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Abstract
Rapid prediction of the spatial distribution of the run-up from near-field tsunamis is criti-
cally important for tsunami hazard characterization. Even though significant advances have 
been made over the last decade, physics-based numerical models are still computationally 
intensive. Here, we present a response surface methodology (RSM)-based model called the 
tsunami run-up response function (TRRF). Derived from a discrete set of tsunami simula-
tions, TRRF can produce a rapid prediction of a near-field tsunami run-up distribution that 
takes into account the influence of variable local topographic and bathymetric character-
istics in a given region. This new method reduces the number of simulations required to 
build an RSM model by separately modeling the leading order contribution and the resid-
ual part of the tsunami run-up distribution. Using the northern region of Puerto Rico as a 
case study, we investigated the performance (accuracy, computational time) of the TRRF. 
The results reveal that the TRRF achieves reliable prediction while reducing the prediction 
time by six orders of magnitude (computational time: < 1 s per earthquake).
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1  Introduction

Tsunamis are some of the most destructive and costly natural hazards for coastal areas 
around the world. The 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami are prime 
examples of how tsunamis can cause extensive damage to coastal communities, especially 
in near-field areas (Titov et al. 2005; Wei et al. 2013). A near-field tsunami, which is a tsu-
nami generated close to the coastline, involves a high risk for coastal communities because 
the first waves can arrive on shore in minutes (National Research Council 2011). To miti-
gate damage and build resilient coastal communities, it is critically important to develop 
rapid prediction capacities for a near-field tsunami run-up distribution along the coastlines. 
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Physics-based numerical simulation is currently the most accurate method for predicting 
a tsunami run-up distribution. Though significant advances have been made over the last 
decade (LeVeque et al. 2011; Lin et al. 2015; Popinet 2015; Shi et al. 2012), these physics-
based numerical models still remain time consuming. For example, robust probabilistic 
tsunami hazard assessment (PTHA) requires tsunami run-up estimates for a large number 
of scenarios to allow for accurate quantification of the hazard and related uncertainty (Mori 
et  al. 2018). However, due to the computational burden associated with physics-based 
numerical simulation, a logic-tree approach is typically employed: it limits the number of 
scenarios based on historical earthquake characteristics (e.g., magnitude, recurrence inter-
val) used to evaluate uncertainty in tsunami hazard (Annaka et  al. 2007; Park and Cox 
2016; Park et al. 2018). The issue with the logic-tree approach is that it relies on expert 
judgment, which is difficult to quantify reliability. On the other hand, to carry out a large 
number of scenario simulations, several studies applied an amplification factor method that 
can rapidly estimate the maximum inundation height from the simulated offshore tsunami 
amplitude (Davies et al. 2018; Glimsdal et al. 2019). However, limitations of the ampli-
fication factor approach are that the choice of the offshore reference point is somewhat 
subjective and that the approach still requires numerical simulation to obtain offshore tsu-
nami amplitude. The computational burden associated with physics-based numerical simu-
lation—especially for near-field tsunami forecasting—is a major obstacle. For this reason, 
pre-computed simulation databases are widely used. These databases can provide fast pre-
diction by selecting the best-matched simulation or by interpolating between simulations 
immediately after the source mechanism is known (Kamigaichi 2011; Mulia et al. 2018; 
Setiyono et al. 2017). A problem with the database approach is that it can have substantial 
errors in real-world scenarios that do not exist in the selected databases.

The response surface methodology (RSM) is an effective statistical-based approach 
for establishing a relationship between a set of input variables and the output of a sys-
tem (Box and Wilson 1951; Myers et  al. 2016). Once the RSM model is built, out-
put can be rapidly estimated across the continuum of input spaces. However, because 
high-dimensional input requires a large number of simulations—which is prohibitively 
expensive—the RSM has not been used to predict a tsunami run-up distribution. For 
example, a tsunamigenic–earthquake (the input in an RSM model) is usually repre-
sented by nine fault parameters (Fig. 1). A full factorial design is one of the most widely 

Fig. 1   Schematic sketch of earth-
quake fault parameters: epicenter 
latitude (LAT), epicenter longi-
tude (LON), fault length (LEN), 
fault width (WID), top-edge fault 
depth (DEP), strike angle (STR), 
dip angle (DIP), rake angle 
(RAK) and slip (SLP)
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employed designs of experiments (DoE) used to measure the response of every possi-
ble combination of independent variables. If we design the synthetic tsunami scenarios 
using a three-level full factorial approach with nine fault parameters, 19,683 ( = 39 ) sim-
ulations are required. Moreover, if the input/output relationship shows large nonlinear-
ity, a higher level of DoE may be needed, which would necessitate exponentially more 
simulations.

Here, we present a new methodology to rapidly predict the near-field tsunami run-
up distribution: the tsunami run-up response function (TRRF). It is based on RSM 
but requires only 729 ( = 36 ) simulations through reducing input dimensionality. Input 
dimensionality is reduced through a decomposition of the leading order tsunami run-
up contribution and the residual part of the run-up distribution. We demonstrated the 
TRRF approach in northern Puerto Rico, where a significant tsunami generated by an 
earthquake along the Puerto Rico Trench could devastate coastal communities on the 
northern shore (Grilli et  al. 2010; López-Venegas et  al. 2015; Reid and Taber 1919) 
(Fig. 2).

2 � Tsunami run‑up response function (TRRF)

The main concept of TRRF is to decompose the tsunami run-up distribution R(x) into 
source run-up S(x) and topographic run-up T(x) (Fig. 3):

where the x-axis is parallel to the coastline.

(1)R(x) = S(x) + T(x)
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Fig. 2   Map of northern Puerto Rico. Open black circles represent the epicenters of historical earthquakes 
[ Mw ≥ 4.5 , (USGS 2017)]. The filled black circles and dashed black lines represent the epicenters of 
NOAA’s pre-defined unit sources and fault orientation, respectively (Gica et al. 2008). The dashed red line 
represents the contour line where the water depth is 8 km. The blue dashed square represents the region 
where the National Geophysical Data Center (NGDC)’s 3-sec topographic grid (NGDC 2005) is used for 
numerical simulation
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The source run-up S(x) is a leading order contribution that can be represented by 
Okal and Synolakis (2004)’s empirical formula (hereafter OS formula):

where the coefficient a is related to the width of the source run-up, b is the maximum 
source run-up, and c is the distance from the x-axis origin to the location of the maximum 
source run-up.

The topographic run-up T(x) is the residual run-up remaining after subtracting S(x) 
from R(x). It represents the local (de)amplification of the incoming tsunami wave and 

(2)
S(x) =
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Fig. 3   Example of a tsunami run-up distribution, b source run-up and c topographic run-up. The fault 
parameter condition is as follows: LON = 66.4◦ W, LAT = 19.3◦ N, STR = 90◦ , DIP = 20◦ , RAK = 90◦ , 
LEN = 90 km, WID = 40 km, SLP = 2 m, DEP = 30 km. The a, b and c on the second panel are the coef-
ficients of the OS formula (Eq. 2)
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the resulting run-up arising from topographic variation. The T(x) can be normalized as 
follows, hereafter called normalized topographic run-up NT(x).

The default axis of the TRRF approach is oriented as follows: x-axis is east–west direction 
( xE ) and y-axis is north–south direction ( yN ). Thus, if the coastline is not aligned east–west, 
the axis should be rotated based on the east–west direction until the x-axis is parallel to the 
coastline as follows:

where � is an angle between the east–west direction and the coastline in a counterclockwise 
direction from East, x is a rotated x-axis, and y is a rotated y-axis. Also, the TRRF approach 
is defined based on a Cartesian coordinate system while the epicenters are defined in a 
spherical coordinate system. To align the coordinate systems, the unit of the epicenter 
should be converted from degrees (LON, LAT) to kilometers (X, Y) where X is shortest 
distance from the rotated y-axis to the epicenter and Y is shortest distance from the rotated 
x-axis to the epicenter.

Based on the main concept, the TRRF can predict a tsunami run-up distribution Rp(x) by 
putting the source run-up Sp(x) and the normalized topographic run-up NTp(x) (where super-
script p represents prediction) to the following equation:

where NTp(x) is the 50th percentile (or median) of NT(x) among all the simulations used 
to build the TRRF. Note that the NTp(x) is independent of the earthquake fault parameters. 
The source run-up Sp(x) can be estimated by inputting the OS formula coefficients a, b, and 
c into Eq. 2. The RSM approach is applied to estimate the OS formula coefficients a and b 
from six parameters (hereafter RSM parameters):

where fa and fb are the best-fitting curves to these coefficients; hereafter, these curves are 
called RSM functions. Since the RSM function inputs consist of six parameters, 729 ( = 36 ) 
simulations are required to derive RSM functions following a three-level full factorial 
design (see Appendix 1).

The epicenter location along the x-axis, X, is excluded in the RSM function inputs because 
x-axis runs parallel to the coastline. In this condition, the coefficients a and b are independent 
of X, and the coefficient c is equal to X by the definition of the OS formula (see Eq. 2):

The strike angle STR and rake angle RAK are also not included in the RSM function inputs 
because the OS formula (Okal and Synolakis 2004) is only applicable to an earthquake 
fault oriented in shore-parallel strike direction with 90◦ rake angle. Since this is not the 
only case that occurs in nature, we developed a method that can represent a fault where 

(3)NT(x) =
T(x)

S(x)

(4)x = xE cos � + yN sin �

(5)y = −xE sin � + yN cos �

(6)Rp(x) = Sp(x)
[
1 + NTp(x)

]

(7)a = fa(Y , LEN,WID,DIP, SLP,DEP)

(8)b = fb(Y , LEN,WID,DIP, SLP,DEP)

(9)c = X
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strike direction is not parallel to the coastline and rake angle is not 90◦ as a series of hypo-
thetical faults where the strike direction is parallel to the coastline and the rake angle is 90◦ , 
hereafter, called the angle projection (AP) method.

Section 2.1 will describe the procedures of building a TRRF. Section 2.2 will explain 
the AP method, and Sect. 2.3 will describe the procedures of predicting a tsunami run-
up distribution once the TRRF is built.

2.1 � TRRF development

Figure 4 shows the procedure of TRRF development. The first step is to simulate 729 
tsunamigenic–earthquake scenarios using a physics-based numerical model. The second 
step is to extract the run-up and apply the OS formula (Eq. 2) to obtain the normalized 
topographic run-up NTp(x) (Eq.  3). The last step is to fit the earthquake fault param-
eters and the OS formula coefficients (a and b) to the second-order polynomial model 
to obtain the RSM functions (Eqs. 7 and 8). Once the NTp(x) and the RSM functions 
are derived, this procedure does not have to be repeated to predict the tsunami run-up 
distribution.

2.2 � Angle projection (AP) method

The AP method comprises three steps: adjustment of strike angle and rake angle, fault 
rotation and decomposition of slip.

Fig. 4   Computational flow of TRRF development. The inputs, the processing steps and the outputs are rep-
resented in light red box, white dashed box and light blue box, respectively. The red lines represent the pro-
cess where the response surface methodology (RSM) approach is applied
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2.2.1 � Adjustment of strike angle and rake angle

The direction of near-field tsunami propagation is related to the interaction between the 
strike angle STR and the rake angle RAK. To consider the interaction between STR and 
RAK, the first step involves adjusting the STR and the RAK as follows (Fig. 5):

where � is the adjusted strike angle ( 0 < 𝜃 < 180 ) and � is the adjusted rake angle 
( 0 < 𝜆 < 180 ) based on the rotated axes. The � , � and � are the site-specific coefficients 
that should be calibrated in advance (see Sect. 4). The fAP is a function of STR (0◦ − 360◦) 
and � (0◦ − 360◦) defined as follows:

2.2.2 � Fault rotation

If the adjusted strike direction is parallel to the coastline ( � = 90◦ ) and the adjusted rake 
angle � is 90◦ , the maximum source run-up will be located at the epicenter location along 
the x-axis, X. On the other hand, if the adjusted strike direction is not parallel to the coast-
line ( � ≠ 90◦ ), the location of the maximum source run-up will be shifted to a direction 
perpendicular to the adjusted strike direction. To consider the location of the maximum 
source run-up depending on the adjusted strike angle, the second step involves rotating the 
adjusted fault ( � ≠ 90◦ ) until � becomes 90◦ (Fig. 6). The epicenter of the rotated fault ( Xp

1
 , 

Y
p

1
 ) can be calculated as follows:

(10)� =�[fAP(STR, �) − 90◦] + 90◦ + �(RAK − 90◦)

(11)� =�(RAK − 90◦) + 90◦

(12)fAP(STR, 𝛿) =

{
STR + 𝛿, 0◦ ≤ STR + 𝛿 < 360◦

STR + 𝛿 − 360◦, 360◦ ≤ STR + 𝛿.

STR

RAK

Fig. 5   Schematic sketch of step 1 of AP method. The yellow-filled rectangle is the original fault where STR 
is strike angle and RAK is rake angle. The red rectangle represents the adjusted fault where � is the adjusted 
strike angle and � is the adjusted rake angle based on the rotated axis (blue). The arrows represent the slip 
direction
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2.2.3 � Decomposition of slip

If the adjusted rake angle � is not 90◦ , the run-up will be spread in the slip direction. To 
consider the spread of run-ups depending on the adjusted rake angle, the third step involves 
representing the rotated fault ( � ≠ 90◦ ) as a series of hypothetical faults having slips per-
pendicular to the coastline ( � = 90◦ ) (Fig. 7). Since the tsunami energy is proportional to 
SLP, we assume that the source run-up will be spread proportionally to a component of 
SLP parallel to the coastline. Based on this assumption, while the LEN, WID, DEP and 
DIP are identical to the original fault, the epicenter ( Xp

i
 , Yp

i
 ) and SLPp

i
 of the ith hypotheti-

cal fault ( i = 1, 2,… , n ) is defined as follows:

(13)X
p

1
=X +

Y

tan(�)

(14)Y
p

1
=

Y

|sin(�)|
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Fig. 6   Schematic sketch of step 2 of AP method. The red rectangle is the adjusted fault where the epicenter 
is (X, Y). The green rectangle represents the rotated fault where the epicenter is ( Xp

1
 , Yp

1
 ). The two red lines 

are of the same length. One line is perpendicular to the strike direction spanning from the epicenter of the 
adjusted fault to the point where it meets the coastline. The other line is the vertical distance from the epi-
center of the rotated fault to the coastline
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where n is the total number of hypothetical faults, which should be calibrated in advance 
(see Sect.  4). The SLPp

1
 and SLPp

n are the slips of the first and last hypothetical faults, 
respectively, defined as follows:

The ( Xp
n , Y

p
n ) are the epicenter of the last hypothetical fault and can be calculated based on a 

geometric setup (see two red lines in Fig. 7):

(17)SLP
p

i
=SLP

p

1
+

SLP
p
n − SLP

p

1

n − 1
(i − 1)

(18)SLP
p

1
=SLP|sin(�)|

(19)SLPp
n
= SLP|cos(�)|

(20)Xp
n
=X

p

1
−

Y
p

1

tan(�)

(21)Yp
n
=

Y
p

1

|sin(�)|

Fig. 7   Schematic sketch of step 3 of AP method. The green rectangle represents the first hypothetical fault 
where the epicenter is ( Xp

1
 , Yp

1
 ) and the slip is SLPp

1
 . The blue rectangle represents the last hypothetical 

fault among a series of hypothetical faults where the epicenter is ( Xp
n , Y

p
n ) and slip is SLPp

n . Gray circles 
and arrows represent the epicenters and the slips of the hypothetical faults, respectively; these are linearly 
distributed between the first hypothetical fault and the last hypothetical fault. Two red lines are of the same 
length. One line is parallel to the slip direction spanning from the epicenter of the rotated fault to the point 
where it meets the coastline. The other line is the vertical distance from the epicenter of the last hypotheti-
cal fault to the coastline
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Following this procedure, a fault where strike direction is not parallel to the coastline and/
or rake angle is not 90◦ can be converted into a series of hypothetical faults where the strike 
direction is parallel to the coastline and rake angle is 90◦.

2.3 � TRRF application for prediction

Figure 8 shows the procedure for how the TRRF predicts a tsunami run-up distribution 
once the TRRF is built. The first step is to convert the earthquake fault into a series of 
hypothetical faults using the AP method. The second step is to estimate the OS formula 
coefficients ap

i
 , bp

i
 ( i = 1, 2,… , n ) of hypothetical faults using the RSM functions (Eqs. 7 

and  8). The third step is to estimate the OS formula coefficient cp
i
 ( i = 1, 2,… , n ) by 

inputting the Xp

i
 into Eq. 9. The fourth step is to estimate the final source run-up Sp(x) 

by inputting the OS formula coefficients ( ap
i
 , bp

i
 , cp

i
 ) into Eq. 2 and taking the maximum 

values of the estimated source run-ups for all hypothetical faults. Finally, the tsunami 
run-up distribution Rp(x) can be estimated by inputting the source run-up Sp(x) and the 
normalized topographic run-up NTp(x) to Eq. 6.

Fig. 8   Computational flow of TRRF application for prediction. The inputs, the processing steps and the 
outputs are represented in light red box, white dashed box and light blue box, respectively. The subscript i 
represents the ith hypothetical fault and the superscript p represents the prediction. MAX represents the pro-
cess of extracting the maximum value along the x-axis
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3 � TRRF development for northern Puerto Rico

3.1 � Numerical simulation

In this study, we assumed that the coastline of northern Puerto Rico runs parallel to 
east–west direction ( � = 0◦ ), and thus the x-axis is parallel to east–west direction and 
y-axis is parallel to north–south direction (Fig. 2). In this condition, the epicenter location 
along the x-axis (X) is only related to the epicenter longitude (LON) and the epicenter loca-
tion along the y-axis (Y) is only related to the epicenter latitude (LAT).

The 729 tsunamigenic–earthquake scenarios were simulated based on the numeri-
cal model Basilisk, which solves the Green–Naghdi equations and employs both Adap-
tive Mesh Refinement (AMR) and parallelization to facilitate efficient computation. The 
Basilisk model has not only been validated with several benchmark problems but also 
been applied to several tsunami research (Lane et  al. 2017; Popinet 2015; Zainali et  al. 
2018). The 729 scenarios were designed as shown in Table 1. The range of the epicenter 
latitude LAT was determined based on National Oceanic and Atmospheric Administration 
(NOAA)’s pre-defined unit sources and historical earthquake records in northern Puerto 
Rico (Fig. 2). The range of the fault length LEN, fault width WID and slip SLP was set 
based on the assumption that the moment magnitude ( Mw ) should be larger than 7.0 for 
a tsunami to occur. We used the empirical regression of Hanks and Kanamori (1979) and 
fundamental equation of Aki (1966) to calculate the moment magnitude:

where M0 is a seismic moment (Nm), � is rigidity modulus of the Earth’s crust ( Nm−2 ), 
and the units of LEN, WID and SLP are in meters. We assumed that the rigidity modulus 
� is 4.2 × 1010 Nm−2 in northern Puerto Rico following Grilli et al. (2010). We limited the 
maximum moment magnitude to 8.0 considering the historical seismic events that led to 
tsunamis in Puerto Rico (Nealon and Dillon 2001). We assumed that the LEN should be 
longer than the WID, and the range of the LEN and WID should follow the scaling laws 
introduced by Blaser et al. (2010). The range of the dip angle DIP and the depth of the top 
edge DEP were determined based on the characteristics of a subduction-interface earth-
quake that usually causes a tsunami. According to Thingbaijam et al. (2017), subduction-
interface earthquakes occur between 10◦ and 30◦ dip angles and within a slip-centroid depth 
of 50 km . We assumed that the fault rupture occurred instantaneously, where the initial free 
surface displacement was calculated using the Okada equations (Okada 1985). Nearshore 
bathymetry and onshore topography in the inundation zone were from the 3 arc-second 
National Geophysical Data Center data set (NGDC 2005), while the 1 arc-minute ETOPO1 
data set (Amante and Eakins 2009) was used for the entire region (Fig.  2). Considering 
the grid size, the minimum and maximum AMR levels were set to 5 and 11, respectively. 
The bottom friction was parameterized using a quadratic drag law in which the bottom 
drag coefficient Cf  was set to 10−4 . The numerical model was used to simulate two hours 
of tsunami propagation to ensure that complete inundation of the onshore areas was cap-
tured. The maximum envelope of the water level was interpolated bilinearly onto a regular 
grid ( 0.001◦ interval). We excluded four simulations, which failed to finish the simulations 
because of instability issue, to build the TRRF. A sensitivity test showed that the impact 

(22)Mw =
2

3

[
log

(
M0

)
− 9.05

]

(23)M0 =�(LEN ×WID × SLP)
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of building the TRRF without four simulations on the accuracy of the TRRF was negli-
gible (see Appendix 2). We obtained tsunami run-up distribution R(x) by extracting the 
maximum inundation height along the coastline ranging from 67.100◦ W to 65.620◦ W. The 
tsunami simulations were conducted in a spherical coordinate system, but the TRRF was 
defined based on a Cartesian coordinate system. To align the coordinate systems, Vincen-
ty’s formulae (Vincenty 1975) were used to convert the unit of the geometric point from 
degrees to kilometers. We set the origin at ( 18.450◦ N, 66.400◦ W) and used it as a refer-
ence point in Vincenty’s formulae.

3.2 � RSM functions and NTp(x)

The RSM functions and the normalized topographic run-up NTp(x) were derived as fol-
lows. We calculated the OS formula coefficients a and b by fitting the tsunami run-up dis-
tribution R(x) to the OS formula for each simulation (Eq. 2). Here, the OS formula coef-
ficient c was fixed to zero because we set the longitude of the origin and the epicenter 
longitude of simulations identically (Eq. 9). We derived the RSM functions by fitting the 
RSM parameters to the OS formula coefficients a and b using second-order polynomial 
models. The normalized topographic run-up NT(x) was calculated for each simulation fol-
lowing Eqs. 1–3. We derived NTp(x) by selecting the 50th percentile of NT(x) among all 
simulations (Fig. 9).

3.3 � Fault parameter range for TRRF prediction

We set the fault parameter range for TRRF prediction as shown in Table 1. The range of 
six fault parameters (LAT, LEN, WID, DIP, SLP, DEP) was set to the same range as the 
tsunamigenic–earthquake scenarios used in the TRRF development. In order to avoid an 
extrapolation beyond the inference space of the RSM functions, we only considered cases 
where all epicenter of the hypothetical faults fell within the range for LAT. The range of 
LON was set to the extent that the fault does not fall outside the region used in the numeri-
cal simulation. The strike angle is usually set in the direction tangential to the subduction 
zone (Gica et  al. 2008), and thus we set the range of STR to be from 50◦ to 130◦ . Even 
though some tsunamis are generated by strike-slip earthquakes (Heidarzadeh et al. 2017), 

66.4 66.2 66.0 65.866.666.867.0
Longitude (°W)

-1

0

2

3

(
)

1

1st – 99th percentiles( )

Fig. 9   Normalized topographic run-up NTp(x) of northern Puerto Rico. The gray represents the range 
between 1st and 99th percentiles
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most tsunamis are caused by thrust earthquakes. Following this characteristic of RAK, we 
set the range of RAK to be from 50◦ to 130◦.

4 � TRRF calibration

To apply the AP method, (1) the site-specific coefficients ( � , � and � ) of Eqs. 10 and 11 and 
(2) the number of hypothetical faults (n) must be defined in advance.

To determine the coefficient � , we simulated 80 additional cases (hereafter called STR 
cases) that were not used in building the TRRF. These additional cases had a fixed longi-
tude of 66.400◦W , where 10 sets varying the RSM parameters were randomly selected. For 
each set, eight different strike angles between 50◦ and 130◦ were selected, at 10◦ intervals, 
except 90◦ . The rake angle was fixed to 90◦ so that � could be independent of � and � could 
be fixed to 90◦ (see Eqs. 10 and 11). The coefficient � was selected by minimizing TRRF 
error as represented by normalized root mean square error (NRMSE):

where Rp(x) is the tsunami run-up distribution predicted by the TRRF, R̂p(x) is the numeri-
cally simulated tsunami run-up distribution, and N is the total number of alongshore loca-
tions. For each case, we found the � value that shows the minimum NRMSE in the range 
of 45◦ and 135◦ . We fixed the number of hypothetical faults (n) to 100, which was large 
enough to provide a convergent prediction. We set the coefficient � to 0.585 by fitting the 
STR and the � in Eq. 10 (Fig. 10).

To determine the coefficients ( � and � ), we simulated 80 additional cases (hereafter 
called RAK cases) where all fault parameters but the rake angle were set in the same 
way as the STR cases. Unlike the STR cases, the rake angle was set to the same value as 
the strike angle. For each case, we found the � value that shows the minimum NRMSE 
in the range of 45◦ and 135◦ . At the same time, we found the � value that shows the 
minimum NRMSE in the range of 90◦ and 179◦ (if RAK < 90◦ ) or the � value that shows 
the minimum NRMSE in the range of 1◦ and 90◦ (if RAK ≥ 90◦ ). We set the coefficient 

(24)NRMSE =

�
1

N

∑N

x=1

�
Rp(x) − R̂p(x)

�2

max
�
R̂p(x)

�
−min

�
R̂p(x)

� × 100 (%)

Table 1   Range of fault 
parameters used for TRRF 
development and TRRF 
prediction

Fault parameter Development Prediction

Low Central High Min Max

LAT(◦N) 19.0 19.3 19.6 19.000 19.600
DIP(◦) 10 20 30 10 30
LEN (km) 60 90 120 60.000 120.000
WID (km) 20 40 60 20.000 60.000
SLP (m) 2 3 4 2.00 4.00
DEP (km) 10 20 30 10.000 30.000
LON(◦W) 66.4 65.800 67.000
STR (◦) 90 50 130
RAK (◦) 90 50 130
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� to −0.284 by fitting the RAK and the � to Eq. 10 (Fig. 11a). We set the coefficient � to 
−0.754 by fitting the RAK and the � in Eq. 11 (Fig. 11b).

To determine the number of hypothetical faults (n), we revisited the RAK cases. For 
each case, we decreased the number of hypothetical faults (n) from 100 to 2 (Fig. 12). 
Then, we found the minimum value needed for convergence since the computational 
time increases as n increases. In this study, we set the n to 30, which shows less than 
0.1% difference in NRMSE.

Fig. 10   Best � values (that show 
the minimum NRMSE) associ-
ated with varying strike angles. 
Dashed line represents the best-
fitting line

(a) (b)

Fig. 11   Best a � and b � values (that show the minimum NRMSE) associated with varying rake angles. 
Dashed line represents the best-fitting line
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5 � TRRF performance

5.1 � Accuracy

The accuracy of the TRRF was investigated by comparing TRRF predictions against 
the direct numerical simulations. We systematically tested the accuracy of the TRRF as 
follows:

•	 Test 1: To test whether the RSM functions and the NTp(x) are valid, we simulated 100 
additional cases in which the RSM parameters were randomly selected, while the epi-
center longitude was fixed to 66.400◦W and both the strike and rake angles were fixed 
to 90◦.

•	 Test 2: To test whether Eq.  9 is valid, we simulated 100 additional cases in which 
the fault parameters were selected based on the following conditions. While both the 
strike and rake angles were fixed to 90◦ , 10 sets of the RSM parameters were randomly 
selected. For each set, 10 longitudes were selected at a uniform interval in the range of 
65.800◦W and 67.000◦W.

•	 Test 3: To test the performance of the AP method, we investigated the RAK cases 
defined in Sect. 4.

•	 Test 4: To test the overall accuracy of the TRRF, we simulated 100 additional cases in 
which all fault parameters were randomly selected.

Figure 13 shows the comparison of the OS formula coefficients based on the 100 cases 
of Test 1. Note that these 100 cases were never used to derive the RSM functions. The 
x-axis is the OS formula coefficient obtained by fitting the numerical simulation result 
to the OS formula. The y-axis is the OS formula coefficient obtained by putting the fault 
parameters to the RSM functions. The high-correlated results confirm that the RSM func-
tions can predict the OS formula coefficients well.

Figure  14 shows the selected alongshore tsunami run-up predictions for each test. Fig-
ure 14a and b shows the best case (minimum NRMSE) and the worst case (maximum NRMSE) 
of Test 1, respectively. In both cases, the TRRF prediction followed the overall trend of the 
numerical simulation result well. However, there are a few localities where the TRRF did not 
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Fig. 12   Relative NRMSE differences as the total number of hypothetical faults (n) increases. NRMSEn is the 
NRMSE of the case where n hypothetical faults are considered. NRMSE100 is the NRMSE of the case where 
100 hypothetical faults are considered
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Fig. 13   Comparison of OS formula coefficients between Basilisk (simulated) and TRRF (predicted): a OS 
formula coefficient a, b OS formula coefficient b 
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Fig. 14   Selected examples of tests: a, b Test 1. c , d Test 2. e and f Test 3. g, h Test 4. Black line and red 
line are the tsunami run-up distributions predicted by Basilisk and TRRF, respectively. The number inside 
the bracket above each pane represents the fault parameters in this sequence: LON(◦W) , LAT(◦N) , STR(◦) , 
DIP(◦) , RAK(◦) , LEN(km) , WID(km) , SLP(m) , DEP(km) . The blue line in c and d represents the location of 
epicenter longitude
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predict the run-up well such as the run-ups near 66.2◦W in the worst case. Figure 14c and d 
displays the Test 2 results where all the fault parameter conditions were the same except the 
epicenter longitude. The results show that the TRRF can effectively capture the influence of 
the epicenter longitude. Figure 14e and f presents the Test 3 results in which all fault param-
eter conditions are the same except for the strike and rake angles. Note that the TRRF predic-
tions strongly align with the numerical simulation results while capturing the asymmetrical 
shape of the tsunami run-up distribution. Figure 14g and h shows the best case (minimum 
NRMSE) and worst case (maximum NRMSE) of Test 4, respectively. Both examples have a 
few localities where the TRRF did not predict the run-ups well, but the overall trend of the 
TRRF predictions agrees well with the numerical simulation results.

Figure 15 shows the overall error of the TRRF in each corresponding test where the mean 
bias error (MBE) is defined as follows:

where Rp(x) is a TRRF prediction, R̂p(x) is a numerically simulated tsunami run-up dis-
tribution, and N is the total number of alongshore locations. As shown in Fig.  15a, the 
overall NRMSE of Test 2 (3.40–9.21%) has only increased slightly compared to Test 1 
(3.37–8.80%), and this result confirms that Eq. 9 is valid. Also, the overall NRMSE of Test 
3 (3.46–10.02%) increased only slightly from Test 1, and this result confirms the perfor-
mance of the AP method. The overall NRMSE of Test 4 (3.32–10.11%) shows that the 
TRRF can produce reliable run-up distribution. Figure 15b shows that the TRRF underes-
timated the run-up in Test 1 while slightly overestimating the run-up in Test 2 and Test 3. 
The overall MBE of Test 4 shows that the TRRF can predict run-up distribution without an 
apparent bias ( MBE = −0.33 m − 0.24 m).

(25)MBE =
1

N

N∑

x=1

[
Rp(x) − R̂p(x)

]

p = 6.8e-06

p = 1.3e-05

p = 3.3e-07

(a) (b)

Fig. 15   Overall error of TRRF: a Normalized root mean square error (%), b Normalized bias error (m). The 
violin plot shows the distribution of test results with the box and whisker plot inside where the black box 
represents the interquartile range, the black lines stretched from the box represent the range of 1.5 times of 
the interquartile range, and the white dot represents the median. p is a p-value of Welch’s t-test
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5.2 � Computational time

The efficiency of the TRRF was investigated by comparing the computational time 
between the physics-based numerical model and the TRRF. When the physics-based 
numerical model (Basilisk) was used to predict the tsunami run-up distribution, the 
computational time was about one hour (24 CPU hours) on average for each scenario 
(24 cores, OpenMP, Intel Xeon E5-2680v3). On the other hand, when the TRRF was 
used to predict the tsunami run-up distribution, the computational time was only 0.01 
CPU second per scenario (desktop computer with one core, Intel I7-7700). The TRRF’s 
CPU time is nearly 9 million times shorter than that of numerical simulation. The differ-
ence in computational time between the TRRF and the numerical model would be even 
greater given higher-resolution grids and larger geographic areas than those used in this 
study.

6 � Discussion

The performance of TRRF was investigated based on total 380 additional simulations 
in Sect. 5. When the TRRF predictions are compared against the direct numerical sim-
ulations, it is clear that the TRRF can produce reliable run-up predictions over real 
topography, given the computational time. However, as shown in Fig. 14, even though 
the TRRF predicts the leading order of tsunami run-up distribution well, there are a 
few localities where the difference of the run-up is more than twofold. We found that 
these localities are correlated to the uncertainty (or the range of percentiles) of NTp(x) 
(Fig.  9). For example, a large uncertainty was commonly found in places with com-
plex topography, such as areas surrounded by mountains (e.g., 65.735◦W ), areas con-
taining a river (e.g., 66.955◦W ), steep cliffs (e.g., 66.444◦W ) and coastal dunes (e.g., 
66.239◦W ). Even though it is difficult to fully interpret the physics behind the normal-
ized topographic run-up NTp(x) , we think that this high uncertainty may be attributed 
to the nonlinear behavior of the tsunami wave as it propagates and inundates complex 
topography. In its present form, the TRRF does not directly consider potential nonlin-
earities between the source and topographic run-up components in the hypothesis that 
the tsunami run-up distribution can be expressed as a sum of the source and topographic 
run-ups (Eq. 1). Future studies should investigate ways to account for the uncertainty to 
improve the accuracy of the TRRF approach.

As shown in Fig.  15b, Test 1 shows statistically different MBE compared to other 
tests ( p < 0.05 ). The TRRF generally underestimated the run-up in Test 1 where the 
fault parameters were set based on the following conditions: (1) X is fixed to zero, (2) 
strike direction is parallel to the coastline and (3) the rake angle is 90◦ . In this condition, 
the error is only related to the RSM functions and the normalized topographic run-up, 
NTp(x) . We think that this underestimated run-up may be attributed to the characteris-
tic of NTp(x) of northern Puerto Rico, for two reasons. First, the RSM functions pre-
dicted the OS formula coefficients well (Fig. 13), and second, most of the NTp(x) ( 67.1◦ 
W − 65.8◦ W) was biased toward the lower values within the range of NT(x) (Fig. 9). 
On the other hand, the TRRF slightly overestimated the run-up in Test 2 and Test 3 
which were designed to test the error of Eq. 9 and that of the AP method, respectively. 
It should be noted that when all fault parameters are randomly selected (Test 4), there 
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was no apparent bias (Median MBE = 1.8  cm). We think this is because the negative 
bias caused by NTp(x) is compensated by the positive bias caused by Eq. 9 and the AP 
method. Future studies should investigate how to reduce distinct bias in a certain condi-
tion like Test 1.

Moreover, future studies should expand the applicability of the TRRF by considering 
the following limitations. One is that the TRRF is only applicable to uniform slip distribu-
tion. Several studies have shown that tsunami prediction can vary depending on heteroge-
neous slip models even when the earthquake magnitude is the same (Davies 2019; Geist 
2002; Li et al. 2016; Ruiz et al. 2015). The other limitation of the TRRF is that it is only 
applicable to tsunamis generated by seafloor displacements associated with earthquakes. 
After earthquakes, landslides are the second most common cause of tsunamis (Harbitz 
et al. 2014). Moderate earthquakes do not always cause tsunamis themselves, but they can, 
in some instances, trigger large landslides that result in tsunamis (Uri et al. 2009). Though 
landslide-generated tsunamis are rare, a single occurrence can cause substantial damage 
and loss of life. For example, in 2017, a landslide-generated tsunami off the western coast 
of Greenland flooded several villages and resulted in casualties (Paris et al. 2019). A recent 
study also revealed that the 2018 Indonesian tsunami, which claimed more than 2,000 lives 
and severely damaged coastal communities, was caused by the combination of an earth-
quake and a landslide (Sassa and Takagawa 2019). Several other key elements would merit 
attention in future studies. For example, the arrival time and inundation distance are as 
important to consider as the run-up. A high tide could enhance tsunami inundation, while 
a receding tide could dissipate tsunami energy (Tolkova et  al. 2015; Zhang et  al. 2011). 
Likewise, a modest amount of sea-level rise could dramatically impact the tsunami run-up 
distribution (Li et al. 2018). Lastly, the TRRF was able to reduce the input dimensionality 
by using the OS formula, but the OS formula limits its applicability to straight coastal areas 
and near-field tsunamis. To generalize the applicability of TRRF, future studies should 
investigate the effect of a coastline shape and that of a distance between an earthquake 
source and a coast.

7 � Conclusions

In the present study, we presented a new methodology, called TRRF, that can predict the 
alongshore run-up distribution from a near-field tsunami. We adopted the OS formula and 
developed what we call the AP method to reduce the number of simulations to build the 
TRRF. The tsunami run-up distribution was decomposed into source run-up and topo-
graphic run-up, that source run-up can be modeled by earthquake fault parameters, and that 
normalized topographic run-up is associated with local topographic characteristics. Using 
the northern region of Puerto Rico as a case study, the performance of the TRRF was 
investigated based on total 380 additional simulations. The results showed that the TRRF 
can produce rapid near-field tsunami run-up predictions over real topography (3–10% of 
NRMSE, −0.33 m − 0.24 m of MBE). We expect that future applications of the TRRF will 
have the potential to save lives and promote resiliency of coastal communities.
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Appendix 1: Design of experiments

The tsunamigenic–earthquake scenarios were designed in a three-level full factorial. 
The level of the design of experiments (DoE) was determined based on preliminary sim-
ulations where 60 cases were considered as follows. We set a reference case where the 
fault parameters are as follows: LON = 66.4◦ W, LAT = 19.3◦ N, STR = 90◦ , DIP = 20◦ , 
RAK = 90◦ , LEN = 90 km , WID = 40 km , SLP = 3m , DEP = 20 km , which are the same 
as the central level values used in Table 1. Based on the reference case, we performed 
60 simulations, varying each of the six fault parameters (LAT, LEN, WID, DIP, SLP, 
DEP) one at a time through a uniformly distributed array of 10 values within the param-
eter’s range shown in Table 1. The 60 simulations show that the second-order polyno-
mial model, which requires at least three-level data, is enough to fit the fault parameters 
to the OS formula’s coefficients a and b (Fig. 16).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Data
Fitted curve

Fig. 16   The OS formula coefficients (a and b) variation in terms of RSM parameters: a, b epicenter lati-
tude, c, d dip angle, e, f fault length, g, h fault width, i, j slip, k, l top-edge fault depth. The red dots repre-
sent the simulated coefficients and the black line represents the best-fitting curve based on the second-order 
polynomial model
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Appendix 2: Sensitivity test

While developing the TRRF for northern Puerto Rico, we encountered numerical model 
stability issues with four simulations (0.5% of simulations) among the 729 scenarios. The 
stability issue occurred when the LAT is 19.6◦ , earthquake magnitude (LEN, WID, SLP) is 
relatively large, DIP is shallow and DEP is deep (Table 2). Even though it is difficult to 
fully interpret the reason of this stability problem, we think that one of the reasons may be 
that some part of the fault lies in the Puerto Rico Trench where the water depth abruptly 
changes, and the grid resolution used in this study may not be sufficiently resolved for the 
case when the fault lies in steep slopes (Fig. 2). In order to test whether building the TRRF 
with 725 instead of 729 simulations affected the accuracy of the TRRF, we conducted a 
sensitivity test as follows. We randomly chose four simulations among the 725 success-
ful simulations. We built the TRRF with 721 simulations, where the four randomly cho-
sen scenarios were intentionally removed. We tested this TRRF based on the 100 simula-
tion cases used in Test 4, which were never used in developing the TRRF and whose fault 
parameters were selected randomly. We repeated this procedure 10 different times. The 
result of the sensitivity test shows that the impact on accuracy of building the TRRF with-
out four additional simulations is negligible (the largest difference of NRMSE = 1.27%).

Table 2   Fault parameter 
condition of four cases that 
shows model stability issue

Case 1 Case 2 Case 3 Case 4

LON ( ◦ W) 66.4 66.4 66.4 66.4
LAT ( ◦ N) 19.6 19.6 19.6 19.6
STR (◦) 90 90 90 90
DIP (◦) 10 10 20 20
RAK (◦) 90 90 90 90
LEN (km) 90 90 120 120
WID (km) 60 60 60 60
SLP (m) 4 4 4 4
DEP (km) 20 30 20 30
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