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Abstract
Because a change in the frequency (number/year) of hurricanes could be a result of climate 
change, we analyzed the historical record of Atlantic basin and US landfalling hurricanes, 
as well as US continental accumulated cyclone energy to evaluate issues related to trend 
detection. Hurricane and major hurricane landfall counts exhibited no significant overall 
trend over 167 years of available data, nor did accumulated cyclone energy over the con-
tinental USA over 119 years of available data, although shorter-term trends were evident 
in all three datasets. Given the χ2 distribution evinced by hurricane and major hurricane 
counts, we generated synthetic series to test the effect of segment length, demonstrating 
that shorter series were increasingly likely to exhibit spurious trends. Compared to syn-
thetic data with the same mean, the historical all-storm data were more likely to exhibit 
short-term trends, providing some evidence for long-term persistence at timescales below 
10 years. Because this might be due to known climate modes, we examined the relation-
ship between the Atlantic multidecadal oscillation (AMO) and hurricane frequency in light 
of these short-term excursions. We found that while ratios of hurricane counts with AMO 
phase matched expectations, statistical tests were less clear due to noise. Over a period of 
167 years, we found that an upward trend of roughly 0.7/century is sufficient to be detect-
able with 80% confidence over the range from 1 to 21 storms/year. Storm energy data 
1900–2018 over land were also analyzed. The trend was again zero. The pattern of spuri-
ous trends for short segments was again found. Results for AMO periods were similar to 
count data. Atlantic basin all storms and major storms (1950–2018) did not exhibit any 
trend over the whole period or after 1990. Major storms 1950–1989 exhibited a significant 
downward trend. All-storm basin scale storms exhibited short-term trends matching those 
expected from a Poisson process. A new test for Poisson series was developed based on 
the 95% distribution of slopes for simulated data across a range of series lengths. Because 
short data series are inherently likely to yield spurious trends, care is needed when inter-
preting hurricane trend data.
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1  Introduction

Hurricanes pose a significant threat to life and property (e.g., Pielke et  al. 2008). Some 
argue that ocean warming should increase hurricane frequency and/or intensity (Emanuel 
1987, 2005; Klotzbach and Gray 2008; Knutson and Tuleya 2004), though others disagree. 
For example, using a type of high-resolution model capable of replicating hurricane histo-
ries when nudged with NCEP-1 reanalysis data (Knutson et al. 2007), studies forecast an 
end-twenty-first-century modest decrease in hurricanes and tropical storms (Knutson et al. 
2008; Zhao and Held 2012) under a warming regime. Knutson et al. (2019b) in response 
to 2° future warming inferred a roughly 5% increase in hurricane strength, an increase in 
storm rainfall intensity, a roughly 13% increase in the percent of Category 4–5 storms, but 
a decrease in number of storms. Bendar et al. (2010) also forecast a decrease in total storm 
counts and an increase in the percent of Category 4–5 storms, especially in the western 
Atlantic north of 20° N. Various studies have found upward (Elsner et al. 2000; Golden-
berg et al. 2001; Kossin et al. 2013; Webster et al. 2005; Nyberg et al. 2007; Curry 2008; 
Saunders and Lea 2008), downward (Kossin et al. 2013 for E. Pacific; Landsea et al. 1996; 
Webster et  al. 2005), or flat (Kossin et  al. 2013 for W. Pacific; Solow and Moore 2002) 
trends in hurricane numbers over various time periods and for different basins. Knutson 
et al. (2019a) concluded that storm track changes may be detectable in historic data, but 
that agreement on other changes was weak.

This lack of consensus is complicated further by the common assumption that overall 
tropical cyclone activity is directly related to threat to life and property, which is flawed 
(Staehling and Truchelut 2016). In fact, conditions associated with increased activity may 
lead to decreased coastal impacts (Kossin 2017). While understanding basin-wide hurri-
cane activity is worthwhile in and of itself, as changes in overall count and intensity have 
energetic and moisture implications for the atmospheric system at large, whenever pos-
sible, skipping the intermediary of overall activity and assessing landfall risk directly is 
desirable when addressing human impacts (Staehling and Truchelut 2016). However, rela-
tively few studies take such an approach when considering hurricane trends (e.g., Elsner 
and Bossak 2001; Klotzbach et al. 2018). In addition, studies aimed at evaluating trends 
generally use parametric or nonparametric regression methods, despite the fact that annual 
hurricane counts follow a Poisson distribution (e.g., Elsner and Schmertmann 1993; Elsner 
et al. 2001; Hall and Hereid 2015).

To avoid the twin pitfalls of considering overall hurricane activity as a proxy for direct 
impacts to human populations and discounting the statistical nature of count data, we use 
more rigorous statistical tests to examine potential trends in hurricane climatology in mul-
tiple datasets of hurricane activity.

2 � Methods

Hurricane data were obtained from the National Hurricane Center (https​://www.aoml.
noaa.gov/hrd/tcfaq​/E23.html). These data record US continental hurricane landfalls 
from 1851 through 2017. Database development is described in Landsea and Franklin 
(2013). They documented storm intensity at the point of landfall rather than maximum 
storm intensity. This metric is most relevant to US damage risk. We counted number 
of storms rather than number of locations. There may be some underreporting of some 

https://www.aoml.noaa.gov/hrd/tcfaq/E23.html
https://www.aoml.noaa.gov/hrd/tcfaq/E23.html
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stronger hurricanes (i.e., they may be classified as a lower category) in the early part of 
the record due to low populations in some coastal regions at that time. For each year, 
total number of hurricanes and of strong (Category 3–5) hurricanes were tallied from 
their table. These data differ somewhat from those used in Klotzbach et al. (2018) who 
used a different base set of data and counted the same storm more than once if it made 
landfall in more than one place more than 100 miles apart.

Accumulated cyclone energy (ACE) data were summed by Truchelut and Staehling 
(2017) over the continental US landbase to give the Integrated Storm Activity Annually 
over the Continental US (ISAAC) index. These data are used here with an update for 
2018.

Atlantic basin hurricanes for 1950–2018 were obtained from the IBTrACS database 
(Knapp et al. 2010). Storms are classified into all and Cat 3–5 groupings. There is the pos-
sibility that pre-satellite era Atlantic hurricanes were under-counted (Moon et  al. 2019), 
although Knapp et al. (2010) attempted to correct for this bias.

The Poisson distribution was used to conduct tests of trends. First, the simple linear 
trends for total and strong storm data were evaluated for different periods. For count data, 
trends were also evaluated using Poisson regression. Then, for both the data and com-
parable Poisson synthetic datasets, the magnitudes of trends were found that would be 
detectable over the 167 years for the landfalling events. Data and synthetic data were also 
evaluated to determine the effect of series length on trends. This latter test indicates the 
likelihood of short series showing a spurious trend. Mean number of landfalling hurricanes 
per year was evaluated for periods of positive and negative Atlantic multidecadal oscil-
lation (AMO) periods as defined by Klotzbach and Gray (2008). Klotzbach et al. (2018) 
argued that the most recent positive AMO period extended reliably to 2012, so this date 
was used. Similar analyses were performed with the ISAAC and Atlantic basin data.

3 � Results

Counts of hurricanes making landfall in the USA (Fig.  1a) had a mean of 1.75/year for 
all storms and 0.54/year for major storms (Category 3 or greater; Fig. 1b). For all storms, 
the mean (1.7485) and variance (2.0) were close to equal, allowing tests using Poisson 
distributions. For all storms, the best-fit linear regression (Fig. 1a) had a slope of − 0.29/
century, but P = 0.2 and the 95% confidence interval overlapped zero, so this result is not 
significant. For major storms, the slope was  + 0.03/century, but P = 0.82 and the adjusted 
R2 was − 0.0057, indicating that a two-parameter linear model explains less than a simple 
mean. In addition, the 95% confidence interval overlapped zero. Using only the 1900–2017 
data, results for trend were visually and statistically indistinguishable from the 1851 to 
2017 data. Thus, no trend was detectable for either all storms or strong storms.

Given that count data tend to be positively skewed and kurtotic, especially below a 
mean value of about 10 (Coxe et al. 2009), Poisson regression suggests itself as a method. 
Poisson regression is a type of general linear model, where the link function is the natu-
ral logarithm. For a linear model in time only, the predicted value C at t is obtained by 
exponentiation

or

C
t
= e

b
0
+b

1
t
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A linear change in the Poisson mean gives a curved trend. However, when applied to a 
near-zero change data trend as in Fig. 1, the very small estimated slope value gives a curve 
that is nearly linear. Poisson regression for all three time periods (starting in 1851, 1900, 
and 1980) and both all storms and strong storms are not different from a zero slope, have 
nonsignificant parameters, and are visually indistinguishable from linear regression trends.

Synthetic data can be used to evaluate effects of short time series on trend detection. 
For the actual data for all storms, all series subsets of given lengths were evaluated for 
trend (ignoring statistical significance) and the maximum positive and negative slopes at a 
given segment length were plotted versus length. The result (Fig. 2, black line) shows that 
below 30 years of data, but especially below 20 years, short segments are highly likely to 
give strong positive or negative trends even when the entire data series has no significant 
trend. Based on 400 trials, the mean maximum or minimum at each series length using the 
observed mean of 1.75/year (Fig. 2, red line) diverges less than the actual data. This is an 
indicator of system memory (long-term persistence) at times below 10 years, which could 
be due to cycles of ocean circulation patterns. There is in fact evidence for decadal-scale 
fluctuations in Atlantic hurricane activity related to ocean conditions such as the AMO 
(Klotzbach and Gray 2008) or Atlantic multidecadal mode (Goldenberg et al. 2001; Land-
sea et  al. 1999). If predictable, this could offer hope for enhancing short-term hurricane 
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Fig. 1   Hurricane counts and 
best-fit Poisson regression trends 
from 1851 to 2017. a All US 
hurricanes. b Category 3 + hur-
ricanes. Black dashed line is 
the full series trend, red dashed 
the trend since 1900, and green 
dashed the trend since 1980. All 
regressions P > 0.05 and slope 
confidence intervals include zero
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forecasts. Notably, short-term excursions from a Poisson sample with a mean of 6 (Fig. 2, 
green line) diverged even more from the zero line. This suggests that short-term trends 
from smaller versus larger datasets (e.g., landfalling vs. all basin) are inherently likely to 
diverge. This means that full basin trends could be larger than US land-falling trends on 
short timescales.

Klotzbach and Gray (2008) and Klotzbach et al. (2018) found that Atlantic hurricanes 
and Atlantic coast landfalling storms, respectively, were more frequent during positive 
phases of the AMO. We here repeat their analysis using slightly different data and different 
statistics. The ratios of positive/negative periods (Table 1) are very similar to their result. 
Although these ratios seem large, it is useful to do a test of means for the positive versus 
negative AMO periods. Due to nonnormality, a Kruskal–Wallis test was used. For the all-
hurricane data, the periods 1926–1969 verses 1970–1994 differed at P < 0.05, as did the 
all positive years versus all negative years, but all other comparisons across all and major 
storms in Table 1 were not significant.

An interesting consequence of this relationship is that transitions between AMO 
phases might generate positive or negative trends that will not persist. We tested for this 
effect with the total hurricane count data. The expected AMO-induced trends would be 
positive for neg–pos transitions and negative for pos–neg transitions. For each transi-
tion in the data, the length of the test for a trend was based on the shorter AMO phase 
length. For example, the first AMO phase (Table 1) is 1878–1899, which is 22 years, so 

Fig. 2   Effect of series length 
on trend estimates evaluated at 
5-year increments for all US 
hurricanes. Black line is all data. 
Red line is mean maximum or 
minimum of Monte Carlo sam-
ples for synthetic Poisson series 
with the same mean. Green line 
is synthetic series with mean of 6
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Table 1   Hurricane counts 
and ratios for US landfalling 
storms versus AMO phase (after 
Klotzbach and Gray 2008 and 
Klotzbach et al. 2018). Columns 
3 and 4 are mean annual counts 
(first five rows) or ratios (last five 
rows)

ns not significant;*P < 0.05;**P < 0.01

Period AMO phase All hurr Cat. 3–5

1878–1899 Positive 2.27 0.636
1900–1925 Negative 1.73 0.462
1926–1969 Positive 1.84 0.682
1970–1994 Negative 1.24 0.44
1995–2012 Positive 1.83 0.556
Ratio (1878–1899/1900–1925) Positive/negative 1.31 ns 1.38 ns
Ratio (1926–1969/1900–1925) Positive/negative 1.06 ns 1.48 ns
Ratio (1926–1969/1970–1994) Positive/negative 1.48* 1.55 ns
Ratio (1995–2012/1970–1994) Positive/negative 1.48 ns 1.26 ns
All positive/all negative Positive/negative 1.32* 1.43 ns
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the first 22 years of the next phase were joined to make an 1878–1921 dataset for evalu-
ating a linear trend. For all eight transitions, the signs of the slopes were as predicted, 
but none of the slope coefficients were significant, probably due to the high variance in 
the data over these short intervals. Using Poisson regression, the lack of significance of 
all transition slopes still holds.

An additional question that can be asked is how large a trend would need to be for 
reliable detection over the 167 years. This requires a type of power analysis. Starting 
with the given mean of 1.75/year for all storms, incrementally rising slopes were tested 
using synthetic data (Fig. 3). If we wish to consider an 80% likelihood of detecting a 
trend, the minimum slope is 0.00704 (0.704/century) based on the graph. Repeating this 
analysis for Poisson means from 1 to 21 using 1000 Monte Carlo samples shows that the 
80% detectability cutoff for linear trends is not dependent on the mean but appears to 
fluctuate randomly between 0.0068 and 0.00705/year (not shown). Larger Monte Carlo 
samples would likely narrow this range.

Results for the ISAAC data differ in some ways. With a mean of 4.89 cumulative 
ACE units and a variance of 15.53, the ISAAC data are not Poisson even though they 
give this visual impression (Fig. 4). We can think of the ISAAC data as a Poisson pro-
cess (generating a storm) times a magnitude, with a random path factor that governs 
how much of the storm intersects the US mainland and for how long. The ISAAC data 
also include storms whose eye did not hit land, which is why there are no zero values in 

Fig. 3   Monte Carlo estimation of 
trend detectability for a 167-year 
series. For 1000 trials with Pois-
son mean from all US hurricane 
data, for positive slopes (counts/
year), the plot shows the percent 
of simulations where the slope 
was statistically significant
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Fig. 4   ISAAC annual cumulative 
storm intensity (summed ACE 
over land) 1900–2018. Black 
dashed line is the full series 
linear trend and red dashed the 
trend since 1900. All regressions 
P > 0.05 and slope confidence 
intervals include zero
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the time series. As with the count data, the 119 year data have essentially a zero trend 
(slope of – 0.0092 is n.s.). Poisson regression is not appropriate because ISAAC is not 
count data.

The result for short segment trends for ISAAC (Fig. 5) is the same basic shape as for the 
count data (Fig. 2), though on a different scale. This means that the same cautions about 
spurious short-term trends apply to ISAAC.

The relationship of ISAAC to the AMO (Table 2) is similar to but slightly stronger than 
for the count data (Table 1). All three linear trend transitions between AMO phases have 
the expected sign, with the 1945–1969 versus 1970–1994 phases trend being significant 
(slope = −  0.0991, P = 0.009). Using a test of means across AMO periods, one of three 
comparisons was significantly different, as was the all positive versus all negative test. 
Over the two datasets (total counts and ISAAC), eleven transition linear trends could be 
tested and all gave the expected trend sign, with a binary probability of 0.0005.

The all Atlantic basin storm plot 1950–2018 (69  years) shows a slight upward trend 
(Fig.  6a) that is not significant by either linear or Poisson regression. The post-1990 
trend is visually elevated, but the slope again does not differ from zero by either test. The 
major storm history (Fig. 6b) has a nonsignificant trend for 1950–2018 and 1990–2018 by 
both tests. Kossin et  al. (2013) found a strong upward trend over the period 1982–2009 
using quantile regression for Category 4–5 storms. We matched this period for Category 
3–5 storms using Poisson regression (Fig. 6b, green line) and also obtained a significant 
upward slope. However, the slope over the prior period of the same length (1954–1981) is 

Fig. 5   Effect of sequential series 
(subset) length for ISAAC data 
trends 1900–2018

Table 2   ISAAC for US 
landfalling storms versus AMO 
phase (after Klotzbach and Gray 
2008). Columns 3 and 4 are 
mean annual intensities (first four 
rows) or ratios (last four rows)

ns not significant;*P < 0.05;**P < 0.01

Period AMO phase All hurr

1900–1925 Negative 4.35
1926–1969 Positive 6.26
1970–1994 Negative 3.19
1995–2012 Positive 5.12
Ratio (1926–1969/1900–1925) Positive/negative 1.43 ns
Ratio (1926–1969/1970–1994) Positive/negative 1.96**
Ratio (1995–2012/1970–1994) Positive/negative 1.61 ns
All positive/all negative Positive/negative 1.57**
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downward (Fig. 6b, red line) and the slope for 1990–2018 is much flatter and nonsignifi-
cant. Thus, inferences about trends are highly dependent on the time period chosen.

In contrast to the landfalling data, the all Atlantic basin storms match expectations from 
a simulated Poisson (Fig. 7) for purely random short-term trends. There is no indication of 
persistence that would need to be explained by large-scale ocean activity like the AMO.

Given the inherent noise in a Poisson process, linear regression may be flawed, but 
the curvilinear Poisson model may not be ideal either. Another approach suggests itself 

Fig. 6   Atlantic basin hurricanes 
1950–2018 with Poisson regres-
sion trend lines. a All storms. 
Dashed regression lines slopes 
not different from zero. b Major 
storms (Cat 3 +). Black dashed 
is entire series trend (n.s.). Red 
dashed is 1954–1981 (n.s.). 
Green dashed is 1982–2009 
(p < 0.01). Blue dashed is 
1990–2017 (n.s.)

Fig. 7   All Atlantic basin hur-
ricane max (min) trends verse. 
series length. Red line for Pois-
son simulation
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that is based on the null expectation of a Poisson series. Consider a time-series 400 years 
long with the hurricane count each year being drawn from a Poisson distribution with 
mean 1.75/year (per Fig. 1a). This time series will have no trend if long enough. For each 
sequential series 10 years long (starting in year 1, year 2, etc.), the linear regression slope 
is calculated. We then find the value that 95% of series slopes fall below (for a positive 
trend) or above (for a negative trend). We repeat this for longer series and plot the result 
(Fig. 8). This boundary plot is monotonically decreasing to zero with series length. If an 
observed real data series trend (slope) falls above the line, we can say it is unlikely (though 
not impossible) that it is due to chance. Note that curve shape will differ with the Poisson 
mean (µ). An excellent fit to this curve can be obtained with a two-part exponential decay 
function. Alternatively, numerical interpolation can be used to smooth the curve before 
testing. Comparing the slopes for the earlier test of AMO transition periods, none of them 
are significant by this test.

4 � Discussion

The known gaps in historical data in the earlier part of the landfalling record (Landsea 
and Franklin 2013) affect mainly maximum windspeeds. This means that some hurri-
canes might have been more intense at landfall than recorded (Klotzbach 2006; Landsea 
et al. 2006). Evidence for this is that a reanalysis of hurricane intensity data (Kossin et al. 
2007) reduced the trend in all ocean basins except the North Atlantic. Since this biases the 
strong storm record down in the early period, it adds a bias toward an upward trend over 
the record. The lack of trend observed here is in spite of this potential bias. The fact that 
the 1851–2017 and 1900–2017 trend lines are nearly identical (Fig. 1) also suggests that 
early-period bias is small. According to Klotzbach and Landsea (2015), detection improve-
ments over the period 1970–2004 may be responsible for part of the upward trend detected 
by Webster et al. (2005). In addition, the reversal of many of the Webster trends when 10 
more years of data were added is what we would predict from our results on short-term 
spurious trends.

The effects of noise on interpreting trends affects attempts to relate hurricane activity 
to the AMO (per Klotzbach and Gray 2008). While we found that the sign of shifts in 
hurricane counts and ISAAC between AMO phases was highly significant across 11 tests, 
individual tests of either means or linear trends between AMO phases were mostly not 

Fig. 8   For random Poisson series 
of various lengths, 95% of slopes 
fall below the depicted line. Only 
measured slopes above the line 
are likely to be nonrandom
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significant except for four of nine ratio tests. Thus, while the direction of shifts supports 
the AMO influence theory, individual AMO shift influences on number of hurricanes or 
energy will not be reliably detectable statistically, probably due to the high variance. Our 
purpose in conducting this AMO test was largely to illustrate how such tests need to be 
performed. We recognize that other ocean cycles (e.g., Klotzbach et al. 2018; Zhang et al. 
2017) may also be influential or even stronger than the AMO.

The results of this analysis suggest that tests for trend changes based on short series 
(e.g., Elsner et  al. 2000; Goldenberg et  al. 2001; Emanuel 2005; Curry 2008; Saunders 
and Lea 2008) may suffer from spurious trends, a general problem pointed out by Kout-
soyiannis (2013) for this type of data. For example, Landsea (2015) pointed out that the 
increased Atlantic basin-wide hurricane activity increase since 1970 (Kunkel et al. 2013) 
may not be unusual in the context of a 100 + year dataset, as we show in Fig. 6b. Attempts 
to smooth data with five-year block means (Elsner et al. 2000), five-year running means 
(Webster et al. 2005, 2006), or eleven-year running means (Curry 2008), while a good idea 
in principle, may be using too short a smoothing period based on results here. Attempts to 
unravel causation using annual hurricane counts and climatic variables (e.g., SST, ENSO 
relationships) (e.g., Elsner et al. 2001; Hoyos et al. 2006; Curry 2008; Saunders and Lea 
2008; Klotzbach 2010; Zhang et al. 2017) may likewise risk spurious correlations unless 
datasets are long. Attempts to explain a particular active year (e.g., Klotzbach and Gray 
2006) should incorporate the expectations from a stochastic (i.e., Poisson) process into the 
evaluation of whether a particular year was truly unusual. This effect may explain some of 
the variability in trends detected in previous studies.

Another curious relationship is that between all-basin strong storms (Fig. 6b) and land-
falling strong storms (Fig. 1b). The all-basin storms are much more variable on decadal 
scales. Since landfalling storms are a subset of all-basin storms, it would seem that more 
variable landfalling histories would be more likely if steering effects differed on decadal 
scales. This is the opposite of what is observed. A mechanism that would smooth out all-
basin storm fluctuation for the landfalling subset has never been proposed and seems dif-
ficult to conceptualize. It could be that classification of storm strength in the open ocean 
storm population suffers from temporal biases. This deserves further study.

An important question is whether climate change in general or factors like the AMO on 
decadal scales are altering hurricane frequency and/or intensity. Such changes will affect 
hurricane damage (e.g., Pielke et al. 2008). Results here suggest that detection of changes 
will be difficult on short timescales due to high variability. Trenary et al. (2019) did in fact 
find a lack of explanatory power for models over the period 1958–2005.
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