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Abstract
We investigated the response of a tidal lagoon system to a unique situation of relative sea-
level change induced by powerful earthquakes (up to  Mw 7.1) on the east coast of New 
Zealand in 2010–2011. Spatiotemporal impacts were quantified using airborne light detec-
tion and ranging (LiDAR) datasets complemented by hydrodynamic modelling and evalu-
ation of anthropogenic influences. Ground-level changes included examples of uplift and 
extensive subsidence (ca. 0.5 m) associated with intertidal area reductions, particularly in 
supratidal zones. ‘Coastal squeeze’ effects occurred where incompatible infrastructure pre-
vented upland ecosystem movement with relative sea-level rise. Despite large-scale man-
aged retreat, legacy effects of land-filling have reduced the reversibility of human modifica-
tions, impairing system resiliency through poor land-use design. Elsewhere, available space 
in the intertidal range shows that natural environment movement could be readily assisted 
by simple engineering techniques though is challenged by competing land-use demands. 
Quantification of gains and losses showed that lagoon expansion into previously defended 
areas is indeed required to sustain critical habitats, highlighting the importance of a whole-
system view. Identifiable coastal planning principles include the need to assess trade-offs 
between natural and built environments in the design of hazard management plans, requir-
ing greater attention to the natural movement of ecosystems and areas involved. Treat-
ing these observations as a scenario illustrates the mechanisms by which coastal squeeze 
effects may develop under global sea-level rise, but our purpose is to help avoid them by 
identifying appropriate human responses. We highlight the need for an improved focus on 
whole-system resilience, and the importance of disaster recovery processes for adaptation 
to climate change.
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1 Introduction

Coastal river mouths and estuaries are characteristic natural features supporting highly 
productive ecosystems, important biodiversity and a wealth of natural resources (Kennish 
1986). Their benefits include food, coastal protection, recreational opportunities, water 
filtration and many other ecosystem services (Pendleton 2008; Thrush et al. 2013). Eco-
nomic evaluations have shown their high value to society (Barbier et al. 2011; Costanza 
et al. 1998), underpinned by the popularity of coastal floodplains for human uses and set-
tlement (Lichter et al. 2011; McGranahan et al. 2007). Unfortunately, the integrity of estua-
rine environments has also suffered from anthropogenic effects (Kennish 2002). Pervasive 
issues include hydrological and morphological changes associated with nearby land-uses 
and the cumulative effects of land reclamation within the intertidal zone (Duarte et  al. 
2015; Perkins et al. 2015). These aspects illustrate a need for conservation measures that 
address both local spatial planning and catchment-wide land-use trends.

The conservation of dynamic coastal environments is already difficult in heavily popu-
lated areas, and climate change introduces a further considerable threat (Martínez et  al. 
2007). Under sea-level rise, low-lying landscapes may be eliminated if the landward retreat 
of erodable shorelines becomes constrained by anthropogenic infrastructure (Berry et al. 
2013; Chapman 2012; Robins et al. 2016). These ‘coastal squeeze’ threats to natural envi-
ronments include the erosion of substrate-dependent ecosystems seaward of engineered 
defences, and the drowning of others with increased inundation. In both cases, constraints 
on natural system movement underpin ecosystem risk and are often anthropogenic in ori-
gin (Martinez et al. 2014; Schleupner 2008). However, solutions to these issues do exist in 
the form of ‘nature-based solutions’ (Cohen-Shacham et al. 2019; Kabisch et al. 2016), that 
embrace more holistic planning and infrastructure design (Macreadie et  al. 2017). Such 
solutions include the concept of ecosystem-based adaptation, defined as “adaptation that 
integrates ecosystem services and biodiversity into a strategy to limit the adverse impacts 
of climate change” (Renaud et  al. 2016; UNEP 2010). Challenges, however, include the 
need for strategies to accelerate the uptake of these new approaches, and the identification 
of options that are both effective in accommodating natural ecosystems and workable for 
the communities involved (Bardsley and Sweeney 2010; Füssel 2007).

In this study, we investigated these issues in relation to a unique situation of sea-level 
change that was generated by a major earthquake event. A defining feature of this case 
involved large areas of subsidence with an accompanying sea-level rise (ca. 0.5  m) that 
affected coastal communities and generated long-term environmental change. The con-
text provided a novel opportunity for the empirical assessment of impacts and evaluation 
of contributing factors in a low-lying socio-ecological system typical of many facing the 
global challenge of sea-level rise.

1.1  Tectonic displacement context

The Canterbury Earthquake Sequence (CES), involved a series of strong earthquakes 
(up to  Mw 7.1) beginning 2010 on the east coast of New Zealand’s South Island. The 
most serious earthquake occurred on 22 February 2011 beneath the city of Christchurch 
(Fig. 1). As one of New Zealand’s worst natural disasters, it caused 185 fatalities and 
capital costs estimated at NZ$40 billion, or approximately 20% of the Gross Domestic 
Product (Kaiser et al. 2012; Potter et al. 2015). Three other earthquakes exceeded  Mw 
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6.0, all on previously unrecognised fault lines (Beavan et al. 2012; Bradley et al. 2014). 
Along with catastrophic effects on built infrastructure the CES caused severe impacts on 
the natural environment. Many of these were associated with surface deformation phe-
nomena including liquefaction, lateral spread, subsidence and landslides (Quigley et al. 
2016; Robinson et  al. 2012; Zeldis et  al. 2011). Many residential areas were affected 
by increased flood risk associated with subsidence and coastal defence breaches, par-
ticularly in the east of the city (Hughes et al. 2015). Societal responses included central 
government acquisition of thousands of residential properties along the estuary shore-
line and lower river corridors creating a rare opportunity for reconfiguring the relation-
ship between people and the aquatic environment (Orchard 2017).

This study investigates disturbance and resilience aspects of the earthquake-induced 
change. Our particular focus was the identification of long-term effects on the aquatic 
margins and footprint of the Avon Heathcote Estuary Ihutai, a tidal lagoon typical of 
many worldwide (Hume et al. 2007). Complications for gaining a comprehensive pic-
ture arise from the lag times of responses and the potential for further time-varying 
effects associated with physical change. Initially, the latter was significant due to the 
high frequency of aftershocks and associated further land movements and erosion 
effects (Beavan et al. 2012; Quigley et al. 2013). To address this, we collected data over 
a considerable period as conditions stabilised. The magnitude and frequency of after-
shocks have generally reduced since 2011, with the exception of a 5.7  Mw earthquake on 
14 February 2016.

In this paper we provide a comprehensive overview of relative sea-level changes, shore-
line movements, and impacts on the extent of intertidal areas associated with tectonic dis-
placement. We draw conclusions for the management of sea-level rise derived from direct 

Fig. 1  Configuration of the Avon-Heathcote Estuary Ihutai and surrounding area in Christchurch, New Zea-
land, showing the position of key natural features, coastal defences, and earthquake-impacted land that was 
acquired by the New Zealand government after the Canterbury earthquakes of 2010–2011
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empirical analysis, and discuss natural disaster recovery and climate change adaptation 
(CCA) principles that may be identified from this case.

2  Methods

2.1  Study area

The study area is within the city of Christchurch on the east coast of New Zealand’s 
South Island (Fig. 1). The estuarine system includes two river mouth environments (Avon 
Ōtākaro and Heathcote Ōpāwaho) and several smaller tributaries connected to a tidal basin 
of ca. 8  km2. The lagoon is a barrier-built system enclosed by a 10 km long beach and 
sand-spit formation. In recent history it has been permanently open to the Pacific Ocean via 
an entrance channel located in the southern corner of Pegasus Bay, a shallow embayment 
54  km long extending north from Banks Peninsula (Hicks 1998; Kirk 1979). The estu-
ary supports a wide variety of native birds, fish and invertebrate species, and indigenous 
plant communities including seagrass meadows, saltmarsh and other coastal wetland types 
(Jones and Marsden 2007). It is an important site for shorebirds and migratory waders, 
supporting aggregations of at least 13 species exceeding the 1% international importance 
threshold defined by Wetlands International (Crossland 2013; Delaney and Scott 2006). 
The estuary is of high significance to Māori for mahinga kai (food gathering), and other 
traditional practices (Jolly and Ngā Papatipu Rūnanga Working Group 2013; Tau et  al. 
1990), hence our adoption of bilingual naming for major aquatic features. However, resi-
dential and industrial development has had adverse impacts on cultural values, especially 
those dependant on the maintenance of natural ecosystems and traditional resources (Lang 
et  al. 2012; Pauling et  al. 2007). A large proportion of the estuarine shoreline has been 
modified by seawalls and stopbanks, some of which are associated with a sewage treatment 
facility on the western shore (Fig. 1).

2.2  LiDAR data and digital elevation models

Shoreline change was investigated using geographic information system (GIS) analyses of 
digital elevation models (DEM) derived from LiDAR datasets. Four datasets were availa-
ble with complete coverage of the study area. These include a pre-quake (2003) dataset and 
others captured after key events in the CES (Table 1). Bare earth DEMs representing aver-
aged ground-return elevations were included in the LiDAR products at 1 × 1 m resolution 
for the 2015 survey, and 5 × 5 m resolution for all others (Canterbury Geotechnical Data-
base 2014; LINZ 2017). Identical DEM configurations were developed by reprocessing the 
2015 DEM to 5 m resolution. Elevation errors have at least three components that include 
locality-dependent interpolation errors, potential geoid errors, and measurement errors in 
the underlying LiDAR point cloud. However, the 5 m DEMs have relatively high accuracy 
due to the quantity and geographic spread of point elevations captured in the source data. 
Tables 1, 2 show the estimated horizontal and vertical accuracy for each dataset excluding 
GPS network error and approximations within the New Zealand Quasigeoid 2009 refer-
ence surface which have a vertical accuracy of ± 0.06 m (Canterbury Geotechnical Data-
base 2014). 

To investigate inundation patterns in the lower intertidal zone we used DEMs devel-
oped from echosounder surveys covering areas of the estuary and river channels that were 
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submerged during the LiDAR surveys and therefore not captured. Although only two such 
DEMs were available due to the limited collection of bathymetric data over the CES, they 
are representative of pre- and post-earthquake conditions. Each DEM was generated using 
triangular irregular network (TIN) interpolation constrained with manually digitised break-
lines following the main estuary channels to preserve channel connectivity and minimise 
interpolation artefacts (Measures and Bind 2013). Data sources are provided in Supple-
mentary Material (Table S1).

2.3  Shoreline change

Shoreline sampling transects were developed using the AMBUR package (“Analyzing 
Moving Boundaries Using R”) for detecting movement and trend changes relative to a 
baseline position (Jackson et al. 2012). A baseline was developed from the Land Informa-
tion New Zealand (LINZ) 1:50,000 coastline polyline and smoothing to improve fit with 
0.075 m aerial imagery (LINZ 2016). A set of perpendicular transects (n = 1428) were cast 
at 10 m spacing from a start point at the southern estuary entrance (Lat. 43° 56′ S, Long. 
172° 75′ E). Transect lengths were adjusted to cover all areas of potential tidal inundation 
(Fig. 2a). At river mouths, the sampling area was confined to the confluence with the main 
tidal lagoon basin. This breakpoint approximates the Coastal Marine Area boundary, an 
important jurisdictional division within environmental legislation (Orchard 2011). Ground 
level changes were assessed by point sampling of DEMs at 1 m spacing on the sampling 
transects followed by differencing. Spatial variation was investigated by grouping transects 
within five contiguous zones (Southshore, South Brighton, Bromley, Ferrymead and Red-
cliffs) reflecting changes in shoreline aspect and proximity to river mouths (Fig. 2a).

Shoreline position changes were calculated for two tidal heights of particular interest: 
Highest Astronomical Tide (HAT) and Mean High Water Springs (MHWS). These were 
delineated as orthographic heights (Table 3) obtained from the average predicted values 
over a full 18.6 year tidal cycle (2000–2018) at Port Lyttelton (LINZ 2018a). For MHWS 
the yearly variation is 0.1–0.15 m using current predictions (1 July 2018–30 June 2019). 
The current MHWS height is 2.6 m above chart datum, or 0.11 m above the mean value for 
the full tidal cycle (LINZ 2018b). These considerations do not affect HAT which is based 
on the full cycle. Shoreline position changes were quantified by extraction of the MHWS 
and HAT heights from each DEM followed by contour and intersection analysis on the 
sampling transects. Changes were measured as seaward or landward movement relative to 
the baseline.

Table 2  Data sources: Comparison of tidal and benchmark heights at the Standard Port of Lyttelton (Lat. 
43° 36′ S., Long. 172° 43′ E) against chart datum and two vertical datums in current use

LVD37 Lyttelton Vertical Datum 1937, NZVD New Zealand Vertical Datum 2016
a LINZ (2018a, b)

Tidal level or feature Height above chart  Datuma 
(m)

Orthographic heights (m)

LVD37 NZVD2016

HAT 2.72 1.479 1.072
MHWS 2.49 1.249 0.842
B40V geodetic reference mark 4.478 3.237 2.83
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2.4  Tidal inundation

Supratidal area changes were assessed for the four DEMs using the elevation band bounded 
by MHWS and HAT (Table  2). Upstream freshwater regions were removed from the 
analysis by clipping at the limit of salt water intrusion as measured in field surveys on 
spring high tides. All DEM analyses assume full connectivity between adjacent hydrologi-
cal basins, regardless of engineered modifications such as tidal gates and seawalls. Due 

Fig. 2  Sampling design. a configuration of sampling transects for shoreline change analysis and estuarine 
localities used for spatial comparisons including boundaries of hydrodynamic modelling units. b Hydrody-
namic model extent and example of model cell fit in relation to the estuary shoreline
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to extensive earthquake damage to such infrastructure, this assumption approximates the 
actual post-disaster context and provides an assessment of potential inundation through 
connectivity improvements.

For mid-lower intertidal ranges where water surface slope and hydrological connectivity 
can strongly influence the inundation regime we used a calibrated Delft3D hydrodynamic 
model based on the bathymetric DEMs (Measures and Bind 2013). The model extends 
15 km into the open ocean and has a curvilinear grid with horizontal resolution of ca. 20 m 
within the rivers and estuary basin (Fig. 2). Each grid cell is split into five vertical lay-
ers, with layer thickness proportional to water depth. Pre- and post-earthquake versions 
are identical apart from the DEM used to assign the bed level within each cell (Meas-
ures and Bind 2013). Month long simulations were computed using the pre- and post-
earthquake models to quantify changes in inundation. Both simulations modelled identical 
astronomic tidal conditions and median river flows (Avon Ōtākaro = 1.65 m3/s, Heathcote 
Ōpāwaho  = 0.77 m3/s). It is important to note that the model extent does not include all of 
the floodable intertidal areas in the estuary catchment. This results in an underestimation 
of potential inundation in the upper intertidal range, particularly above MHWS. The static 
DEM analyses are therefore more reliable for the investigation of changes at these higher 
elevations.

2.5  Data analyses

Raster analysis was used to quantify spatiotemporal changes in the elevation bands of inter-
est with differencing between rasters to quantify ground level changes over time. Summary 
statistics were calculated for shoreline position changes on the sampling transects. Differ-
ences were identified using Kruskal–Wallis rank sum tests for independent variables of 
time and locality followed by post hoc pairwise tests where there was a significant move-
ment relative to the pre-earthquake (2003) baseline. Hydrodynamic modelling outputs 
were post-processed to calculate the bed area inundated for different proportions of time 
under pre- and post-earthquake conditions, and summarised for the five main basin locali-
ties and additional upstream portions of the two major river catchments (Fig. 2a). Geospa-
tial analyses were conducted in NZTM 2000: ESPG 2193 projection using QGIS v 2.18 
(QGIS Development Team 2019). Statistical analyses were conducted in R v3.3.3 (R Core 

Table 3  Summary of key 
changes in the areal extent of the 
Avon Heathcote Estuary Ihutai 
over the period 2003–2015

The three later dates mark important time periods in the Canterbury 
Earthquake Sequence whilst the 2003 baseline is representative of pre-
earthquake conditions
a Calculations assume full hydrological connectivity between adjacent 
basins within the elevation range of interest
HAT Highest Astronomical Tide, MHWS Mean High Water Springs

Estuarine areas Areal extent (ha)a

July 2003 May 2011 Sep 2011 Oct 2015

Area below HAT 1190.5 1146.0 1329.5 1135.8
Area below MHWS 1032.3 1009.7 1154.4 998.9
Supratidal area 

bounded by HAT 
and MHWS

158.2 136.3 175.2 136.9
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Team 2017). Model post-processing was conducted in MATLAB using functions from the 
OpenEarthTools repository (https ://publi cwiki .delta res.nl/displ ay/OET/Tools ).

3  Results

Relative to pre-quake (2003) conditions, results from individual sampling points 
(n = 475,000) showed more uplift than subsidence and marked differences between locali-
ties (Fig. 3). Subsidence occurred in the South Brighton area near the Avon Ōtākaro river 
mouth throughout 2011 though this had reduced by 2015. Here, and in other areas, the 
results also illustrate the ongoing nature of change in relation to key time periods in the 
CES, highlighting the difficulty in drawing conclusions from singular before-after com-
parisons. Large variations in the measured changes were seen in some areas, particularly 
in Redcliffs which is located at the foot of prominent hill-slopes (Fig. 3). This reflects the 
elevation signature of horizontal displacements on sloping ground that cannot be separated 
from the assessment of vertical movement at point coordinates. However, these effects are 
unlikely to affect shoreline change analyses due to the relatively flat topography of inter-
tidal areas.

3.1  Shoreline movement

Large movements were detected in the position of post-quake versus pre-quake shore-
lines. Changes of over 500  m seaward were recorded for MHWS and HAT on individ-
ual transects. Landward shifts were also recorded to a maximum of 269  m for MHWS 
and 182  m for HAT (Fig.  4a). Shoreline change was significantly different between 
localities for both MHWS (Kruskal–Wallis χ2 = 107.86, df = 2, p < 2.2e−16) and HAT 
(Kruskal–Wallis χ2 = 88.67, df = 2, p < 2.2e−16), with several pronounced trends being 
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Fig. 3  Mean ground surface elevation changes relative to 2003 in the Avon Heathcote Estuary Ihutai for 
five contiguous localities on the shoreline of the tidal lagoon basin. Error bars represent one standard devia-
tion. These results were obtained by differencing of individual sampling points (n = 475, 000) located on 
shore-perpendicular transect lines around the estuary perimeter
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evident. At Ferrymead, large seaward shifts were recorded for MHWS and HAT (Fig. 4a), 
with the majority of movement having occurred by May 2011 as reflected by mean shifts 
of 161 m (HAT) and 154 m (MHWS) relative to 2003. At Southshore and Redcliffs the 
post-quake positions were consistently seaward of the 2003 shoreline but the movement 
was less than at Ferrymead (10–50  m). South Brighton and Bromley shorelines experi-
enced little change on average relative to 2003. At South Brighton this was associated 
with large variances in the magnitude and direction of shifts on individual transect lines, 
whereas at Bromley little change was recorded on most transects due to the influence of 
shoreline armouring which is extensive in this area (Fig. 4a).

Mean shoreline change for the estuary as a whole was in a seaward direction for both 
MHWS and HAT shorelines. At all three post-quake time points, seaward movement in 
the HAT line was greater than for MHWS (Fig.  5). Shoreline position differences after 
the major earthquake of February 2011 (represented by May 2011 data) were significant 
for MHWS and HAT (p < 0.001). Wilcoxon pairwise comparisons for MHWS also showed 
that the end-point position (October 2015) was significantly different from the May 2011 
position (p < 0.001). HAT changes conformed to a similar pattern, although statistical anal-
ysis showed no significant difference (p = 0.81) due to greater variation on individual tran-
sect lines (Fig. 5). These temporal effects are interpreted as a modest expansion of the tidal 

Fig. 4  Pattern of movement of two shorelines (HAT and MHWS) during the Canterbury Earthquake 
Sequence (CES) at the Avon Heathcote Estuary Ihutai. a Box plots showing the total range of shoreline 
changes recorded at three post-quake time points for five estuarine localities relative to the July 2003 (pre-
quake) position. Boxes show the median and interquartile range. b Mean shoreline position changes relative 
to July 2003 for each of the three points in time. Error bars are one standard error of the mean. See Table 1 
for relationship to major tectonic events. Note different scales on the Y axis between a and b. HAT Highest 
Astronomical Tide. MHWS Mean High Water Springs
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lagoon basin between 2011 and 2015 that has reduced the initial contraction caused by 
the February 2011 earthquake. The same general trend can be seen in temporal patterns at 
most of the individual locations (Fig. 4b). However, these effects were not always directly 
proportional to the ground level changes shown in Fig. 3. For example, mean ground lev-
els in 2015 at Southshore followed a trend of continuing subsidence whereas shoreline 
movement was in a seaward direction at the same time. This is potentially explained by the 
weathering of erodable surfaces accompanied by accretion elsewhere.

3.2  Intertidal area changes

Based on the most recent time point (2015), the total estuarine area below HAT has 
reduced by 54.7 ha, and 33.4 ha for MHWS (Table 3). The HAT-MWHS difference implies 
compression of the supratidal zone of around 21.4 ha (represented by the area bounded by 
HAT and MHWS). However, there were pronounced differences between time periods over 
the course of the CES with expansion evident between May and September 2011 but con-
traction at other times. In comparison to other localities, changes in the Avon area make a 
disproportionate contribution to the net overall impact (Fig. 6).

Fig. 5  Mean shoreline posi-
tion change since 2003 for the 
Avon Heathcote Estuary Ihutai 
as a whole, as recorded at each 
of three points in time during 
the Canterbury Earthquake 
Sequence. Error bars are one 
standard error of the mean. 
HAT Highest Astronomical 
Tide. MHWS Mean High Water 
Springs

Fig. 6  Changes in the extent of estuarine areas below the elevation of Highest Astronomical Tide (HAT) 
and Mean High Water Spring tide (MHWS) for seven areas within the Avon Heathcote Estuary Ihutai 
catchment over 2003–2015
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Impacts of the major February 2011 earthquake included reductions in the area below 
the elevation of both HAT and MHWS in Ferrymead and Heathcote, consistent with the 
dominance of uplift effects towards the southwest (Fig. 6). At the same time there were 
increases in the Avon area, consistent with subsidence effects further north. System-wide 
impacts are explained by a combination of tilting and a dominance of uplift in overall 
ground surface displacements, leading to reductions of 44.5  ha in the area below HAT, 
and 22.6 ha for MHWS (Table 4). In the next time period (May–September 2011), large 
increases were observed in the Avon Ōtākaro area (144.5  ha below HAT, 117.6  ha for 
MHWS), and small increases elsewhere, consistent with widespread subsidence. Relative 
to pre-quake (2003), the intertidal area was 139 ha larger and included a modest increase 
(16.9 ha) in the supratidal zone. However, this estuarine expansion was relatively short-
lived due to a dramatic reversal in the Avon area in the next time period (to 2015). The 
overall results are illustrative of complex spatiotemporal patterns that reflect both co-seis-
mic perturbations and re-equilibration processes (Fig. 6). The most recent measurements 
showed the estuarine area was similar to May 2011 and smaller than in 2003 (Table 3). 
See Supplementary Material Fig. S1 for a map of baseline (2003) and endpoint (2015) 
conditions.

Hydrodynamic modelling showed that subtidal area losses contributed additional 
intertidal area due to shallowing of the main estuary basin (Fig. 7). The biggest changes 
occurred in the uplifted southern parts of the estuary: Heathcote, Ferrymead, Redcliffs, 
and the southern parts of Bromley and Southshore (Fig. 7). In these areas the total inter-
tidal area has generally increased due to the exposure of channels which were previously 
permanently submerged at low tide, and an accompanying reduction in the subtidal area. 
Areas which were already intertidal are now exposed for a longer duration on each tidal 
cycle. However, there are few areas which were previously intertidal and that are now 
above the modelled reach of the tide. This counterintuitive result can be explained by 
the observation of only small areas that were shallowly submerged at high tide in the 
pre-earthquake state. This is particularly evident for areas inundated for less than 30% 
of the time (Fig.  7) and is indicative of upper intertidal reclamations having already 

Table 4  Effects of higher sea levels on mean estuarine shoreline position and intertidal area at South 
Brighton for three time points during the Canterbury Earthquake Sequence relative to pre-quake (2003) 
conditions

a calculations assume full hydrological connectivity between adjacent basins within the elevation range of 
interest
HAT Highest Astronomical Tide, MHWS Mean High Water Springs

Key changes since  2003a Assessment dates

May 2011 Sep 2011 Oct 2015

Mean ground level elevation (m) − 0.09 − 0.27 − 0.16
Shoreline retreat (landward movement) (m)
HAT 2.0 2.2 − 14.2
MHWS 1.8 4.0 − 7.5
Areal extent of intertidal  areasa (ha)
Area below HAT 0.9 2.1 1.3
Area below MHWS 1.7 3.4 1.6
Supratidal area between HAT and MHWS − 0.8 − 1.3 − 0.3
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occupied those areas. The combination of both shallowing and an overall decrease in 
intertidal area at high tide, suggests a reduced tidal prism with the potential to drive 
further habitat shifts through direct effects on the salinity regime and interactions with 
water heights, currents, and patterns of erosion and deposition.

Fig. 7  Hydrodynamic model results for pre- and post-earthquake bed topographies representative of 
the Canterbury Earthquake Sequence and showing changes in the intertidal area inundated over a typical 
monthly tidal cycle. Both simulations used identical astronomic tidal conditions and median river flows 
(Avon Ōtākaro = 1.65 m3/s, Heathcote Ōpāwaho = 0.77 m3/s)
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At Bromley, uplift was insufficient to move either HAT or MHWS shorelines. This 
shows that the ‘coastal squeeze’ impacts of seawalls had extended well into the intertidal 
range and exceeded the tipping point for persistence of a high tide beach, even with the 
benefit of uplift. Similar results indicative of pre-earthquake degradation were also evident 
in Southshore and Ferrymead where pre-quake upper intertidal zones were much smaller 
than lower intertidal zones, but expanded markedly following uplift (Fig. 7). The CES both 
illuminated and reversed the pre-quake situation where land-uses were occupying areas 
that would otherwise be regularly inundated on moderate-sized tides. Moreover, these 
results demonstrate that the post-quake state remains vulnerable to sea-level rise impacts 
due to the current position of seawalls. In areas that subsided (Avon and South Brighton), 
the hydrodynamic modelling is less reliable as an indicator of upper intertidal change due 
to limitations of model domain which excluded land outside of the estuary that is now sub-
ject to tidal inundation. However, these areas were captured within other assessments using 
the static DEMs.

3.3  Impacts of sea level rise

Appreciable subsidence occurred only in the Avon Ōtākaro catchment and adjacent South 
Brighton portion of the main lagoon basin. However, these areas provide an excellent 
opportunity to assess the actual effects of higher sea levels on a pre-disturbance landscape. 
At South Brighton, the measured sea-level rise was greatest in September 2011 with sub-
sidence of 27  cm on the sampling transects versus 2003 (Table  4). Despite this, shore-
line change analysis showed only small landward movements in the position of HAT and 
MHWS (means of 2.2 m and 4.1 m respectively). The increase in area below HAT (2.1 ha) 
was much less than for MHWS (3.4 ha), leading to a 1.3 ha (58%) reduction in the land 
available between HAT and MHWS. The 2015 results showed a general reversal of these 
effects consistent with the raising of ground levels. Relative to 2003, the end result was an 
intertidal area loss of 1.3 ha, and a 0.3 ha compression of the supratidal zone (Table 4).

Figure 8 illustrates the mechanisms of change in supratidal zones as observed in South 
Brighton and the lower Avon Ōtākaro catchment under conditions of relative sea-level rise. 
This area has extensive anthropogenic shoreline modifications. In the Bexley wetlands 
(arrowed) impacts included a large loss of supratidal area (Fig. 8a). Contributing factors 
included the raising of nearby ground levels to facilitate a housing development that had 
the effect of truncating landward movement of the supratidal zone under conditions of sea-
level rise. On the opposite (eastern) shoreline, land-fills are not prominent in the develop-
ment pattern despite the close proximity of residential property to the estuary. Some of 
these properties are now exposed to inundation at water heights of HAT (and less). How-
ever, these areas were not subject to the government land acquisition. As a result, these 
areas are less likely to be candidates for managed retreat strategies that include the creation 
of future estuarine space despite ground levels being more favourable than in areas modi-
fied by land-fill (Fig. 1). On this eastern shoreline, the 2015 bounce-back effect (Table 4) 
is also notable as illustrated by the expansion of supratidal areas seaward of the shoreline 
armouring line (Fig. 8d). As yet, however, these changes are insufficent to restore the major 
losses incurred earlier in the CES.
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4  Discussion

Aside from their contribution to the longer-term relative sea-level trend, rare examples 
of tectonic subsidence can demonstrate the effects of rapid sea-level rise where they 
occur in coastal environments (Albert et  al. 2016; Reed 1990; Saunders et  al. 2016). 
Although the rates of sea-level change are more rapid than the equivalent results of 
climate change, they are nonetheless illustrative of extreme scenarios. The observed 
responses may help to identify mechanisms that can lead to adverse effects, and strate-
gies to help avoid them. Recent examples provide unique opportunities to investigate 

Fig. 8  Changes in the areal extent of the supratidal zone modelled as the elevation band between Highest 
Astronomical Tide and Mean High Water Springs over the period 2003–2015. The area shown is the lower 
Avon Ōtākaro catchment and northern portion of the main tidal lagoon basin of the Avon Heathcote Estu-
ary Ihutai which experienced ground level subsidence during the Canterbury Earthquake Sequence
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sea-level rise responses in contemporary socio-ecological contexts, and it is becom-
ing increasingly important to understand these processes and their outcomes due to 
the prevalence of accelerated rates of sea-level rise within climate change predictions 
(Cazenave and Llovel 2010; Nicholls et al. 2011). Important consequences for coastal 
communities include the reduction of timelines for adaptation processes and the poten-
tial for greater impacts in the advent of delays or poorly designed responses. Because 
of the severe consequences associated with run-away climate change, many authors 
have recommended the consideration of extreme scenarios as an element of prepared-
ness and in recognition of inherent uncertainties in current predictions (Duarte 2014; 
Nicholls et  al. 2014; Polasky et  al. 2011). These aspects indicate that tectonic sub-
sidence events can offer useful insights for climate change adaptation in addition to 
their more immediate needs in the context of disaster recovery.

The present study investigated a significant displacement event on the east coast of 
New Zealand. Globally, there have been few empirical studies of similar events due to 
their relative scarcity in modern times. Examples include post-earthquake investiga-
tions in South America (Reed 1990; Reed et al. 1988), California (Jacoby et al. 1995), 
and the Solomon Islands (Albert et  al. 2016, 2017; Saunders et  al. 2016), and deep 
subsidence caused by a mine collapse in Australia (Rogers et al. 2019). However, other 
insightful studies have come from examples of shallow subsidence in river deltas (Al 
Mukaimi et al. 2018; Schmidt 2015). These include large-scale effects in the Missis-
sippi and Mekong deltas where subsidence trends have been linked with wetland losses 
(Day et al. 2000; Morton et al. 2010; Phan et al. 2015; Storms et al. 2008). Despite the 
unique opportunity afforded by these events for the study of sea-level rise, the poten-
tial for transferable learning is generally constrained by their occurrence in markedly 
different environments and socio-ecological contexts. Unique aspects of the present 
study include the co-occurrence of subsidence and relative sea-level rise with urban 
development on a temperate shoreline typical of many worldwide.

4.1  Patterns of change and implications

Empirical findings from this case describe the landscape-scale reconfiguration of a 
coastal hydrosystem. Area losses were highly variable between sites but often driven 
by the position of shoreline armouring in relation to the post-disturbance intertidal 
range. The availability of space within critical elevations bands is identified as a key 
consideration for natural hazards planning and the design of flood defences in the post-
disaster context. For example, our results indicate negative impacts on the availability 
of high tide roosting habitat for shorebirds, an already well-established conservation 
concern in New Zealand (Woodley 2012), and elsewhere (Green et al. 2015; Zharikov 
and Milton 2009). Another important site-specific effect involved the potential for 
estuarine expansion driven by subsidence in the Avon Ōtākaro catchment, to offset 
losses experienced elsewhere, as occurred in areas of uplift. This indicates the need for 
a whole-system view when planning future land uses. Additionally, these observations 
present a compelling case for assisting the migration of important ecosystems to areas 
where they would be expected to move if unhindered by anthropogenic barriers. In this 
case, the government acquisition of riparian and floodplain land greatly facilitates such 
possibilities, and includes the potential for rewilding of formerly urbanised areas.
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4.2  Principles for holistic responses

Areas experiencing subsidence provide opportunities to identify resilience-building prin-
ciples by considering the space now available in the intertidal elevation range. At several 
locations, seawalls constrained shoreline movement exemplifying the potential for habitat 
loss where sea-level rise coincides with anthropogenic modifications. At Bexley, the infill-
ing of land for a housing development limits the opportunities for assisted habitat migration 
(Hällfors et al. 2014), despite being within the area of government-acquired land (Fig. 1). 
Accommodation space with critical intertidal ranges cannot readily be created unless major 
earthworks are undertaken to remove the filled land. On the opposite shoreline, the upland 
migration of natural ecosystems could be assisted using relatively simple breaches of exist-
ing shoreline defences based on our modelled results. However, residential properties 
remain present in these areas since they were not included in the government land acquisi-
tion initiative. These examples illustrate how past and recent land-use decisions have each 
contributed to resiliency and opportunities for managed retreat.

These findings highlight the potential for natural resources to become degraded unless 
a whole-system view of resilience is adopted in which trade-offs are identified and man-
aged (Folke 2006; Gunderson et al. 2010). Their consequences become more obvious once 
conditions change and risks become manifested as losses, yet it is important that they are 
identified proactively in advance of tipping points being reached. Key principles evident in 
this case include the need to consider both built and natural environments in the design of 
adaptation initiatives such as managed retreat, and the legacy effect of land-filling activi-
ties which dramatically alter the ‘rewildability’ of the underlying landscape as conditions 
change. Alternatives include land uses that do not rely on extreme landscape modification, 
or the adoption of more dynamic and evolving land-use approaches in which change is 
more easily accommodated.

4.3  Ongoing change and the need for dynamic responses

The considerable amount of ongoing change in the estuary and environs over the post-
quake study period highlights the importance of re-equilibrium processes that are addi-
tional to the immediate effects of periodic extreme events. These dynamic aspects indicate 
the need for sustained and relatively fine-scale monitoring to quantify ongoing spatiotem-
poral change, as needed to assess vulnerability to future hydrological alterations, and the 
potential role of accretion as a modulator of relative sea-level rise (Gedan et al. 2011).

Conversely, the CES has also highlighted the role of tectonic displacement as a land-
scape-shaping force. In seismically active regions, the movement of land masses can 
strongly and unpredictably influence relative sea levels. The interaction between land 
motion and eustatic sea-level change that is arguably more difficult to quantify than the 
phenomenon of glacial isostasy, which results in similar considerations (Barlow et  al. 
2012; Cazenave and Llovel 2010). Periodic events, such as earthquakes, operate at variable 
time scales and are difficult to accommodate in predictive models, yet have the potential 
to introduce major step changes. This has profound implications for the efficiency of risk 
reduction plans that are typically geared towards established return periods and incremen-
tal future changes (Glavovic et al. 2010). Considerations for management include the need 
for preparedness to change in areas exposed to less predictable natural hazards, and this 
could include the promotion of more flexible land-use arrangements as a strategy for risk 
reduction.
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4.4  Relating co‑seismic changes to eustatic sea‑level rise

Important learning for climate change adaptation may be identified from this case by treat-
ing the empirical observations as a scenario that illuminates the potential effects of sea-
level rise, and relationships with anthropogenic responses. However, the observed impacts 
should not be taken as a prediction of the actual effects of climate change, due (in part) to 
the expectation of different societal responses. Rather, this case exemplifies a period of 
rapid change in which the implementation of comprehensive responses has yet to occur, 
providing the opportunity to assess impacts in their absence.

Although many authors point out that the effects of incremental sea-level rise will mani-
fest as variable outcomes due to the influence of non-climatic factors (Nicholls et al. 2008), 
the observed scenario in this case (elevation of water level heights by ca. 0.5 m on the pre-
existing landscape) could readily be generated by a combination of such effects. Therefore, 
despite the expectation of different trajectories of change, the proposal that comparable 
effects may be produced with eustatic sea-level rise is highly plausible given current pre-
dictions (IPCC 2013). Moreover, similar effects are likely in  situations where water lev-
els rise and fixed infrastructure remains in place, as exemplified here. Although regional 
variation in sea-level change is expected (Cazenave and Cozannet 2014), the consequences 
for natural environments will depend considerably on human attitudes to coastal transgres-
sion due the prevalence of competing land uses in the areas involved (Kirwan and Megoni-
gal 2013; Schuerch et  al. 2018). For these reasons, scenario analysis provides a useful 
approach for evaluating uncertain futures by illustrating the potential outcomes of altered 
sea levels and beneficial strategies in response.

4.5  Concluding remarks

There are widely transferable principles of importance in this study and close analogies 
with the seminal work of Turner (1978) on the man-made aspects of natural disasters. In 
this paradigm, risk reduction decisions are highlighted as key influences on outcomes. As 
applied to natural environments, decisions are required to prevent the reaching of tipping 
points that result in loss of natural features and resources. This study illustrates the poten-
tial for rapid sea-level changes to exceed such tipping points with deleterious effects that 
result largely from anthropogenic influences.

Empirical studies can help improve the understanding socio-ecological factors and spe-
cific mechanisms leading to adverse effects, thereby helping to avoid them. Knowledge of 
the mechanisms of loss may help to improve concepts of risk and provide insights for the 
development of holistic solutions to deal with a range of sea-level rise situations. Although 
the progression of this knowledge base may not always coincide with high levels of moti-
vation for adopting new and proactive measures, we believe that it will assist by highlight-
ing trade-offs and illustrating alternatives to business-as-usual approaches in successive 
planning and development cycles.

Specific principles for the attention of coastal land-use planners include the need for 
hazard management approaches that are inclusive of natural environments and address 
the upland migration requirements of ecosystems vulnerable to coastal transgression. 
Such strategies are desperately needed, and will be enabled by identifying opportuni-
ties for building whole-system resilience, and measuring performance in the same terms. 
The mainstreaming of these measures requires much greater attention within the societal 
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discourse on natural hazards due to the likelihood of competing land-use demands in the 
areas involved. However, these aspects may be assisted by improving the awareness of 
trade-offs and legacy effects. Disaster recovery contexts also deserve greater attention due 
to the unique opportunities for land-use reconfiguration and the uptake of new approaches 
that may be enabled in these times. We highlight the benefits of preparedness for post-dis-
aster planning, and the importance of disaster recovery processes for adaptation to climate 
change.
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