification, 47, approximately 84%, encountered cavities. The cavity size ranged 
from 0.1 to 18.9 m high, and approximately 87% of the heights were less than 5 m. Gener-
ally, the degree of karst development, as shown in Table 2, can be divided into four suscep-
tibility degrees according to the situation of the study area. A higher rating value indices 
more substantial karst development. The data were obtained using boreholes and a geologi-
cal map at 1:10,000 scale, as shown in Fig. 4a.

Geological structures affect the continuity of the bedrocks and soil masses and may 
act as conduits for seepage (Tharp 1999; Wu et  al. 2018). Fault zones are commonly 

(10)Wi =
wi ⋅ ri

S

(11)
SA =

||||
S

N
−

S
�

n

||||
S

× 100
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characterized by higher hydraulic conductivity and more cavernous conditions. The rock 
surrounding fault structures was severely fragmented and had karst development, accord-
ing to geophysical and borehole data. The spatial distribution of most recorded collapses 
occurred near fault zones. Therefore, faults are an essential factor in karst collapse sus-
ceptibility. Classes were assigned based upon the distance from a fault (Table 2): ≤ 50 m, 
50–200  m, 200–500  m, and ≥ 500  m. The lithology map was achieved from geological 
maps with scales of 1:10,000. The map indicating the distance from a fault was produced 
by a buffering method in GIS (Fig. 4b).

5.1.2  Overlying layer conditions

The overburden is the material basis of soil holes in the covered area (Tharp 1999; Santo 
et al. 2019). An apparent phenomenon of this region was that all of the sinkholes occurred 
in zones where the limestone bedrock was covered by Quaternary alluvium. The type, for-
mation, and thickness of the overburden were vital factors of the karst sinkhole develop-
ment processes.

The available borehole data indicated that the overburden could be divided into several 
types, including alluvial–fluvial sandy clay, clayey sand, medium-coarse sand with grav-
els, etc. The material of overburden influenced the formation of soil caves. Nine sinkholes 
occurred in the sand or a mixture material that consists of sand, gravel, and clay, and three 
occurred in a mixture of gravel and clay. Meanwhile, according to statistics, more than 90% 
of the karst collapses occurred where the overburden overlying the karst contained multi-
layered structures. Only one sinkhole occurred in a monolayer structure that was mainly 
composed of sands. Therefore, the lithology of the soil layer was classified into four classes 
(Table  2). The lithology of sand was given the highest rate value, followed by a mixed 
composition and clay, as shown in Fig. 5a. The structure of the overlying layer was based 
on four categories that were based on the vertical stratification of the soil (Table 2). A more 

Fig. 4  Karst conditions of the study area
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complex structure was given a higher rating value (Fig. 5b). The lithology and structure of 
the overlying layer were calculated from 116 data points collected at boreholes and produc-
tion wells.

Seven recorded karst collapses, 58% in total, occurred in the covered area with a soil 
thickness less than 15  m. Two sinkholes have soil thicknesses ranging between 15 and 
25 m. The other three sinkholes occurred in a region having a thickness greater than 25 m. 
Accordingly, four classes were created based on the thickness of the overburden layer, as 
noted in Table 2. The overlying thickness map was extracted from collected well and bore-
holes logs (Fig. 5c).

Fig. 5  Overlying layer conditions of the study area
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5.1.3  Hydrological conditions

The groundwater exploitation and hydrographic network contribute to the occurrence of 
cover collapse (He et al. 2013). The over-extraction of groundwater in the area had led to a 
sharp table decline since 2016, which was the peak period of karst collapses. The groundwa-
ter table fluctuating within the bedrock can easily induce the collapse of formation. Half of 
the sinkholes occurred where the groundwater level was around the bedrock depth (< 5 m). 
Five sinkholes emerged where the water table was above the bedrock (more than 5 m). Only 
two collapses occurred in the study area, while the water table below the bedrock, more than 
5 m. Therefore, the relative location between groundwater and bedrock was divided into four 
classes (Table 2) obtained by the thematic mapping of overburden thickness and groundwater 
depth (Fig. 6a). In this computational process, the groundwater level was selected as the low-
est level in a year (just before rainfall in June 2018).

The basic pattern of sinkhole occurrence showed that the region of karst collapses is related 
to groundwater exploitation. Groundwater resources play an essential role in the formation 
of sinkholes. Groundwater abundance indirectly reflects the degree of karst development and 
groundwater potential zones, which are related to the occurrence of collapse. Higher levels 
of groundwater abundance have more likely potential to cause sinkholes. Therefore, a larger 
value was assigned to a region having greater groundwater abundance, as listed in Table 2. 
Groundwater abundance was obtained by drilling, wells, and field tests, as shown in Fig. 6b.

Excessive pumping of groundwater leads to a decline in the piezometric level and induces 
the possibility of sinkholes. The rate of groundwater level drawdown was calculated between 
June of 2017 and June 2018. Based on the available data of the groundwater table and 
mechanical analysis, the classifications of the drawdown rate are shown in Table 2. Ground-
water level data of boreholes and monitoring wells were entered into GIS and separately inter-
polated across the whole assessment area, as shown in Fig. 6c.

Previous studies have shown that hydrologic flow channels are essential predictors of cover 
collapse sinkholes. Three recorded sinkholes emerged along riverbed and banks in the inves-
tigation area. There is an intermittent river in the assessment region, which is a source for the 
aquifer system. Therefore, the distance from the river thematic layer was also selected as a 
factor divided into four groups (Table 2): ≤ 100 m, 100–200 m, 200–400 m, and ≥ 400 m. This 
factor was obtained by buffering the river network from the topographic maps at a scale of 
1:10,000 (Fig. 6d).

5.2  Analytic hierarchy process evaluation model

As mentioned above, there were four classes in this process: very high, high, medium, and 
low, where the corresponding class score values were 6, 4, 2, and 1, respectively. The values 
were assigned based on published information and experience of the local experts in the study 
area, which are given in Table 2.

The relationship matrix R was ascertained using Eq. (12).

(12)R =

⎡
⎢⎢⎢⎣

r
11

r
12

… r
1n

r
21

r
22

… r
2n

⋮ ⋮ ⋮ ⋮

rm1 rm2 … rmn

⎤⎥⎥⎥⎦
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where rij indicates the score value of the jth index belonging to the ith evaluation unit, m is 
the number of the evaluation units, and n is the number of the factors within the index layer 
(in this study, n = 9).

5.3  The rank of factors based on entropy theory

Considering there were two-layer parameters in the AHP model, the weights of the factors 
were judged, respectively, to the criterion and index layer. To avoid the effect of factors rank 

Fig. 6  Hydrological conditions of the study area
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on the weight while using the catastrophe theory, the entropy method was used before the 
weight calculation of the criterion layer.

To the criterion layer, there were three first-grade factors: B1, B2, and B3. Every criterion 
factor had different numbers of second-grade factors in the index layer. First, the ranks of sec-
ond-grade factors were determined. The indicator score values were standardized (given in the 
fourth column of Table 3) to calculate the weights of the index factors. Using Eq. (1) through 
Eq. (4), the weights of the index belonging to the same criterion layer (ws) were determined, 
as shown in Table 3. Also, the weight represented the relative intensity coefficient in the com-
petitive sense, so the priority of each index factor (as shown in the sixth column of Table 3) 
was also determined for further use in the catastrophe model.

5.4  Calculating the weight of factors based on catastrophe theory

As noted earlier, the weight of the criterion factors was further calculated using the catas-
trophe theory. Based on the number of index factors, the catastrophe model of the criterion 
system was selected. For example, criterion factor B1 had two sub-factors, namely C1 and C2; 
therefore, these met the requirements of the cusp catastrophe model (Table 1). Furthermore, 
the priority of index factor C1 was more important than C2, according to the results of the 
above entropy model (Table 3). In this study, larger values for all nine index factors were all 
considered to be better, so Eq. (7) was selected. Based on the selected catastrophe model ( the 
cusp model selected for B1), the weights of the criterion factor (wc) were finally calculated 
considering the basic principle of complementary, as shown in Table 4.

Using the following equation, the calculated weight was further normalized (given in the 
eighth column of Table 4).

where the wc
j is the calculated weighted of factor j, wc*

j is the normalization weight, j is the 
criterion factor, and m is the number of the criterion factors in the AHP model.

Finally, based on the hierarchical structure of the AHP model, the weights of all nine fac-
tors were further calculated using Eq. (14). The weight results are listed in Table 4.

(13)wc∗
j

=
wc
j∑m

j=1
wc
j

(14)wi = wc∗
j
× wc

ij

Table 3  Rank of the index in criterion layer based on entropy theory

Criterion factor Index factor Normalized value Index Ej Weight ws Priority

B1 C1 3.215 0.090 0.529 1
C2 1.834 0.190 0.471 2

B2 C3 3.592 0.140 0.317 3
C4 3.578 0.115 0.326 2
C5 5.289 0.029 0.357 1

B3 C6 2.585 0.109 0.255 2
C7 2.708 0.092 0.260 1
C8 2.166 0.129 0.250 3
C9 2.286 0.179 0.235 4
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where wi is the final calculated weight of factor i; wc*
j is the normalization weight of 

parameter in j criterion layer; and wc
ij is the index factor i that belongs to j criterion layer.

5.5  Results of sensitivity analysis and validation

Sensitivity analysis was used to discuss the influence of the rate and weight values assigned 
to each selected factor. Considering that the basis of weight calculation was the rate value 
of the factors in the assessment region, the rate values were given by the local experts 
and conditions, providing the sources of sensitivity. Therefore, the statistical values of the 
selected nine evolution parameters in the AHP model were firstly presented, as shown in 
Table 5. The highest mean rate value was C5 (mean value = 5.29), followed by C3, C4, and 
C1. In comparison, C2, C6, C7, C8, and C9 had lower mean rate values.

The single-parameter sensitivity analysis represents the relative importance of a single 
factor compared to the other eight parameters. The analysis results (Table 6) show that the 
effective weights of C1, C3, C4, and C5 exhibited higher effective weightings (16.02%, 
12.03%, 11.56%, and 19.05%, respectively) compared with their empirical weights values, 
especially C5 and C1, indicating that these parameters had the most significant impact on 
sinkhole susceptibility. C2, C6, C7, C8, and C9 tended to be less effective parameters in 
the susceptibility assessment, with low effective weightings (8.25%, 8.55%, 9.16%, 6.01%, 
and 6.78%, respectively). This may be because parameter C5, C3, C4, and C1 had larger 
mean score values for the subregion class values.

The use of sensitivity analysis on one map removal can help to identify the most sig-
nificant parameter. Table 7 summarizes the change in index S as a result of the removal 
of a single parameter at a time using Eq. (11). C5 was determined as the most sensitivity 

Table 5  Summary statistics of 
the nine factors of AHP

C1 C2 C3 C4 C5 C6 C7 C8 C9

Min 1 1 1 2 1 1 1 1 1
Max 6 6 6 6 6 6 6 6 6
Mean 3.21 1.83 3.59 3.34 5.29 2.59 2.71 2.17 2.29
SD 1.79 1.34 1.2 1.57 1.38 1.05 1.29 1.58 1.84

Table 6  Statistical summary 
of single-parameter sensitivity 
analysis

Parameter Empirical 
weighting

Empirical 
weighting 
(%)

Effective weighting (%)

Min Max Mean SD

C1 0.1555 15.55 4.65 34.03 16.02 6.72
C2 0.1385 13.85 2.94 43.85 8.25 5.19
C3 0.0995 9.95 2.65 23.23 12.03 3.67
C4 0.1024 10.24 3.98 24.74 11.56 4.98
C5 0.1121 11.21 4.04 36.08 19.05 7.61
C6 0.1000 10.00 2.78 17.43 8.55 2.38
C7 0.1019 10.19 2.73 25.79 9.16 3.40
C8 0.0980 9.80 2.43 22.53 6.01 3.69
C9 0.0921 9.21 1.87 23.76 6.78 4.91
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parameter with an average variation index of 1.37%, followed by C1. Furthermore, due to 
the high rate value, C2, C8, and C9 also exerted relatively more significant influences on 
sinkhole susceptibility. The influence of C3 was small according to its lower mean varia-
tion index (0.4%), as well as C6 and C7 (0.38% and 0.43%, respectively). The results of 
map removal sensitivity analysis were consistent with the result of the single-parameter 
sensitivity analysis.

In general, the difference between the theoretical weight and effective weight was not 
significant, and the variation index of the one map removal sensitivity was relatively rea-
sonable, which indicates that the calculated assessment results are relatively reliable.

However, the sensitivity analysis also indicated that C5 and C1 were the most sensitive 
parameters in AHP, which were mainly due to the high mean score value in the study area. 
Thus, a more accurate and objective rate value is further required for better assessment.

5.6  The region of karst collapse susceptibility

Using the weights calculated by the catastrophe theory combined with the entropy index 
of the AHP model, the final comprehensive susceptibility index S was calculated by the 
weighted mean method according to Eq. (1) through Eqs. (9) and (12) through Eq. (14). 
The higher calculated susceptibility index S indicates a higher potential for karst collapse. 
The natural break classification scheme can determine the best arrangement of values into 
different classes (Yalcin and Gul 2017). Using the natural breaks classification method, 
when S ≤ 2.4, the susceptibility was low; when 2.4 < S ≤ 3, the susceptibility was medium; 
when 3 < S ≤ 3.6, the susceptibility was high; when 3.6 < S, the susceptibility was very 
high. The sinkhole susceptibility maps produced from this novel method in a GIS environ-
ment are presented in Fig. 7.

5.6.1  Very high‑susceptibility area

All of the karst collapses distributed in the very high-vulnerability area, where there are 
abundant geological structures, karstification, and intensive human activities. This area is 
mainly located in Yandi, Zhongqiao, Shuidaoguan, Sishui, Beichengzi, and Gaogezhuang 
village, which covers an area of 9.04 km2 (about 20.09% of the total area). The degree of 
karsts and fault development in this area is also extreme. The Quaternary system, whose 

Table 7  Statistics of map 
removal sensitivity analysis

Parameter 
removed

Variation index (%)

Minimum Maximum Mean Standard 
deviation

C1 0 2.86 0.81 0.7
C2 0.01 4.09 0.65 0.35
C3 0 1.52 0.4 0.26
C4 0 1.7 0.51 0.36
C5 0 3.12 1.37 0.76
C6 0 1.04 0.38 0.22
C7 0 1.84 0.43 0.24
C8 0 1.43 0.63 0.32
C9 0 1.58 0.62 0.33
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thickness was less than 25 m, is mainly composed of dual or multivariate structures. Fur-
thermore, this region is near the cement plant, where dynamic groundwater conditions have 
dramatically changed, and the groundwater table is near the bedrock level. Generally, this 
area has visible conditions of sinkhole disaster occurrence, so there is a large possibility of 
cover collapse and related environmental problems.

5.6.2  High‑susceptibility area

This area includes regions with strong karstification and/or near fault zones. This area is 
mainly close to the villages of Caogezhuang, Baichengzi, Sishui, which comprises a total 
area of 8.92 km2 (about 19.82% of the total area). The Quaternary system, whose thickness 
is less than 15 m in the region, is mainly composed of dual structures mixed with sand, 
gravel, and clay. Due to water use for industry and agriculture, especially near the village 
Sishui, the groundwater level fluctuates relatively consistently, although not very intensely. 
When the dynamic conditions change, such as the drawdown of the groundwater level, a 
soil cave may continue to expand, and a new sinkhole may occur in this region.

5.6.3  Medium‑susceptibility area

This area includes regions with low karstification and few geological structures and low 
groundwater exploitation. The distribution of this type of region was scattered across the 
assessment area and is mainly affected by surface water or fault structures. The tectonic 

Fig. 7  Results of sinkhole susceptibility modeling
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movement and the hydrographic network are the critical factors for the occurrence of karst 
collapses in this region. The region consists of an area of about 17.36 km2 (about 38.58% 
of the area).

5.6.4  Low‑susceptibility area

This type of area occurs where the geological conditions are simple and without the effect 
of groundwater extraction. The groundwater level is relatively stable in the region. Gener-
ally, the necessary conditions of collapse in this region do not exist, so the karst collapse 
susceptibility is low. The low-susceptibility zones consist of a total area of 9.68 km2 (about 
21.51% of the area).

6  Discussion and conclusions

Sinkhole hazards have expanded dramatically since 2005 in the study area, and have 
caused severe damage across the region. Only preliminary work related to sinkholes has 
been performed in the study area since 2016. The karst collapse susceptibility assessment 
is an effective and urgently needed tool used for hazard mitigation purposes. This article 
presented a novel integrated method for the assessment of karst collapse vulnerability by 
applying the analytic hierarchy process approach combined with catastrophe theory and 
entropy theory. The location of recorded sinkholes, as well as sensitivity analysis, showed 
that the AHP model combined with catastrophe and entropy theories could reduce the sub-
jectivity in karst collapse vulnerability assessment, which would be helpful for the preven-
tion and control of karst collapse hazard of the study area. Additionally, the methodology 
applied here also could be used in other geological hazard susceptibility assessments.

The occurrence of sinkholes in the study area was the combined effect of several fac-
tors typical of covered collapse sinkholes. The built AHP model was composed of three 
criterion layers (B1, B2, and B3) considering nine factors: C1, C2, C3, C4, C5, C6, C7, 
C8, and C9. The sinkhole susceptibility was classified into four classes: very high, high, 
moderate, and low. The scale values were given by the opinion of experienced experts. The 
thematic layers of the nine factors were carried out by using GIS platform with a 10 × 10 m 
grid size. Rather than constructing a matrix using systematic pairwise comparisons as the 
normal AHP would perform, the relative weights were preliminarily assigned to each layer 
and factors using the catastrophe model combined with entropy theory to reduce the sub-
jectivity. The use of catastrophe theory reduced the subjectivity that is a typical disadvan-
tage in the AHP model. Furthermore, the entropy theory further improved the rationality 
and reliability of the calculated weights, which resolved the disadvantage of the catastro-
phe model. The final normalization weights of C1, C2, C3, C4, C5, C6, C7, C8, and C9 
were 0.1555, 0.1385, 0.0995, 0.1024, 0.1121, 0.1000, 0.1019, 0.0980, and 0.0921, respec-
tively. Finally, a weighted linear combination method was utilized to obtain the susceptibil-
ity zonings.

Based on the classification results in GIS, the assessment area was divided into very 
high-, high-, moderate-, and weak sinkhole susceptible areas, consisting of areas of 9.04, 
8.92, 17.36, and 9.68 km2, respectively. All of the 12 recorded cover collapses were located 
within the very high-susceptibility area, indicating that the model could potentially predict 
sinkholes. The very high- and high-susceptibility areas, consisting of 39.91% of the total 
area, were concentrated in the vicinity of the mine and/or towns, where human activities, 
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especially the extraction of groundwater, were intensive. According to observation and sur-
vey results, the hazard sinkholes have caused property damages in this region, primarily 
distributed within the densely populated areas. In general, the condition of soil, rock, and 
groundwater are closely related to the cover collapse sinkhole formation and development 
in this kind of region. Groundwater extraction is the primary factor that induces sinkholes.

Furthermore, environmental problems associated with sinkholes would induce severe 
disasters in those regions coupled with long-term excessive exploitation of groundwater. 
The medium- and low-susceptibility zones with moderate karstification or few geological 
structures were mainly outside the scope of the groundwater drawdown region, covering 
38.58% and 21.51% of the total area, respectively. The change in the groundwater level was 
relatively stable in this region, far from the cement plant and intense extraction of other 
industrial facilities. The tectonic and hydrographic network may be the underlying factor 
contributing to the occurrence of sinkholes in this region. In general, the drawdown of 
the groundwater level is the most important affecting factor in the study area. Therefore, 
with continued intense groundwater exploitation, the karst collapse maybe occurs more 
frequently, especially in the very high- and high-susceptibility areas. Groundwater exploi-
tation should be strictly controlled, especially in the very high and high zones, to avoid the 
occurrence of sinkholes.

Numerous studies have been conducted to produce the sinkhole susceptibility map. The 
subjective and objective methodologies both have merits and limitations during the assess-
ment of hazard susceptibility. The AHP technique is a broadly utilized subjective method 
in the field of natural hazard susceptibility assessment, including karst collapse. Expert 
opinions are indeed very useful in solving complex problems such as sinkholes. Consid-
ering the key disadvantage of the AHP method and the subjective weights, the objective 
method should be further established to obtain reliable results. The comprehensive use 
of objective and subjective methods could fully reflect the merits of each method. Within 
this present work, the comprehensive method not only placed particular importance on the 
experiences of local experts, fully considering the sinkhole occurrence mechanisms, but 
also noted differences between indices using objective methods. Furthermore, to overcome 
the disadvantage of the catastrophe theory, another objective method entropy model was 
selected to rank the order of the nine factors during the process of the catastrophe theory.

The use of the subjective methodology AHP considers the practical situation, which 
results in more suitable and practical outcomes that apply specifically to the selected study 
region. As there are no standard rules to assign the value of classified factors, the rate value 
had inevitable subjective features. Therefore, not only the weights determined by the rela-
tive importance judgment from experts were subjective, but also the classified values of the 
parameters were given by local experienced experts. The grade values of the selected nine 
parameters (C1, C2, C3, C4, C5, C6, C7, C8, and C9) were also the source of the objective 
methods in the present work. To further analysis the results of the present methodology, the 
single-parameter sensitivity analysis and map removal sensitivity analysis were used to dis-
cuss the influence of the rate and weight values of the nine selected factors. The results of 
both sensitivity analysis methods showed that the given rate values affected the effective-
ness of the calculated weights. Parameter C5 (the overlying layer) was the most sensitive 
parameter, which exhibited the highest mean effective weight 19.05% and the largest mean 
variation index 1.37%, and followed by karst development (C1). The mean effective weight 
and mean variation index of C1 were 16.02% and 0.81%, respectively. Owning to the 
higher mean score values of C5 and C1 (5.29 and 3.21, respectively), those two parameters 
were the most sensitive factors in the AHP model. Furthermore, C3 and C4, correspond-
ing to relatively large average values of 3.59 and 3.34, showed higher effective weightings. 
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Therefore, the rate values were the source of uncertainty during the assessment, which also 
should be noted in future studies.
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