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Abstract
Probabilistic earthquake loss models are widely used in the (re)insurance industry to assess 
the seismic risk of portfolios of assets and to inform pricing mechanisms for (re)insurance 
contracts, as well as by international and national organizations with the remit to assess 
and reduce disaster risk. Such models include components characterizing the seismicity of 
the region, the ground motion intensity, the building inventory, and the vulnerability of the 
assets exposed to ground shaking. Each component is characterized by a large uncertainty, 
which can be classified as aleatory or epistemic. Modern seismic risk assessment models 
often neglect some sources of uncertainty, which can lead to biased loss estimates or to an 
underestimation of the existing uncertainty. This study focuses on exploring and quantify-
ing the impact of a number of sources of uncertainties from each component of an earth-
quake loss model to the loss estimates. To this end, the residential exposure of Guatemala 
and Guatemala City were used as case studies. Moreover, a comparison of the predicted 
losses for an insured portfolio in the country between OpenQuake-engine and a vendor 
catastrophe platform was performed, assessing the potential application of OpenQuake in 
the (re)insurance industry. The findings from this study suggest that the uncertainty in the 
hazard component has the most significant effect on the loss estimates.

Keywords Seismic risk · Epistemic uncertainty · Loss sensitivity · Insured portfolio · 
OpenQuake

1 Introduction

Probabilistic earthquake loss models, similar to any other catastrophe model (CAT), are 
structured by four main components: hazard, exposure, vulnerability and a financial model. 
Such models are characterized by a large variability, due to the uncertainties associated 
with each component. These sources of uncertainty originate from the input of numerous 
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parameters that define the seismicity, the ground motion intensity, the seismic vulnerabil-
ity and the exposure characteristics of a building inventory. Inevitably, the loss estimates 
carry a high degree of variability, as different assumptions during the modelling process 
can lead to considerably different results (e.g. Silva 2018). Such uncertainties can be clas-
sified into aleatory and epistemic, depending on their nature and physical basis. Epistemic 
uncertainty arises from incomplete scientific knowledge and can be reduced in principle, 
such as through increased data or advanced scientific principles.

These uncertainties can also be classified into primary and secondary, according to their 
source and order within the model. The former represents both the epistemic and aleatory 
uncertainty associated with the event generation process and occurrence of earthquakes, 
while the latter represents the uncertainties involved in loss estimation given that an event 
has occurred. Although the treatment of uncertainties in risk analysis has been the topic 
of a wide discussion (e.g. Paté-Cornell 1996; Faber 2005; Spiegelhalter and Riesch 2011), 
modern catastrophe loss models tend to oversimplify risk estimates, leading to an insuf-
ficient treatment and quantification of the uncertainties (e.g. Taylor 2015). Such simpli-
fications are often due to the need to reduce the computational demand required by each 
model. As demonstrated by Bazzurro and Luco (2007), the results of a loss analysis that 
does not properly incorporate all the sources of uncertainty can be misleading and lead to 
an underestimation of the actual risk. The work presented herein focuses on the impact of 
epistemic uncertainty in loss estimation of spatially distributed building portfolios.

The hazard component reflects the extent (spatial distribution) and intensity of poten-
tial earthquakes. Several platforms for probabilistic seismic hazard analysis (PSHA, e.g. 
Cornell 1968) are currently available (e.g. OpenSHA—Field et al. 2003; CRISIS—Ordaz 
et  al. 2013; OpenQuake-engine—Pagani et  al. 2014). In this process, the seismic source 
model is used to generate an earthquake rupture forecast, which represents all the possi-
ble ruptures that can occur in the region of interest and its associated rate of occurrence. 
The development of a seismic source model for a region is a complex process involving 
numerous tasks, such as the derivation of geological and tectonic maps, the development 
of an earthquake catalogue and the identification of crustal faults and faults systems. The 
majority of the assumptions and decisions during the development of a source model are 
subjected to epistemic uncertainties. For instance, the absence of information related to the 
date, size, focal mechanism, and hypocentral locations of past earthquakes, or the exist-
ence of unmapped faults (e.g. Hayes et al. 2010) may significantly affect the geometry and 
parameters of a modelled seismic zonation. The maximum magnitude of each source is 
also affected by epistemic uncertainty, as it is defined from geologic data and the historical 
catalogue of a region. Furthermore, the selection of ground motion prediction equations 
(GMPEs), which represent the intensity of shaking at a given site due to a rupture scenario, 
has been indicated as one of the largest epistemic uncertainties in earthquake loss estima-
tion (e.g. Crowley et al. 2005).

An exposure model contains the information regarding the assets potentially at risk. 
One important source of uncertainty arises from the grouping of the building inventory in 
a certain number of building classes (e.g. Pittore et al. 2018), which depends on the detail 
of exposure information (primary and secondary modifiers), but also on the availability 
of distinct vulnerability functions. Typically, exposure modellers apply a mapping scheme 
to the available exposure data to relate each asset with a vulnerability function, which is 
inevitably subjected to epistemic uncertainty. Another essential source of uncertainty is 
related to the spatial resolution of an exposure model, which originates in the aggrega-
tion of the buildings within each exposure unit. For example, regional or national seismic 
risk assessments (e.g. Yepes-Estrada et al. 2017) use information from remote sensing and 
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national housing databases, where information is typically provided at a coarse resolution 
(e.g. district or municipality level). On the other hand, exposure models of portfolios of 
buildings in the (re)insurance industry can be developed at a high resolution, as the loca-
tion of each asset is documented. In these cases, the spatial aggregation of the assets is 
performed in order to minimize the computational effort. This aggregation and relocation 
of buildings results in a misrepresentation of the distance between the assets and the seis-
mic sources, and the implicit (full) correlation in the ground motion for all assets at a given 
location (Bazzurro and Park 2007). Bal et al. (2010) conducted a study on the impact of 
urban exposure resolution, and one important conclusion is that the loss estimates become 
accurate and stable beyond a certain (fine) spatial resolution. A potential way to reduce this 
type of uncertainty is by improving the detail of information concerning the location of 
the building inventory. However, this process can be time and resource-demanding, and in 
many cases it is simply impractical (e.g. risk analysis at the national level). Nevertheless, 
there are effective alternatives which may involve the disaggregation of the exposure in 
each unit using night-time lights, satellite imagery or the location of roads (e.g. Dabbeek 
and Silva 2020).

Vulnerability models are typically a set of damage (or vulnerability) functions, which 
provide mean damage ratio (also known as loss ratio) conditioned on a set of intensity 
measure levels (IM). Depending on the derivation methodology, vulnerability functions 
are categorized into empirical (e.g. Colombi et al. 2008; Rossetto et al. 2015), analytical 
(e.g. D’Ayala et al. 2014; Yepes-Estrada et al. 2016), or hybrid (e.g. Kappos et al. 2006). 
In general, the advantage of the analytical approach is that it facilitates the modelling and 
propagation of the effects of epistemic and aleatory uncertainty in ground motion, selec-
tion of structural response parameters, characteristics of the buildings, and correlation in 
damage or loss (e.g. Sousa et al. 2016). Regardless of the derivation methodology, vulner-
ability functions are characterized by a large uncertainty (e.g. Porter 2010), principally due 
to four main sources (Silva 2019): (1) record-to-record variability, (2) building-to-building 
variability, (3) uncertainty in the damage criteria and (4) uncertainty in the damage to loss 
model. Crowley et al. (2005) investigated the impact of epistemic uncertainties in the seis-
mic demand and capacity on an earthquake loss model for Istanbul. One of the key conclu-
sions is that the capacity parameters, and generally the epistemic uncertainty in the deri-
vation of vulnerability functions, have the most significant impact on the loss estimates. 
Moreover, the choice of the engineering demand parameter (EDP) used to estimate the 
expected damage is affected by considerable uncertainty as the same values of an EDP 
could lead to different damage levels, and consequently to distinct loss ratios (e.g. Martins 
et al. 2016).

The CAT vendor platforms used in the (re)insurance industry treat, incorporate, and 
propagate uncertainty to the loss metrics in various manners. The latter task is considered 
to be one of the most challenging parts of a CAT model, and it is where significant differ-
ences amongst models and platforms are located (e.g. Mitchell-Wallace et al. 2017). Even 
though there is a recognized need for more transparent models, common vendor models 
often do not enable the quantification of the impact of uncertainty in some of the compo-
nents. In this study the sources of epistemic uncertainty previously described are explored 
using an open platform for seismic hazard and risk analysis (OpenQuake-engine).

This study was carried out during the development of the global seismic risk model (Silva 
et al. 2020) by the Global Earthquake Model Foundation (GEM). This global model is com-
prised by almost 200 exposure datasets, 30 seismic hazard models (Pagani et al. 2018) and 
more than 600 vulnerability functions (Martins and Silva 2020). In order to evaluate the 
impact of several sources of epistemic uncertainty in earthquake risk analysis, the loss model 
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for the country of Guatemala was used as a case study. The quality and detail of the compo-
nents for Guatemala are comparable with the vast majority of the models in the global seismic 
risk model. Moreover, the resolution and quality of many models used in the (re)insurance 
industry are similar to that of Guatemala. Finally, sensitivity studies using such models can 
inform decision makers responsible for risk management in regions with high seismic risk and 
a relatively low insurance penetration. The authors acknowledge, however, that the findings 
from this study are contingent on the characteristics of the case study, as further discussed in 
the final remarks.

2  Case study: Guatemala

2.1  Seismic hazard, exposure and vulnerability models

Central America is one of the most active seismic regions in the world (e.g. Alvarado et al. 
2017). The tectonic setting of the region is complex due to the interaction of the boundaries 
of five tectonic plates: North American, Caribbean, Coco’s, Nazca and South American (e.g. 
Benito et al. 2012; Alvarado et al. 2017). Some examples of past destructive events include the 
1972 Managua (Mw 6.3) and 1976 Guatemala (Mw 7.5) earthquakes, which caused more than 
10,000 and 20,000 fatalities, respectively. Earthquake risk is particularly important in Guate-
mala, as it is the most populated country in the Central America with 17.25 million inhabit-
ants, and its capital Guatemala City (1 million citizens) is located in an area characterized by 
high seismic hazard (e.g. Villagran et al. 1996) due to its proximity to both the subduction 
zone and crustal active faults (e.g. Motagua fault). Furthermore, the first seismic design regu-
lation was implemented only in 1996, and consequently a large portion of the building stock 
does not have adequate seismic provisions.

The seismic hazard model used herein is from a PSHA study covering Central America, 
the RESIS II project (Molina et al. 2008; Benito et al. 2012,). In that study, three seismogenic 
models were considered and associated with focal depths: crustal seismicity (h ≤ 25  km), 
subduction interface (25 km < h ≤ 60 km) and subduction intra-slab (h > 60 km). Two seis-
mic zonations (i.e. seismic source models) for Central America were proposed, with different 
degrees of detail: Regional and National. The former distinguishes large seismogenic zones 
that encompass the main seismic tectonic units of the region, while the latter (Benito et al. 
2012) has a greater number of seismogenic zones within each country, avoiding discontinui-
ties at the national boundaries. It should be noted that both seismic source models include the 
three tectonic environments, but differ in the geometry and parameters of the seismic area 
sources, such as the magnitude frequency distribution and maximum magnitude. The hazard 
models consider the epistemic uncertainty in the selection of the GMPEs through the imple-
mentation of a logic tree, as presented in Table 1.

In the present study, a site model for Guatemala was implemented using  Vs30 proxy values 
obtained from the USGS  Vs30 server, following the slope topography methodology proposed 

Table 1  GMPEs and the associated weights per tectonic region used by Benito et al. (2012)

Active shallow crust Subduction interface Subduction intra-slab

Climent et al. (1994), 0.5 Youngs et al. (1997), 1.0 Youngs et al. (1997), 0.5
Zhao et al. (2006), 0.5 Zhao et al. (2006), 0.5
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by Wald and Allen (2007). Classical PSHA analyses were carried out using the OpenQuake-
engine (Pagani et al. 2014), and hazard maps of Guatemala, in terms of peak ground accelera-
tion (PGA), for the 500-year return period (i.e. 9.5% probability of exceedance in 50 years) for 
both zonations were obtained, as presented in Fig. 1.

The exposure model was exported from Calderon et  al. (2020), in which a regional 
exposure model for the Central American countries was developed based on the national 
census databases, World Housing Encyclopedia reports, information available in the lit-
erature and local expert judgement. Calderon et al. (2020) used the GEM Building Tax-
onomy (Brzev et al. 2013) to classify the building stock in a uniform manner. In the case of 
Guatemala, the data from the most recent national census survey developed in 2002 were 
utilized. In the current study, only residential buildings were considered and the structural 
characteristics of the buildings stock are described in Table 2.

The distribution of construction material of the residential building stock at the national 
level and in Guatemala City (i.e. 12–13% of the total building stock) are depicted in Fig. 2. 
This distribution of the different building classes across the country or its capital is mostly 
defined based on a combination of data from the housing census and the opinion of local 
engineers. Consequently, it is also a component of the risk model that is affected by epis-
temic uncertainty. Another source of uncertainty in the exposure model is related with the 
spatial distribution of the assets in the region. The data for Guatemala is publicly avail-
able at the municipality level, and therefore a spatial disaggregation of the assets within 
each administrative area may be required to avoid an over-aggregation of the assets (e.g. 
Bazzurro and Park 2007), and consequently the introduction of a full correlation in both 
the ground shaking and the vulnerability. In this study, the exposure model was spatially 
disaggregated into evenly spaced grids to assess the impact of employing different spatial 
resolutions.

The vulnerability model for Guatemala was adopted from Martins and Silva (2020), 
which consists of 34 distinct vulnerability functions for the aforementioned building 
classes. The analytical derivation methodology incorporates building-to-building and 
record-to-record variability, through the generation of a large set of single-degree-of-
freedom systems and the consideration of a large set of ground motion records (GMRs), 
respectively. In particular, Martins and Silva (2020) generated 150 capacity curves for each 
building class using a Monte Carlo simulation (Silva et al. 2014b), and selected over 300 
GMRs associated to earthquakes from subduction and active shallow tectonic regimes. The 
records were scaled using factors below 2, and for each intensity measure type 10 levels of 
acceleration were considered in the range between 0.05 and 2.0 g. The fragility and corre-
sponding vulnerability functions were derived using nonlinear dynamic analyses.

The definition of the loss ratios per intensity measure can follow a deterministic (i.e. 
only mean values are considered) or probabilistic (i.e. a probability model is used to define 
the distribution of loss ratio) approach. For the latter, either a lognormal (e.g. Porter 2010; 
Rodrigues et al. 2018) or a beta (e.g. Lallemant and Kiremidjian 2014; Silva 2019) distri-
bution can be adopted. These modelling options are also explored in this study.

2.2  Selection of epistemic uncertainties

The selection of epistemic uncertainties for investigation was influenced by the level of 
sophistication of the adopted models, the capabilities and limitations of the OpenQuake-
engine, and the availability of additional information (e.g. alternative fragility functions). 
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Fig. 1  Hazard maps of Guatemala for 500-years return period on soil conditions, using National (top) and 
Regional (bottom) zonation
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Table 2  Building classes of the residential building stock of Guatemala

LLRS, lateral load resisting system

Building class Material LLRS Ductility Storeys

W + WLI/LWAL + DNO Wood Panels Non-ductile 1 and 2
W + WBB/LPB + DNO Wood Post and beams Non-ductile 1
W + WWD/LWAL + DNO Wood and earth Wall Non-ductile 1
W + WS/LPB + DNO Wood Post and beams Non-ductile 1
MUR + ADO/LWAL + DNO Adobe masonry Wall Non-ductile 1 and 2
MUR/LWAL + DNO Unreinf. masonry Wall Non-ductile 1 and 2
MR/LWAL + DNO Reinf. masonry Wall Non-ductile 1–3
MR/LWAL + DUM Reinf. masonry Wall Moderate 1–3
MCF/LWAL + DNO Conf. masonry Wall Non-ductile 1–3
MCF/LWAL + DUM Conf. masonry Wall Moderate 1–3
CR/LFM + DUL Reinf. concrete Bare frame Low 1–2
CR/LFINF + DUL Reinf. concrete Infilled frame Low 2–5
CR/LFINF + DUM Reinf. concrete Infilled frame Moderate 3–6
CR/LDUAL + DUH Reinf. concrete Wall and frame High 7–12
UNK Unknown Unknown Low 1

Adobe 26%

Concrete, reinforced 1%

Masonry, confined 19.5%

Masonry, unreinforced 19.5%

Masonry, reinforced 7%

Other 2%

Wood 25%

Adobe 5%

Concrete, reinforced 3%

Masonry, confined 41%

Masonry, reinforced 8%

Masonry, unreinforced 31%

Other 5%Wood 7%

Fig. 2  Construction material distribution of the residential building inventory of Guatemala (top) and Gua-
temala City (bottom)
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Fig. 3  Schematic representation of the considered epistemic uncertainties
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The list of uncertainties that are explored in this study are represented in Fig.  3, and a 
description of each uncertainty is provided below.

Seismic hazard

1. Seismic zonation: the national and regional zonation were considered as two alternative 
modelling realizations of the seismicity of the region.

2. Maximum Mw: in addition to the default option (expected Mmax), the theoretical maxi-
mum and minimum Mmax for each seismic zone/source of the national zonation from 
Benito et al. (2012) were considered.

3. GMPEs selection: the influence of the selected GMPEs for each tectonic region in the 
aforementioned logic tree was assessed.

Exposure

1. Spatial resolution: the default exposure model was disaggregated in five resolutions 
ranging from 480 to 30 arc-seconds.

The methodology proposed by Dabbeek and Silva (2020) was used to disaggregate the 
exposure model within each municipality. In this methodology, night-time lights are used 
to re-allocate the assets. The night-time lights data show the reflected lights from different 
sources such as human settlements, industrial parks, roads and railways. Figure 4 depicts 
the night-time lights for Guatemala (Román et al. 2018), where Guatemala City is located 
in the area with the highest concentration of light. It is worth mentioning that the base 
exposure model consists of 334 exposure points (municipalities), while the 480 and 30 arc-
second resolution models resulted into 314 and 30,842 locations, respectively. In the case 
of Guatemala City, the base model consists of 4 exposure locations, while the 480 and 30 
arc-second resolution models resulted in 6 and 448 locations, respectively.

2. Distribution of construction material: Alternative versions of the residential exposure 
in terms of the distribution of construction material were tested, based on the judgment 
of local engineers.

Fig. 4  Night-time lights of 
Guatemala
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During the development of the residential exposure model for Central America, Cal-
deron et  al. (2020) carried out surveys with local experts and engineers regarding the 
most common types of construction in urban and rural areas in the country. For the case 
of Guatemala, two alternative variations of the exposure model in terms of construc-
tion material distribution at the national level were proposed, as presented in Fig.  5. 
These distributions were used to derive two alternative exposure models of the residen-
tial building stock for Guatemala.

Vulnerability

1. Loss ratio distribution: The uncertainty in the loss ratio (LR) conditioned on different 
intensity levels, arising from the propagation of the building-to-building and record-to-
record variability was modelled using the mean values, beta and lognormal distributions.

The consideration of the uncertainty in the LR was performed following the proce-
dure proposed by Silva (2019), where a standard deviation ( �

LR
 ) is calculated based on 

the expected LR. The impact in the consideration of correlation in the vulnerability was 
also assessed. However, due to limitations in the loss modelling approach, correlation 
was only considered for the vulnerability functions using a lognormal distribution (and 
not for the beta distribution).

Adobe 26%

Concrete, reinforced 5%

Masonry, confined 16%

Masonry, reinforced 16%

Masonry, unreinforced 10%

Other 2%

Wood 25%

Adobe 20%

Concrete, reinforced 1%

Masonry, confined 25% Masonry, reinforced 2%

Masonry, unreinforced 25%

Other 2%

Wood 25%

Fig. 5  First (top) and second (bottom) alternative version of the residential exposure as per construction 
material distribution
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3  The impact of epistemic uncertainties in loss assessment

The impact of the described uncertainties in the loss metrics of Guatemala and Guatemala 
City was quantified through sensitivity analysis. A “base model” was defined in each case 
(see thicker branches in Fig. 3), by selecting the “default” modelling option for each com-
ponent. More specifically, the base country and city models were defined considering: the 
building classes distribution and spatial resolution (municipality level) developed by Cal-
deron et  al. (2020), the national seismic zonation, the expected Mmax, the mean seismic 
hazard among the four GMPEs combinations, and the deterministic vulnerability functions 
(i.e. mean LRs). In all cases, event-based risk analyses were carried out using the Open-
Quake-engine (Silva et al. 2014a). A stochastic event set with a length of 250,000 years 
was considered, and loss exceedance curves are presented until the 2500-year return 
period, following the recommendations of Silva (2018). The loss metrics are presented in 
terms of loss ratio (as a percentage) rather than absolute monetary values, as the purpose 
of this study is to investigate the relative impact of the selected epistemic uncertainties and 
not to focus on the actual monetary loss.

The loss exceedance curves for varying the hazard and exposure parameters are illus-
trated in Figs. 6 and 7, respectively. Each curve represents the results of the risk assess-
ment by altering only the denoted modelling option in the legend, in respect to the base 
model. Furthermore, the tornado (sensitivity) plots for two selected return periods (100 and 
2500 years) and the average annualized losses (AAL) are presented in Figs. 8, 9 and 10. 
Regarding the tornado plots, the variation from the base model is shown by altering one 
parameter at a time (y-axis), while the base value is indicated in each figure by the verti-
cal black line. It should be noted that the abbreviation used for the GMPEs selection fol-
lows the notation: C → Climent et al. (1994), Y → Youngs et al. (1997), and Z → Zhao et al. 
(2006), while the order of the letters denotes the GMPE for the active shallow, subduction 
interface and subduction intra-slab, respectively.

Utilizing the regional zonation source model resulted in the lowest losses amongst all 
parameters. The impact of regional zonation appears to be constant through the entire range 
of return periods, for both the City’s and country’s losses. Such outcome was expected 
since significant differences in the seismic hazard estimates between the two source models 
was observed in Fig. 1, especially around Guatemala City and the south west part of the 
country. This finding highlights the importance of the seismic zonation (source model) in 
probabilistic seismic risk assessment.

The maximum Mmax parameter led to the highest losses compared to all other param-
eters, and especially for high return periods where the losses are about 60% higher than the 
expected Mmax prediction. This trend is associated with the appearance of large rare events 
in such return periods. The impact of the maximum Mmax on the city’s losses is also signifi-
cant, although it is not magnified for longer return periods due to the smaller contribution 
of the large rare events from the subduction zone compared to the local shallow crustal 
events. This is further demonstrated below. On the other hand, the effect of the minimum 
Mmax is constant for all the return periods (and AAL), leading to around 20% lower values. 
Overall, the significant sensitivity of the loss metrics to Mmax demonstrates the importance 
of including this source of epistemic uncertainty in the assessment of earthquake losses.

The loss exceedance curves corresponding to each branch of the GMPE logic tree indi-
cate that for low return periods (i.e. < 300 years), the country’s losses are controlled by the 
active shallow crustal earthquakes, while for longer return periods the subduction intra-
slab seismicity has a stronger influence. This can be verified from the tornado plots, in 
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which the selection of the GMPE for the associated tectonic type governs the predicted 
losses from each branch. Hence, the contribution from the subduction zone in long return 
periods is greater than the crustal zones and vice versa. Furthermore, the significance of 
the epistemic uncertainty in the selection of the GMPEs and the associated weights is dem-
onstrated, with the relative difference in the predicted AAL between two branches reaching 
up to 50%.

The variations in the AAL for the country indicate that the selection of the GMPE for 
the subduction intra-slab zones strongly affects the results. This was expected, since a seis-
mic event from the subduction zone will affect a broader region of the country compared 
to a shallow crustal event. On the contrary, it is quite evident that the economic losses 
for Guatemala City for all return periods are dominated by the shallow crustal seismicity, 
as the selection of the GMPE for this tectonic regime governs the variability of predicted 

Fig. 6  Country (top) and City (bottom) loss exceedance curves conditional on the epistemic uncertainties 
from the hazard component
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losses from individual branches. Particularly, Zhao et al. (2006) led to higher losses, while 
Climent et al. (1994) led to lower losses in all cases. Similar findings were also reported 
by Benito et al. (2012), regarding the predominant seismic event in Guatemala City, using 
seismic hazard disaggregation.

The impact of the spatial resolution of the exposure model also reveals interesting find-
ings. The smallest spatial resolution (i.e. 30 arc seconds—which is assumed to reduce the 
most the error in the computation of the site-to-source distances) leads to the highest prob-
able maximum losses or average annualised losses. This result indicates that the aggre-
gation of the assets at the municipality level (i.e. base model) or at other spatial resolu-
tions causes a shift of the economic value to regions of lower seismic hazard (i.e. further 
away from active faults). Despite the clear importance of improving the spatial resolution 
of exposure models, it is important to note that these findings cannot be generalized to 
other regions. As demonstrated by Dabbeek (2017), the impact of spatial resolution of an 

Fig. 7  Country (top) and City (bottom) loss exceedance curves conditional on the epistemic uncertainties 
from the exposure parameters
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exposure model on the predicted losses is strongly dependent on the spatial distribution of 
the seismic hazard and soil conditions. Moreover, other studies (e.g. Bal et al. 2010) have 
indicated that adopting a very high resolution might not improve significantly the accuracy 
of the risk estimates to justify the additional computational effort.

The exposure models for Guatemala City with resolutions equal or smaller than 240 
arc-seconds illustrate almost identical losses in the entire range of return periods. A law 
of diminishing returns is observed in going to very high resolutions since sufficient loss 
convergence can be achieved at lower resolutions, a trend which was also observed and 
documented by Bal et al. (2010). In that study, the authors suggest that: “Working at the 
equivalent of the postcode level of the case study (Istanbul) constitutes a reasonable trade-
off between precision and stability in the loss estimates”. It is also mentioned that mov-
ing to higher resolutions is unlikely to be justified for most applications. Considering the 

Fig. 8  Sensitivity plot of country loss estimates for the 100-year return period

Fig. 9  Sensitivity plot of country loss estimates for the 2500-year return period
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above observation, we can conclude that the default exposure model aggregation level (i.e. 
municipality) and the 480 arc-seconds resolution model over-aggregate the building port-
folio, which introduces a bias in the results.

Regarding the loss estimates using the different options to model the uncertainty in the 
vulnerability, Fig. 11 presents the histogram of the annual loss ratios (ALR) considering 
the three modelling approaches. For the particular case using a lognormal distribution to 
model the uncertainty in the vulnerability loss ratios, Fig. 12 also presents the results with 
and without full correlation between the vulnerability of assets of the same building class.

The histogram of annual loss ratios indicates similar average annual loss ratio (AALR), 
regardless of the modelling approach. While such outcome is expected (as the mean 
loss ratio in the vulnerability functions across the three modelling options is the same), 

Fig. 10  Sensitivity plot for the country AAL

Fig. 11  Histogram of the annual loss ratios for Guatemala following three different options to model the 
uncertainty in the vulnerability
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one could anticipate a higher standard deviation ( �
ALR

 ) when modelling the vulnerabil-
ity uncertainty using a beta or lognormal distribution. However, as also reported in Silva 
(2019), in earthquake risk analyses covering large regions there is an averaging effect, 
where the inclusion of vulnerability uncertainty will lead to losses below the mean in some 
areas, and likewise above the mean in other areas. These results tend to compensate for 
each other, leading to aggregated losses (i.e. sum of the losses across the entire portfolio) 
equivalent to the case when only the mean vulnerability functions are used. The exception 
occurs when vulnerability correlation is considered. In this case, either all the losses will 
be above the mean, or below the mean, thus leading to scenarios where very low or very 
high aggregated losses were obtained. This is visible in the histogram in Fig. 12, where 
ALR above 30% only occur for the full correlation case, leading to a standard deviation 
50% higher.

It is recognized that both assumptions of full or no vulnerability correlation are unreal-
istic, as they describe two extreme cases. The first assumes that buildings within the same 
building class share identical characteristics (e.g. plan irregularities, construction tech-
nique, etc.) and therefore will have exactly the same loss when subjected to the same IM 
(i.e. same sample LR), while the second assumes that their experienced loss at the same IM 
is totally uncorrelated. It is reasonable to assume that the “true” loss exceedance curve lies 
between the curves with no correlation and full correlation, presented in Fig. 13.

4  Loss estimation for insured portfolio

In this section, an insured (cedant) portfolio in Guatemala is presented along with the 
developed alternative versions in OpenQuake, using various assumptions and techniques to 
match the vendor model’s building classes and corresponding vulnerability functions to the 
ones used for the residential exposure. In order to map the assets of a portfolio to represent-
ative building classes and associated vulnerability functions, the vendor model considers 

Fig. 12  Histogram of the annual loss ratios for Guatemala assuming a lognormal distribution to model the 
uncertainty in the vulnerability, with and without full correlation
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the following primary building characteristics: occupancy class, construction type, year of 
construction, and building height (number of storeys).

There are various occupancy classes included in the portfolio such as residential, com-
mercial and industrial, although the vulnerability functions of the vendor model for Gua-
temala are independent of the occupancy class. The insured portfolio is also organized 
according to different coverages. The assets are insured as buildings, contents and business 
interruption. For the purposes of this study, only the value of the buildings was considered, 
which represents 90% of the total insured value (TIV). Furthermore, 98% of the buildings 
of the insured portfolio are modelled as reinforced concrete (RC) in the vendor model. 
Figure 14 presents the distribution of buildings per year of construction and number of sto-
reys, along with the percentage of the TIV.

Considering this information, the number of storeys and the age (year of construction) 
of the buildings are the main criteria to link the exposure characteristics of the insured 
portfolio to the GEM building taxonomy. As previously mentioned, the first seismic design 
code in Guatemala was implemented in 1996. Therefore, it was assumed that buildings 
constructed before 1996 are non-ductile or have a low ductility level (DNO or DUL), 
while buildings constructed after 1996 have a medium or high ductility level (DUM or 
DUH), according to the available building classes and corresponding vulnerability func-
tions described in Table 2. In order to consider the epistemic uncertainty in this assumption 
since some of the buildings constructed between 1987 and 1996 are ductile, the buildings 
with an unknown age were considered to have medium ductility level. For the unknown 
number of storeys category, the average number of storeys across the entire insured portfo-
lio (i.e. 3 storeys) was assigned to these buildings.

Even though nearly the entire portfolio is modelled as RC buildings in the vendor 
model, 47% of the TIV consists of low-rise buildings (1–3 storeys). In order to further 
explore possible discrepancies between the vendor and the OpenQuake-engine models, six 
alternative versions of the insured portfolio were considered for the low-rise buildings. In 
the first two cases this subset was assumed to be RC, while in the other four cases it was 

Fig. 13  Country loss exceedance curves using lognormal distributions with and without full vulnerability 
correlation
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assumed to be composed by unreinforced, confined or reinforced masonry. The alternative 
versions of the portfolio are summarized in Table 3. Note that the total portfolio (100% of 
TIV) was considered in cases RC1 and RC2.

It is worth noting that in the vendor model, all the high-rise buildings are characterized 
by two vulnerability functions, one for 8–15 storeys and the other for more than 15-storey 
buildings. Finally, the vulnerability functions for confined and reinforced masonry are the 
same in the vendor model, which limits the loss estimation of the low-rise masonry ver-
sions to LM1 and LM3.

As for the seismic hazard component, the seismic source model between the two plat-
forms is the same (Benito et al. 2012). Moreover, in order to ensure that the seismic hazard 
results were the same, the GMPE logic tree proposed by the vendor model was also used 
within the OpenQuake-engine. For the sake of clarity, the GMPEs and associated weights 
proposed by the vendor model are described in Table 4.

The ground up loss exceedance curves and the AAL obtained from both platforms for 
the alternative versions of the insured portfolio are presented in Figs. 15, 16, 17.

Given that the same probabilistic seismic hazard model and exposure dataset were 
used, the differences between the various loss exceedance curves are mostly due to the 

Fig. 14  Distribution of buildings per age of construction (top) and number of storeys (bottom)
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vulnerability component. For the RC1 and RC2 versions, where the total portfolio was 
considered, the OpenQuake-engine predicted higher losses than the vendor model for 
return periods longer than 200 years, with a clear increasing trend at higher return peri-
ods. Nevertheless, due to the significantly lower loss estimates at shorter return periods, 
OpenQuake estimates lower AAL values than the vendor model. As for the low-rise 
RC variations, we can comment that LRC1 follows the trends of RC1 and RC2, but 
LRC2 shows higher losses estimated with OpenQuake than the vendor model for almost 
the entire range of return periods. On the contrary, a significant divergence is observed 
in the loss estimates for the low-rise masonry buildings. The vendor model appears 
to overestimate the losses for the unreinforced masonry buildings, since the predicted 
losses of LM1 (47% of TIV) are higher than the loss estimates of the entire portfolio 
cases RC1 and RC2 (100% of TIV).

Table 3  Alternative portfolio versions and the corresponding building characteristics

MRF, moment resisting frame; URM, unreinforced masonry; Inf, with URM infills; CF, confined masonry; 
RM, reinforced masonry; LDUAL, moment resisting frame with shear walls

Modelling cases Construction 
type/version

Number 
of storeys

Lateral load 
resisting 
system

All buildings are modelled as RC (100% TIV) RC1 1–2 MRF
3 MRFinf
4–6 MRFinf
7+ LDUAL

RC2 1 MRF
2–3 MRFinf
4–6 MRFinf
7+ LDUAL

Low-rise (1–3 storeys) buildings are modelled as RC (47% of 
TIV)

LRC1 1–2 MRF
3 MRFinf

LRC2 1 MRF
2–3 MRFinf

Low-rise (1–3 storeys) buildings are modelled as masonry (47% 
of TIV)

LM1 1–2 URM
3 CF

LM2 1–2 URM
3 RM

LM3 1–3 CF
LM4 1–3 RM

Table 4  GMPEs and the associated weights per tectonic region used in the vendor model

Active shallow crust Subduction interface Subduction intra-slab

Boore and Atkinson (2008), 0.33 Zhao et al. (2006), 0.5 Zhao et al. (2006), 0.2
Campbell and Bozorgnia (2008), 0.33 Atkinson and Boore (2003), 0.25 Atkinson and Boore (2003), 0.2
Chiou and Youngs (2008), 0.33 Youngs et al. (1997), 0.25 Youngs et al. (1997), 0.6
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Reasons for these differences in the predicted losses should be due to the differences 
in the assumptions and methodology adopted for the derivation of the vulnerability 
functions. The vendor model’s functions are derived using a different analytical meth-
odology (i.e. Capacity Spectrum Method, e.g. Freeman 1998), but more importantly, the 
aleatory uncertainty of the GMPEs along with the total secondary uncertainty are incor-
porated and represented in the vulnerability functions (and not on the hazard footprints). 

Fig. 15  Loss exceedance curves for RC1 and RC2 portfolio versions obtained from OpenQuake and the 
vendor model

Fig. 16  Loss exceedance curves for the low-rise buildings, LRC1 and LRC2 portfolio versions obtained 
from OpenQuake and the vendor model
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Further comparisons between the two platforms were not possible as most of the com-
ponents are not accessible.

5  Conclusions

The aim of this study was to explore and quantify the impact of epistemic uncertainty in a 
probabilistic seismic risk assessment model. To this end, the residential exposure of Gua-
temala and Guatemala City were selected as the case studies. Overall, the results of the 
study indicate that the epistemic uncertainty in the hazard component is the most signifi-
cant among the three components. In particular, the loss estimates illustrated a high sensi-
tivity on the source model (seismic zonation), the maximum magnitude assumed for each 
seismic source, and the selection of the GMPEs and associated weights. The latter results 
are also in agreement with the findings from Crowley et al. (2005) and Silva (2018).

For the evaluation of the impact of the exposure component, alternative versions of the 
residential exposure model were considered, and negligible differences in the loss esti-
mates were observed. Moreover, various spatial resolutions of the exposure model were 
tested, and the results suggest that for the risk assessment at a city (urban) level, coarse res-
olutions should be refined in order to avoid biased loss estimates. For national assessments, 
the predicted losses for increasing resolutions presented a strong dependency on the spatial 
distribution of seismic hazard. Finally, in order to assess the impact of the vulnerability 
component, probabilistic vulnerability functions were used to incorporate the building-to-
building and record-to-record variability. It was shown that the vulnerability correlation 
between assets of the same class dominates the predicted losses.

An insured portfolio in Guatemala was translated into the OpenQuake format using the 
building classes developed by Calderon et al. (2020) and the fragility functions of Martins 
and Silva (2020). In general, OpenQuake predicted higher losses than the vendor model 
for long return periods, while the opposite trend was observed in the short return periods. 

Fig. 17  Loss exceedance curves for the low-rise buildings, LM1, LM2, LM3 and LM4 portfolio versions 
obtained from OpenQuake and the vendor model
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Significant differences in vulnerability modelling of the low-rise masonry buildings were 
observed. It is relevant to mention that the two platforms incorporate and propagate the 
secondary uncertainty in different manners, which did not allow further comparison.

The results from this study indicate that different sources of epistemic uncertainty can 
influence the risk estimates significantly, and consequently any decisions that may be 
informed by those risk results. These can include the pricing of (re)insurance products, but 
also the investment in disaster risk management measures. The employment of an open-
source platform for the assessment of the losses allows a better understanding of the impact 
of these sources of uncertainty, as well as to identify which components are driving the 
uncertainty, and consequently where additional efforts should be devoted to limit the vari-
ability. The OpenQuake-engine is a suitable tool for such analyses, but it still lacks of a 
robust financial module to translate the ground-up losses into results that can be directly 
used in the insurance industry.

The authors would like to highlight that the main conclusions from this study are valid 
for the case of Guatemala, and their application to other countries or cities calls for due 
care. However, we note that the levels of sophistication of this model is similar to that 
of other models covering other regions in the world (e.g. Silva et al. 2020), and therefore 
these findings can also support modellers in understanding which modelling assumptions 
might affect their risk estimates.
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