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Abstract
In the present study, detailed morphometric, morphotectonic, statistical and hazard analy-
ses have been carried out in the Upper Alaknanda river basin (UAB) located in Central 
Himalayas, Garhwal, India. The study area is bounded by the South Tibetan Detachment 
System in the north and by the Main Central Thrust in the south. The major river flow-
ing in the area is Alaknanda which is a major tributary of river Ganga. The purpose of 
this study is to examine the influence of active tectonics, flood hazard, and soil erosion 
on the basis of morphotectonic and morphometric parameters using the Cartosat-1 Digital 
Elevation Model and ArcGIS software. The study area is divided into 10 sub-basins, where 
50 morphometric and 6 morphotectonic parameters were calculated. Bifurcation ratio and 
stream frequency show that streams up to third order is having steep gradient and rolling 
through highly dichotomized terrain, due to which high overland flow and less groundwater 
recharge takes places, whereas drainage density clearly indicates the high flood possibil-
ity in the region. Morphotectonic parameters indicate relatively young to an early mature 
geological stage of sub-basins and tectonically active region. The statistical analysis of 
morphometric parameters is carried out by using correlation analysis, hierarchal cluster 
analysis, and principal component analysis. Based on their susceptibility to soil erosion, 
morphometry and landcover classification is carried out to prioritize the sub-basins of 
UAB. The combined morphometric, morphotectonic and statistical analysis indicates that 
the area is tectonically active and highly prone to flood, flood induced landslide and soil 
erosion. The case study of the 2013 flash flood event at three locations Benakuli, JP HEP 
and Pulna also confirms that the study area is hydro-geologically active to flood and flood 
induced hazards. The results obtained in this study are directly related to watershed man-
agement and hence soil erosion, tectonic activities and flash flood possibilities should be 
taken into consideration during future development in the area.
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1 Introduction

The snow and glacier dominated Himalayan province of India are hydrologically signifi-
cant sources of freshwater resources. The sustainability of these water resources depends 
upon the climatic and geological or geomorphological conditions of the regions. The Him-
alayan Mountain Ranges are unstable due to tectonic activities and seismically active zones 
(Valdiya 1999a, b). After the upliftment of Himalaya, great distortion, and structures were 
developed due to tectonic activities in past, which is growing till now due to neo-tectonic 
activities (Nag and Chakraborty 2003; Pérez-Peña et  al. 2010; Demoulin 2011). Due to 
these tectonic and non-tectonic activities, even firm and competent rocks become fractured 
and brittle that finally leads to various kinds of mass movements and geomorphological 
changes which are also supported by other epigenetic forces like rain, avalanches, freez-
ing and thawing actions (Valdiya 1999b; Bali et  al. 2012). These factors are responsible 
to increase river opening, drainage basin irregularity, river alteration and hence has a sub-
stantial impact on the drainage network behaviour or the hydrology of the area (Pérez-Peña 
et al. 2010; Walker and Allen 2012; Sajadi et al. 2019). To understand and investigate the 
deformational process caused by active faults and regional tectonic activity, drainage net-
works system are the key factors (Lin et al. 2009; Yan and Lin 2015). The drainage feature 
of a basin depends on its runoff and infiltration capacity, which specifically acts as meas-
ures of soil erosion intensity and has been defined as an important criterion for erosion risk 
assessment (Sharma et al. 1985).

Morphometric and morphotectonic analysis technique have played a significant role to 
understand the hydrology of these drainage basins (Strahler 1952a, b; Bishop 2002; Rit-
ter et al. 2002). Morphometric analysis helps to understand the basin dynamics, morpho-
logical changes, temporal physical changes and its effect over anthropogenic activity or 
natural disturbances in drainage system of a basin (Thompson et al. 2001). It also provides 
a linkage between different land surface processes and land system components such as 
geomorphology, hydrogeology and landcover (LC) (Astras and Soulankellis 1992; Ifa-
biyi et  al. 2012). Morphometric studies were introduced by Horton (1940) and Strahler 
(1950), the idea was further developed and improved by many authors like Miller (1953), 
Schumm (1956), Melton (1958), Morisawa (1962) and Clarke (1966). The morphometry is 
the mathematical analysis of the surface, structure and proportions of the earth’s landform 
configuration (Clarke 1966). It helps to identify the zones which are susceptible to natural 
hazards basically controlled by the action of water like flood, mass movements, tectonic 
activities and soil erosion (Patton and Baker 1976; Diakakis 2011; Romshoo et al. 2012; 
Wakode et al. 2013). Hence, these kinds of studies are significant for the sustainable devel-
opment of any watershed management program.

The field-based survey and investigations are limited in the higher Himalayan regions, 
due to adverse geographical and topographic conditions. Therefore, remote sensing and 
GIS techniques play an important role in providing a suitable solution and better under-
standing of the hydrological processes in regional scale on the Himalayas. These days the 
remote sensing and GIS is an important and powerful technique or tools which integrates 
special and non-special information from the various sources to understand catchment and 
its morphometric parameters with detailed investigations and for decision making (Wil-
liams et al. 1972; Mesa 2006; Lyew-Ayee et al. 2007; Bali et al. 2012; Shukla et al. 2014; 
Maeda et al. 2014).

The present study area falls under the head water region of the Upper Alaknanda river 
Basin (UAB), Central Himalayas, India. The Alaknanda river originates from the snout 
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(3800 m asl) of Satopanth glacier. It flows through Hindu pilgrimage center ‘Badrinath’ 
and meets to Bhagirathi river at Devprayag covering ~ 200 km in the basin and after the 
confluence, it is named as Ganga River. Overall, the hydrological response of Alaknanda 
river has a major impact over Ganga river, which affect million people living in the basin 
and at the downstream of the basin. There are few studies that have been carried out in 
Alaknanda river basin with the help of morphometric or morphotectonic analysis (Bali 
et al. 2012; Shukla et al. 2014; Rana et al. 2016; Anand and Pradhan 2019). These studies 
mainly deal with the whole Alaknanda river basin or for lower Alaknanda river basins. In 
this present study, we have tried to recognize the role of morphometric and morphotectonic 
parameters along with various statistical analysis, for integrated basin management for the 
head water region or Upper Alaknanda river basin (UAB) (from Satopanth and Saraswati 
basin to Vishnuprayag) in Central Himalayas of India. Various multivariate statistical anal-
ysis (Correlation coefficient analysis, cluster analysis and factor analysis) has been used to 
transform and organize the data sets into small groups which characterizes the similar evi-
dence from the original data set. We have also done a case study of three different locations 
where the major flood event occurred in 2013 to highlight the effects of flash flood in UAB 
basin. The main objectives of the study are; to (i) analyse the morphometric and morpho-
tectonic parameters to understand the hydrology of the Upper Alaknanda river basin (ii) 
prioritisation of the sub-basins on the basis of morphometric and morphotectonic charac-
teristics (iii) identification of zones susceptible to high soil erosion and tectonic activities.

2  Study area

2.1  General

The study area is located between 30.504888°N–31.045426°N latitude and 
79.607289°E–79.373762°E longitude of Garhwal Himalaya and covering a basin area 
of ~ 1527  km2 with a main channel length of 71.5 km (Fig. 1). The area is represented by 
Higher Himalaya and range from 1411 m to 7136 m asl in elevation. The Alaknanda is the 
major river of the study area which originates from the snout (3800 m asl) of Satopanth 
glacier and is known as the major tributary of River Ganga (Fig. 1). Alaknanda river sys-
tem drains through three districts Chamoli, Tehri and Pauri of Uttarakhand and contributes 
about 68–74% of total discharge in river Ganga at Devprayag (Singh and Hasnain 1998). 
During summer months, flow of the river is mainly sustained by snow and glacier melt 
when the demands of water, for drinking, irrigation and hydropower generation is at peak. 
Three important hydropower projects, namely Lata-Tapovan (170 MW capacity), Tapovan-
Vishnugarh (520 MW capacity) and Vishnugarh-Pipalkoti (440 MW capacity) are either 
in operational or constructional phase in the Alaknanda river basin. Alaknanda catchment 
is also famous for Hindu mythological temples which attracts thousands of tourists every 
year during summer months. Overall, the hydrological response of Alaknanda river have 
major impact over Ganga river, which affect millions of people living in the basin and at 
the downstream of the basin.

The climate of the study area is subtropical to alpine type with the average annual rain-
fall ranging from 600 to 1200 mm (Joshi and Kumar 2006). The maximum temperature in 
the area increases up to 35 °C in June and reduces the minimum up to as low as − 17 °C 
in January, respectively. The study area consists of high mountain ranges in the northern 
part (in north-western and north-eastern) that are mostly covered with snow and glaciers 
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Fig. 1  Study area map of Upper Alaknanda river basin with its location in the country and in Uttarakhand



3267Natural Hazards (2020) 103:3263–3301 

1 3

all over the year. Geomorphologically UAB has diverse physiography that includes hills, 
Glacial valley systems, U and V-shaped valleys, terraces piedmont zones, etc. It consists 
of major river, known as Alaknanda river and have many other tributaries like Saraswati, 
Khiro Ganga, Lakshman ganga and Dholiganga. All the major rivers in the Alaknanda 
Basin are perineal, as both rainfall and glacial/snow melt contribute to the flow in these 
streams. During 15–18 June 2013 a highly critical meteorological condition was initiated 
to develop a very low-pressure area over the Himalaya region of Uttarakhand in India due 
to the convergence of a SW monsoon trough and westerlies that led to the development of 
dense rainy clouds in the area (Mehta et al. 2016). According to the Indian Meteorologi-
cal Department (IMD) the rainfall in the region between 15–18 June 2013 was 385.1 mm 
against the normal of 71.3 mm; enlargement of about 440%. In the same period UAB has 
also faced heavy flood, affected more than 4.4 km2 area along the Laxman Ganga (origi-
nates from Tipra Glacier) (SB5), Khiro Ganga (originates from Panpatiya Glacier) (SB4) 
and Alaknanda river between Benakuli and Govind Ghat of the study area. Five major vil-
lages in the UAB, namely Bhyundhar (2500  m asl), Benakuli (2400  m asl), Lambaghar 
(2300 m asl), Govind Ghat (1700 m asl) and Pulna (2000 m asl) along with a major Hydro-
electric project at Lambaghar was razed out and completely filled with huge amount of 
sediment and debris (Mehta et al. 2016).

2.2  Percent of glacierized and snow cover area in the basin

Randolph glacier inventory (Pfeffer et al. 2014) have been used to calculate the glacierized 
area percentage in the basin for the year 2014. Total glacierized area in UAB is ~ 358.2 km2, 
i.e. 23.4% of the total area in the UAB. There are 16 major glaciers in the UAB, namely 
Satopanth, Bhagirath Kharak, Bhagnyu, Arwa, Tara Bamak, Ragas, Baibala Bamak, Uttri 
Chamrao, Dakhini Chamrao, Pachim Kamet, Uttari Kamet, Dakhini Nagthuni, Anadardip, 
Khuliya Garvya, Panpatiya and Tipra (Fig.  1). There are 20 numbers (> 1  km2) of gla-
ciers on the right bank of Saraswathi and Alaknanda river which comprises of about 61% 
(218.7 km2) of total glacierized area in UAB, whereas there are 16 (> 1 km2) number of 
glaciers on the left bank of Saraswathi and Alaknanda river comprises about 39% (139.5 
 km2) of glacierized area.

2.3  Geology

The study area is distinguished by Higher Himalayan crystalline rocks of the Vaikrita 
group. There are four geological formations under Vaikrita group viz. Martoil Formation, 
Pindari Formation, Pandukeshwar Formation and Joshimath Formation. The Higher Hima-
layan crystalline consists of high-grade metamorphic rocks like granites, gneisses, quartz-
ite, metabasics and high-grade schists (Valdiya 1987, 1999a; Ahmad et al. 2000) (Table 1 
and Fig. 2f).

3  Methodology

The drainage network has been delineated by using the Cartosat-1 Digital Elevation Model 
(DEM) obtained from Bhuvan, ISRO, with a surface pixel resolution of 32 m (Fig. 2a). 
The DEM was analysed to extract the morphometric and morphotectonic parameters, and 
finally divide it into 10 sub-basins (Fig. 2b). In the study, only those sub-basins have been 
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considered, which consists of at least three different orders of streams. Subsequently, 50 
parameters of morphometry and 6 parameters of morphotectonic have been determined for 
UAB and its sub-basins.

3.1  Morphometric parameters

The morphometric parameters were evaluated from two different parameters, i.e. basin 
parameters and calculated parameters. Various parameters within these two aspects were 
then analysed and associated to recognize how they interact and affect each other. The 
overall morphometric parameters are divided into four different classes, namely drainage 
network, basin geometry, drainage texture and relief characteristics, which has been ana-
lysed in accordance to traditional morphometric laws (Horton 1945; Strahler 1964).

Under the drainage network class, there are 12 different parameters (Table  2 and 3). 
Stream ordering is defined as the hierarchical role of stream within a drainage basin (Bali 
et  al. 2012). The ordering of the streams starts from the topmost tributaries that do not 
have their own feeders (Strahler 1952a, b). Surface runoff characteristics of the basin can 
be clearly understood with stream length of the drainage. The entire length of individual 
ordered stream has been calculated by adding the length of all streams on the basin. Stream 
length ratio (Lurm) is defined as the ratio of the mean length of the higher order to the next 
lower order of stream (Horton 1945). Bifurcation ratio (Rb) is referred as the ratio of total 
number of stream segments of lower order to subsequent higher order (Schumm 1956). Rb 
has an inverse correlation with the permeability and high Rb suggests flash flooding poten-
tial during storm events leading to deterioration of the top soil. (Howard 1990). The Rho 
coefficient is generally defined as the ratio between stream length and bifurcation ratio and 
defines the association between the physiographical development and the drainage density 
of the basin (Horton 1945). Rho also enables the assessment of the storage capacity of the 
drainage network, whereas channel index and valley index are defined as the ratio of main 
channel length to minimum aerial distance and ratio of valley length to the minimum aerial 
distance, respectively.

There are 22 different parameters under the basin geometry morphometric class 
(Table 3). The Drainage texture (Dt) is known as the ratio between total number of stream 
segments of all orders to the basin perimeter (Horton 1945). Dt generally dependent on 
a number of factors such as climate, precipitation, vegetation, rock and soil composition, 
potential for infiltration, relief and development stage of the basin (Smith 1950). The val-
ues of Dt are classified as: very fine (> 8), fine (6–8), moderate (4–6), coarse (2–4) and 
very coarse (< 2) (Smith 1950). Elongation ratio (Re) is defined as the ratio of diameter 
of a circle of the basin to the maximum basin length. Re value ranges between 0 (highly 

Table 1  Geological group its formation and lithology in Upper Ganga basin (after Valdiya 1999a, b)

Vaikrita group Lithology

Martoil Formation Tourmaline granite/porphyro- blastic, biotite schists and injection gneiss
Pindari Formation Calc silicate, lucocratic gneiss with intercalation of garnet mica schist
Pandukeshwar Formation White quartzite with inter bands of garnet kyanite mica schist. Kyanite/garnet 

mica schist with pigmatite and aplite vein and calc silicate rocks and gneiss
Joshimath Formation Augen genisses/banded and porphyroblasts with pigmatic vein and granite 

instruction
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elongated shape) to 1 (round shape). Wandering ratio (Rw) is the ratio of main channel 
length to the valley length, whereas texture ratio (Rt) is the ratio of first-order stream to 
the perimeter of the basin, which depends on the underlying lithology, infiltration capacity 
and relief aspects of the terrain. Hydraulic sinuosity index (Hsi) and Topographic sinuos-
ity index (Tsi) deals with the development of the flood plains and flow of natural stream 
courses in the basin, respectively (Pareta and Pareta 2011).

Drainage texture and relief class consist of 7 and 9 number of morphometric parame-
ters, respectively (Table 3). Stream frequency (Fs) is described as the ratio between stream 
numbers segments and total area of the basin, which is also correlated with infiltration 
capacity, permeability and relief of the sub-basins (Horton 1932; Vijith and Satheesh 2006; 
Bali et  al. 2012). The Drainage density (Dd) indicates the intimacy of spacing between 
the channels within a basin (Horton 1932). It is one of the key indicators to provides a 
dimension of divisions in the landscape and runoff potential (Vijith and Satheesh 2006). 
Drainage density is sensitive to surface and sub-surface geology, climate, vegetation and 
lithology of the area (Strahler 1952a, b; Melton 1957). The increase in drainage density 
indicates high flood and reduction in drainage density usually shows declining flood vol-
umes (Pallard et al. 2009). Drainage intensity (Di) defines the ratio of stream frequency to 
drainage density, low value of Di indicates less surface runoff making it highly susceptible 
to flooding, gully erosion and landslide (Faniran 1968). Relief ratio (Rhl) is the ratio of the 
total basin relief to the length of the basin. Low value of Rhl indicates lower slope and high 
resistive basement rocks in the basin.

3.2  Morphotectonic parameters

Six major morphotectonic parameters (Basin elongation ratio, Hypsometric curve and 
Hypsometric integral, Basin asymmetry factor, Mountain front sinuosity, Basin shape and 
Valley floor width to height ratio) were analysed for the UAB and its sub-basins by cal-
culating various geomorphic indices (Table 4, Figs. 3 and 4). The basin elongation ration 
(Re) indicates recent tectonic activity in the basin and it defines as the ratio of basin area to 
its length (Table 4) (Cannon 1976; Bull and McFadden (1977). Basin having arid to semi-
arid climatic conditions displays Re values < 0.50, between 0.50 and 0.75 and > 0.75 for 
tectonically active, slightly active and inactive settings, respectively.

Basin asymmetry factor (Af) is a method defined for detecting transverse tectonic tilting 
to the flow in the basin (Hare and Gardner 1985; Keller and Pinter 2002). The  Af is sus-
ceptible to change in a direction perpendicular to the direction of the flow in channel and 
is defined as the ratio between basin area in the right bank of the main channel to the total 
area of the basin (Table 4) (Hamdouni et al. 2008; Sajadi et al. 2019).  Af values close to 50 
specifies the symmetric condition in the basin, indicating no tilting.  Af > 50 indicates that 
the basin tilted leftward from its main trunk and  Af < 50 shows that basin tilted towards 
right with respect to its main trunk (Hare and Gardner 1985; Keller and Pinter 2002; Sajadi 
et al. 2019). For the purpose of evaluating the relative active tectonics, the values of Af is 
affiliated as ‘Af-50’, which indicates the difference between the neutral value (50) and the 
observed value.

Mountain front sinuosity (Smf) defines the relative tectonic activity across the moun-
tain front (Table 4) (Bull 1977; Keller and Pinter 2002; El Hamdouni et al. 2008; Pérez-
Peña et  al. 2010). Smf refers to the degree of slope and stream interactions that pro-
duce irregular (sinuous) front and vertical tectonic activity resulting in the development 
of prominent straight front (Ramírez-Herrera 1998; Sajadi et  al. 2019). Bull (1977) 
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Fig. 2  a Digital elevation map, b Sub-basins and stream order, c drainage density map, d slope map, 
e supervised Landcover map of Upper Alaknanda river basin and f geological map of UAB basin 
(after Valdiya 1999a, b; Ahmad et al. 2000)
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categorised the values of Smf into three different groups; Smf < 1.4 indicates tectoni-
cally active front, Smf < 3 and > 1.4 indicates less active while  Smf > 3 is considered as 
inactive mountain fronts.

Hypsometric curves (HC) and hypsometric integrals are defined as the two important 
parameters of watershed environments (Ritter et al. 2002). Hypsometric analysis helps 
to develop a connection in-between horizontal cross-sectional area and elevation (Singh 
et  al. 2008). HC plays an important tool to understand the past soil movement of the 
basins under similar hydro-geological conditions in different drainage basins. Accord-
ing to Strahler (1952a, b) the shapes of the HC are classified as; youth (convex upward 
curves, defining stabilized basin), mature (S-shaped hypsometric curves that is convex 
downwards at low elevations and concave upwards at high elevations) and peneplain or 
distorted (concave upward curves, indicating more vulnerability of basin to the erosion 
processes) (Fig. 3). The hypsometric integral (HI) is defined as the geomorphological 
parameter, classified under different geologic stages during basin development. The area 
below the HC is defined as the hypsometric integral (HI) and is measured by:

The HI is expressed in percentage, and defines the difference of the present volume 
associated to the original volume of the basin (Ritter et al. 2002) or it estimates the vol-
ume that has not been eroded (El Hamdouni et al. 2008). According to Bishop (2002), 
the HI explains the hydrological processes and land degradation factor that has experi-
enced during the different geological time. HI also helps to explain the amount of sur-
face runoff and sediment yield from the basin (Sarangi and Bhattacharya 2000; Jain 
et al. 2001; Singh et al. 2008). Hypsometric curve for UAB has been computed along 
with hypsometric integral (HI) values for all the 10 sub-basins.

Basin shape index (Bs) is defined as the ratio of basin length to basin width (Can-
non 1976). The valley floor width to height ratio (Vf) is used to differentiate moun-
tain features carved by glaciers (broad, U-shaped valleys) and those carved by streams 
(tight, V-shaped valleys). However, this index has also been used to identify parts of the 
mountain front that is experiencing or undergoing tectonic activities. Large values of Vf 
suggest broader U-shaped valleys and are suggestive of areas having dormant tectonic 
activities due to the availability of lateral erosion (Mayer 1986). The Vf also defines 
whether the stream is cutting downward or eroding across into adjacent hill slopes. Vf 
values < 0.25 is defined as highly active, Vf values between 0.25 and 0.40 suggest mod-
erately active regions and Vf values greater than 0.40 is classified as low active. Finally, 
the cumulative analysis of morphotectonic parameters is carried out to obtained the Rel-
ative Tectonic Activity Index (Iat). Three different ranks have been assigned according 
to decreasing uplift rates for all the six morphotectonic parameters referred in Table 5 
(Bull and McFadden 1977). Relative Tectonic Activity Index (Iat) is categorized in four 
classes as per El Hamdouni et al. (2008) and Anand and Pradhan (2019). The Iat distri-
bution has been classified as: (1) very high tectonically active (S/n < 1.97), (2) high tec-
tonically active (S/n = 1.97–2.05), (3) Moderate tectonically active (S/n = 2.05–2.21) and 
(4) Low tectonically active (S/n > 2.21). The high Iat value of the basin indicates low 
tectonic activity and low Iat value indicates the highly tectonic active region (Table 5).

The cloud-free Landsat and Google earth image has been also analysed to mark the tri-
angular facets in the study area, which represent the relative tectonic activity (Fig. 7).

Hypsometric Integral =
(Mean elevation −Minimum elevation)

(Maximum elevation −Minimum elevation)
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3.3  Statistical analysis

Various statistical analysis like correlation analysis, Hierarchical cluster analysis (HCA) 
and Principle component analysis/factor analysis (PCA) were carried out using MS Excel 
2016 and SPSS (V22) to classify the similarity between different morphometric parameters 
and between the sub-basins (Tables 6 and 7; Figs. 5 and 6). Hierarchical cluster analysis 
(HCA) is a statistical technique which combines the samples with similar inherent structure 
and among groups depicting a hierarchy (Lee and Yang 2009). Both Q-mode and R-mode 
HCA have been performed to find nearness or similarity between the data sets (Fig.  6) 
(Vega et al. 1998). The R-mode HCA helps to classify the parameters, whereas the Q-mode 
HCA helps to highlight the relationship between sub-basins. PCA is a statistical tool hav-
ing aim to represent variation in data set using axes as a factor (principle components, PC). 
PCA analysis is a multivariate statistical technique where the data set is reduced to small 
factors without mislaying the information. PCA analysis describes that, PC1 explains vari-
ation in most of the data in comparison to PC2, similarly PC2 explains more variation in 
data compare to PC3 (Granato et  al. 2018). An interconnection between various param-
eters was identified and a correlation matrix was computed. For PCA factoring, the factors 
with eigenvalue > 1 were accepted to define the principal factors (Kaiser 1960). Varimax 
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Fig. 3  Hypsometric curves for Upper Alaknanda river basin and its 10 sub-basins

Fig. 4  Bar graph representing the various morphotectonic parameters in UAB and its sub-basins
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Table 7  Principle component analysis of the various morphometric parameters in Upper Alaknanda river 
basin

Parameters PC1 PC2 PC3 PC4 PC5 PC6 PC7

Stream number .837 − .239 .446 .185 − .049 − .065 .031
Stream length .846 − .228 .432 .189 − .046 − .063 .034
Mean stream length ratio .488 .293 − .620 .295 .408 − .057 − .168
Weighted mean stream length ratio .236 .371 − .521 .407 .495 − .087 − .264
Mean bifurcation ratio − .493 − .408 .304 − .426 .011 − .042 − .327
Weighted mean bifurcation ratio − .513 − .705 .216 − .303 .075 .169 − .058
Main channel length .911 − .138 .323 .209 .037 .025 .007
Rho coefficient .548 .341 − .626 .362 .153 − .079 .100
Valley length .892 − .235 .360 .133 .019 − .027 − .014
Minimum aerial distance .887 − .235 .357 .168 .023 − .030 .001
Channel index − .350 .763 .040 .441 − .054 .258 .065
Valley index − .728 .138 .170 − .548 − .191 − .207 − .086
Basin length .892 − .235 .360 .133 .019 − .027 − .014
Basin width .920 − .056 .269 .022 − .099 .112 − .169
Basin area .838 − .229 .450 .183 − .041 − .066 .022
Basin perimeter .947 − .169 .247 .098 − .049 .025 − .033
Relative perimeter .934 − .127 .315 .097 − .002 − .037 .000
Length area relation .922 − .168 .324 .121 − .030 − .020 − .007
Lemniscate’s − .717 − .576 .227 .253 .117 .106 .089
Form factor ratio .718 .521 − .375 − .219 − .048 .038 − .073
Shape factor ratio − .717 − .576 .227 .253 .117 .106 .089
Elongation ratio .758 .502 − .283 − .239 − .171 .035 − .038
Length width ratio − .520 − .744 .213 − .090 .248 .141 − .161
Circularity ratio .194 .612 .417 − .213 .243 − .486 .217
Circularity ration .934 − .127 .315 .097 − .002 − .037 .000
Drainage texture .924 − .188 .299 .121 − .030 − .036 .025
Compactness coefficient − .252 − .621 − .374 .169 − .233 .512 − .165
Fitness ratio − .535 .309 .332 .650 .201 .105 .157
Wandering ratio − .035 .686 − .034 .579 .006 .401 − .024
Texture ratio .920 − .121 .078 .197 − .143 − .026 .104
Ellipticity index − .717 − .576 .227 .253 .117 .106 .089
Hydraulic sinuosity index .462 .401 .097 .430 .142 .570 .085
Topographic sinuosity index − .160 .531 .265 − .416 .077 .647 .066
Standard sinuosity index − .199 .834 .305 .077 − .009 .089 .333
Stream frequency − .475 − .686 − .145 .333 − .195 .104 .175
Drainage density .479 − .428 − .487 − .445 .231 .022 .286
Constant of channel maintenance − .456 .393 .379 .561 − .275 .002 − .255
Drainage intensity − .554 .120 .272 .642 − .315 .038 − .180
Infiltration number .127 − .738 − .466 − .237 .097 .075 .354
Length of overland flow .313 .408 .320 − .453 − .612 .085 .167
Height of basin mouth − .267 − .236 − .809 .215 − .262 − .032 .255
Maximum height of the basin .791 − .186 − .294 .008 .152 .143 − .108
Total basin relief .703 .081 .488 − .173 .309 .113 − .276
Relief ratio − .723 .486 .334 − .242 .177 .002 − .096
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Bold numbers represents the strong positive or negative correlation between the parameters

Table 7  (continued)

Parameters PC1 PC2 PC3 PC4 PC5 PC6 PC7

Relative relief ratio − .849 .301 .379 .064 − .033 − .110 .124
Gradient ratio − .723 .486 .334 − .242 .177 .002 − .096
Ruggedness number .809 − .085 .259 − .270 .361 .105 − .131
Melton ruggedness number − .881 .192 .357 − .049 .178 .034 − .033
Watershed slope − .723 .486 .334 − .242 .177 .002 − .096
Basin elongation ratio .724 .523 − .319 − .255 − .171 .043 − .041
Hypsometric integral .517 .224 − .506 − .346 .345 .234 − .309
Asymmetry factor − .111 .079 .228 .262 .666 − .110 .564
Mountain front sinuosity .206 .248 .373 − .749 .085 .255 .243
Basin shape − .520 − .744 .213 − .090 .248 .141 − .161
Valley floor width to height ratio .564 − .078 .089 − .396 − .084 .471 .314
Eigenvalue 24.116 10.052 6.898 5.566 2.600 2.127 1.727
Explained variance (%) 43.847 18.277 12.543 10.121 4.728 3.867 3.140

Fig. 5  Cross plot of various morphometric parameters representing their coefficient of determination
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rotation transformation was completed to discover the hidden information from the various 
constraints. At the end, factor score was considered to find out the most significant factor 
along with the most influenced sub-basin by each factor (Sajadi et al. 2019).

3.4  Landcover classification

Landuse and landcover (LULC) plays a substantial role in shaping drainage patterns of 
any basin, it also has a significant role to understand the erosion vulnerability of the basins 
(Fohrer et  al. 2001; Rosenqvist and Birkett 2002; Quilbe et  al. 2006; Altaf et  al. 2014). 
The hard rock or non-infiltrating area contributes to increase the surface runoff due to the 
hindrance to infiltration process (Dams et al. 2013). However, vegetation covers strongly 
affect the evapo-transpiration, soil moisture and infiltration rate in the basins (Choudhary 
et al. 1996; Arthur et al.2003; Rashid and Romshoo 2012). The vegetation cover with high 
amounts of roots plays a significant role in reducing the rates of soil erosion (Carlos et al. 
2012; Badar et al. 2013). Similarly, tree canopies and the vegetation cover of minor plants 
interrupt the precipitation, helping in preventing soil erosion (Mustard and Sunshine 1999; 
Romshoo et al. 2012).

The Sentinal-2 cloud-free satellite image (October 2018) is obtained from USGS Earth 
Explorer website and was analysed using pixel-based image analysis (PBIA) method. The 
PBIA method covers the conventional supervised and unsupervised classification algo-
rithm, where each pixel of the image is allocated a LULC class based on the reflectance 
value of that pixel (Altaf et al. 2014; Shukla et al. 2020). A total of 120 field-based ground 
control points (GCPs) and Google Earth images were used for accurate assessment of 
LULC maps. The landcover (LC) were characterized on the basis of the different classes 
that were recognized in the study area. The classes generated were vegetation, non-debris 
cover ice (NDCI), debris cover ice (DCI), water body, snow and rock (Fig. 2e). Table 8 
summarizes the statistics of different LC classes of the sub-basins. Based on the response 
of LC towards erosion, ranking was allocated on the basis of percent area of the classes. 
Among all the sub-basins, the basin having the highest percentage of the class having 
direct relation with erosion (e.g. in case of water body, debris and non-debris cover ice and 

Fig. 6  R-mode and Q-mode, Hierarchal cluster analysis (HCA) of morphometric parameters between UAB 
and sub-basins
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Snow) was allotted rank 1, and the lowest percentage of the similar class was allocated as 
rank 10 (Altaf et al. 2014). Likewise, if any class which is highly confined to erosion (e.g. 
in case of vegetation and rock cover) was assigned rank 10, and one which has the lower-
most percentage of such a class, was assigned rank1.

3.5  Soil erosion and flood hazard zonation

The integrated study of morphometry and landcover (LC) helps to classify the basin (s), 
which is most vulnerable to erosion (Altaf et al. 2014). Therefore, morphometry and land-
cover (LC) parameters were evaluated to understand soil erosion susceptibility in the UAB 
and its sub-basins. For prioritizing soil erosion susceptibility in the study area, the indi-
vidual rankings of morphometric and LC parameters were averaged for sub-basin to get 
a common value (Cp) and are calculated as per Altaf et al. (2014) and Javed et al. (2009).

where Cp: Compound value of a particular basin, R: Rank of a particular basin and n: 
Number of parameters.

Intensity of soil erosion can be understood by some morphometric parameters hav-
ing direct relation between them, such as stream frequency, drainage density, drainage 
texture, mean bifurcation ratio, length of overland flow and basin relief, whereas some 
of the morphometric parameters have an inverse relation with erodibility such as circula-
tory ratio, elongation ratio, basin shape, form factor and compactness coefficient (Ratnam 
et al. 2005). On the basis of direct relating morphometric parameters with erosion rate, the 
uppermost value of morphometric parameter is allocated with rank 1, and the subsequent 
successive higher value is allocated rank 2, and vice versa for inverse relating morphomet-
ric constraints (Table 8). After allocating ranks to every morphometric constraint, Cp value 
was obtained by taking the average of ranks allocated to the individual constraints. The 
sub-basin with the lowermost Cp value is most vulnerable to erosion and needs the highest 
significance for soil conservation procedures (Altaf et al. 2014).

To understand the degree of flood hazard occurred in the study area we have used the 
pre-event and post-event photographs of Alaknanda, Khiro Ganga and Laxman Ganga val-
leys to investigate the major 2013 flood event. Moreover, we utilized the pre-event and 
post-event, satellite images from Google Earth to evaluate the damage and landscape 
changes that have been occurred after the disaster (Figs. 9, 10, 11, and 12).

4  Results

The drainages developed in the study area directly depend upon the surface and sub-surface 
geology, landcover, endogenic and exogenic forces and precipitation of the area (Agarwal 
and Sharma 2011; Reddy et al. 2004). Keeping in view the above-defined parameters, the 
entire basin was categories into 10 sub-basins (Fig. 2b) and the morphometric and morpho-
tectonic parameters were analysed.

Cp = 1∕n

n
∑

i=1

R
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4.1  Morphometric parameters

The morphometric parameters were categorized into two categories viz. Basin parameters 
and calculated parameters. The common law of morphometry was followed to calculate the 
various parameters, as shown in Tables 2 and 3.

4.1.1  Basin parameters

The UAB covers an area of 1527 km2 having perimeter (P) of 199 km. The area of the 
sub-basins ranges from 27.3 km2 (SB9) to 352.3 km2 (SB2). Likewise, the perimeter for 
the sub-basins varies from 28 km (SB9) to 99.7 km (SB2). The basin length for UAB is 
58.6  km, whereas for sub-basins, it varies from 9.5  km (SB9) to 23.8  km (SB2). UAB 
comprises of streams up to sixth order, whereas sub-basin SB1, SB2, and SB3 consist of 
fifth-order streams, SB4, SB5 and SB6 are having streams of fourth order, while SB7, SB8, 
SB9 and SB10 are having stream up to third order only. The total stream length in the UAB 
basin is 1536 km, where SB2 comprises of maximum total stream length (378.4 km) and 
SB9 is having minimum total stream length (30.2 km). UAB basin is having the highest 
stream length of the first order and as the stream order increases stream length decreases, 
which is in conformism to the Horton’s law of stream number and stream length (Horton 
1932; Strahler 1964).

4.1.2  Calculated parameters

The mean stream length ratio (Lurm) of the UAB is 3.1 and for sub-basins it varies between 
4.5 (SB4) and 2.3 (SB10). Our results show that the UAB has the Bifurcation ratio (Rb) 
value between 3.0 and 4.8 (mean: 3.8), while mean bifurcation ratio (Rbm) for the sub-
basins ranges between 3.3 (SB1) and 6.2 (SB8). The average Rho coefficient of the UAB is 
0.8, while the Rho for the sub-basins ranges from 0.4 (SB8) to 1.2 (SB1).

Under the basin geometry parameter (Table  3), drainage texture (Dt) and elongation 
ratio (Re) in the sub-basins vary from 0.8 (SB7) to 2.4 (SB2) and 0.6 (SB8, SB9) to 0.9 
(SB2), respectively, whereas the stream frequency (Fs) for UAB basin vary between 0.6 
(SB4, 5 and 10) to 0.9 (SB7). The wandering ratio (Rw) for the sub-basins varies from 0.9 
(SB8) to 1.6 (SB 9) (1.2 for UAB), whereas texture ratio (Rt) ranges between 0.6 (SB9) 
and 2.7 (SB1). Hydraulic sinuosity index (Hsi) and topographic sinuosity index (Tsi) vary 
from 57.8 (SB6) to 86.9 (SB1) and 13.1 (SB1) to 42.2 (SB6), respectively.

Under drainage texture class, the stream frequency (Fs) of UAB is 0.7 per  km2, while 
the Fs for the sub-basins varies from 0.6 (SB4, SB10) to 0.9 (SB7) per  km2. The drain-
age density (Dd) for UAB is 1.0 and for its sub-basins range between 0.8 (SB10) and 1.1 
(SB1, 2 and 3). Similarly, the drainage intensity varies from 0.6 (SB1, 2 and 4) to 1.5 
(SB9). The infiltration number (If) varies from 0.4 (SB9) to 0.9 (SB7). SB1 and 2 have 
the height (3958 m asl) basin mouth height (z), whereas SB10 (1666 m asl) has the lowest 
basin mouth height. SB2 comprises of the highest peak (7110 m asl) in the basin, whereas 
SB10 basin highest peak around 5032 m asl. The ruggedness number (Rn) for the UAB 
varies from 1.2 (SB9) to 4.2 (SB3).
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4.2  Morphotectonic parameters

The morphotectonic parameters were analysed for the UAB and its sub-basins by cal-
culating six geomorphic indices (Tables 4 and 5; Figs. 3 and 4). The basin elongation 
ration (Re) for UAB is 0.75, whereas for the sub-basins it varies between 0.54 and 0.89, 
indicating slightly tectonically active region. Hypsometric integral (HI) for the 10 sub-
basins in UAB shows that all sub-basins range between 0.44 and 0.53, indicating the 
area is at young to early stage of maturity (Fig. 3). The Asymmetric factor (Af) values 
in the sub-basins varying from 28.92 to 63.40 (in UAB, Af = 52.17). Among the 10 sub-
basins the SB3, SB4, SB7 and SB10 are tilted leftward, while SB1, SB2, SB5, SB6, 
SB8 and SB9 are tilted rightward from the main channel. The Mountain front sinuosity 
(Smf) for 10 sub-basins varying from 1.02 to 1.30 with 1.14 for UAB.

Drainage basin shape index (Bs) in sub-basins varied between 1.23 and 2.41 (in 
SB1 and SB7, respectively) (Table 5). The high values of Bs in SB7 and SB8 (Bs > 2.3) 
referred to the young age and tectonically highly active region, whereas other basins 
are in the range of tectonically active regions. The calculation for Valley floor width to 
height ratio (Vf) is carried out for different tributaries and parts of the main channel in 
UAB. Vf varies between 0.15 and 1.01 for the sub-basins and is calculated about 0.46 
for the UAB.

4.3  Statistical analysis

Statistical analysis groups the samples based on the inherent structure and the similar-
ities within the data set. Various statistical studies were performed between different 
morphometric parameters in sub-basins of UAB. The statistical studies were carried out 
through applying correlation coefficient analysis, Hierarchal cluster analysis (HCA), and 
Factor analysis/Principle component analysis (Tables 6 and 7; Figs. 5 and 6).

4.3.1  Correlation coefficient analysis

Correlation coefficient analysis is performed between the morphometric variables in 
UAB sub-basins (Table 6). On applying correlation coefficient analysis, a strong positive 
correlation obtained between Basin area and Basin parameter, Stream number, Stream 
length, Basin length and Main channel length with a correlation coefficient value of 
0.96, 0.99, 0.99, 0.91, 0.85, respectively. Similarly, Stream number has a positive cor-
relation between Stream length, Basin perimeter and Basin length with a correlation 
coefficient of 0.99, 0.95 and 0.90, respectively.

Basin length is also having a positive correlation between stream length, main chan-
nel length, elongation ratio and circularity ratio with coefficient of 0.89, 0.89, 0.67 and 
0.93, respectively. However, lots of the parameters is having strong negative correlation 
in between (Table 6; Fig. 5).

4.3.2  Cluster analysis

Hierarchical cluster analysis (HCA) is a statistical technique, which enables the group-
ing of the UAB sub-basins into different groups according to the morphometric aspects 
(Fig. 6a, b). Under R-mode HCA analysis (Fig. 6a), there are two major groups, which 
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are divided further into four different clusters (two clusters each). The first cluster of 
first group contains stream number, stream length, weighted mean stream length ratio, 
main channel length, Rho coefficient, valley length, minimum aerial distance, basin 
length, basin width, basin area, basin perimeter, relative perimeter, length area rela-
tion, elongation ratio, circularity ration, drainage texture, surface area of relief, texture 
ratio, topographic sinuosity index, height of basin mouth, total basin relief, relief ratio, 
relative relief ratio, gradient ratio, ruggedness number, melton ruggedness number and 
basin slope, whereas the second cluster covers mean stream length ratio, mean bifurca-
tion ratio, lemniscate’s, form factor ratio, shape factor ratio, length width ratio, fitness 
ratio, ellipticity index, length of overland flow.

Group 2 also contains two clusters. The first cluster contains weighted mean bifurcation 
ratio, channel index, circularity ratio, wandering ratio, hydraulic sinuosity index, standard 
sinuosity index, drainage density, constant of channel maintenance, infiltration number, 
whereas cluster 2 contains valley index, compactness coefficient, stream frequency, drain-
age intensity, maximum height of the basin.

In Q-mode cluster analysis (Fig. 6b), there are 4 different groups in sub-basins when the 
rescaled distance of clusters is 5. SB1, 2, 3 and SB4, 5 are in Group 1 and Group 2, respec-
tively, whereas SB6, 7, 8 and SB9, 10 are in Group 3 and 4, respectively.

4.3.3  Principle component analysis (PCA)

On the basis of Principle component analysis (PCA) six factors with eigenvalue > 1 have 
been accepted to define the principal components (Table 7).

4.3.3.1 Factor/PC1 Factor 1 accounted for 43.9% of total variance and is emphasized as 
the superior factor in the analysis with the eigenvalue of 24.1. Factor 1 contains stream 
number, stream length, main channel length, valley length, minimum aerial distance, basin 
length, basin width, basin area, basin perimeter, relative perimeter, length area relation, 
lemniscate’s, form factor ratio, shape factor ratio, elongation ratio, circularity ration, drain-
age texture, texture ratio, ellipticity index, basin slope and basin elongation ratio, with high 
factor loading.

4.3.3.2 Factor/PC2 Factor/PC 2 resembles about 18.3% of total variance with the eigen-
value of 10.1 (Table  7). Factor 2 contains mean bifurcation ratio, channel index, length 
width ratio, circularity ratio, wandering ratio, sinuosity index, stream frequency, infiltration 
number and basin shape.

Similarly, factor/PC 3 and 4 accounted 12.5% and 10.1% of total variance with eigen-
value of 5.6 and 2.6, respectively, whereas PC5 and 6 accounted about 3.9% and 3.1% of 
total variance with eigenvalue of 2.1 and 1.7, respectively.

5  Discussion

Morphometric and morphotectonic analysis, along with statistical technique has been 
known as a useful tool to understand the hydrological behaviour of the Higher Himalayan 
regions (Bali et al. 2003). The morphometric-based basin and calculated parameters of the 
UAB reveal that SB2 is the largest basin with basin area 352  km2 (basin length 23.8 km), 
whereas SB9 comprises of the smallest basin having basin area 27.3  km2 (basin length 
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9.5 km). The first-order streams were maximum with total cumulative length of 827 km, 
which reduces as the stream order increases (41 km for sixth-order stream). The sub-basin 
SB8 shows the highest mean Rb value (6.2), indicating relatively elongated basin. While 
SB1 shows the lowest mean Rb (3.3). This also indicates that streams up to third order is 
having steep gradient and rolling through highly dichotomized terrain, due to which high 
overland flow and less groundwater recharge takes places (Pophare and Balpande 2014). 
The sub-basins (SB1, 2, 3 and 4) with higher Rho values suggest, better retention of water 
during flood time which reduces the effect of erosion during heavy discharge (Mesa 2006). 
The variation in the mean stream length ratio (Lurm) between successive stream orders 
indicates that UAB and its sub-basins are passing through difference in slope and topo-
graphic conditions having a significant correlation with the surface runoff and erosion in 
the basin (Sreedevi et al. 2005). In the study area, the sub-basins SB6, SB7 SB8 and SB9 
having relatively higher stream frequency (Fs) values indicating relatively lower infiltra-
tion rate of the bed rock and higher relief in the basins. Sub-basin SB2 and SB3 comprises 
of drainage texture greater than 2 indicating coarse texture, while all the other sub-basins 
show very coarse texture (i.e. Dt < 2). The lowest stream frequency (Fs) for the SB4, SB5 
and SB10 indicates that basin has high infiltration capacity and hence high vegetation 
cover (Fig. 2e). Similarly, SB 4, 5, 9 and 10 comprises of low If values, indicating high 
infiltration and hence less run-off. Low ruggedness number (Rn) SB9 (1.2) indicates that 
the area is less prone to soil erosion and have intrinsic structural complexity with relief and 
drainage density.

The assessment of relative tectonic activity in the past has been done by using a number 
of geomorphic indices (Bull and McFadden 1977; El Hamdouni et  al. 2008; Anand and 
Pradhan 2019). The basin elongation ration (Re) value for the sub-basins varies between 
0.6 to 0.9, indicating tectonically active region (Table 4). Moreover, Re in SB2 is close to 
1.0 indicating regions of very low relief, whereas other basins Re value ranges between 
0.6 and 0.8 indicates that the area is associated with high relief and steep ground slope 
(Strahler 1964). The Hypsometric curve (HC) and Hypsometric integral (HI) for the UAB 
and its sub-basins shows that the area is young to early stage of maturity (Fig. 3). In the 
mature stage, hydrologic response of the sub-basin shows slow rate of erosion (Ritter et al. 
2002) until very high runoff peaks occur due to flood event. In the study area, SB4 and 
SB5 have suffered a heavy flood events in the recent past with the outlet having wider val-
leys and broader flood plain representing higher rate of erosion. High potential for flood-
ing in the basin is also due to the higher average drainage slope leading to faster move-
ment of surface runoff with higher velocity through the basin outlet and thus broadening 
of the flood plains (Singh et  al. 2008). The higher value of basin shape (Bs) (SB7 and 
SB8;  > 2.3) indicates the primarily down-cutting in areas having continuous rapid uplift 
within the basins (Ramírez-Herrera 1998; Sajadi et  al. 2019). The valley floor width to 
height ratio (Vf) values indicates that a large portion of the basin area have relatively active 
mountain fronts and are experiencing rapid uplift, suggesting recent tectonic movements. 
The Vf values also indicate that the sub-basins are mostly V-shaped and that streams are 
cutting downward or eroding horizontally into contiguous hill slopes. The observed trian-
gular facets in the study area with the help of Landsat and Google earth image, also con-
forms the presence of recent tectonic activities happening in the study area (Fig. 7).

The results obtained from Hierarchal cluster analysis is same as obtained from corre-
lation coefficient analysis and PCA indicating significant correlation among morphomet-
ric parameters in study basin (Figs. 5, 6 and Tables 6, 7). HCA for sub-basins according 
to morphometric parameters (Fig. 7) classify sub-basins into four different clusters. SB4 
and SB5 come in a same group, indicating high correlation in-between, which is also 
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conformed from morphotectonic analysis. Similarly, SB1, SB2 and SB3 comes in a sin-
gle group and SB6, SB7 and SB8 comes in another group. The cluster analysis of sub-
basins revels the similarity between sub-basins falling in a single group which is also been 
observed during field visits. PCA analysis also reveals that all the Factor 1 parameters are 
same which fall under cluster 1 of HCA, indicating high correlation of the data sets, and 
hence it is considered as a most influential factor.

5.1  Determination of relative degrees of flood hazard

The degree of flood hazard for individual sub-basin was examined on the basis of El Sha-
my’s model (El Shamy1992). A relation between bifurcation ratio vs. drainage density, and 
stream frequency vs. bifurcation ratio was used to determine the degree of hazard in UAB 
sub-basins (Fig. 8a, b). According to El Shamy’s model flood hazard map is classified into 
three different zones: A, B, and C. The zone (A) high flash floods potentiality zone, zone 
(B) moderate potential for floods and (C) have less flood potential. Figure 8, shows that all 
the sub-basins lies on zone (A) having high degree of flash flood possibilities in the study 
area.

Fig. 7  a Landsat and b Google earth image (Maxer Technologies, Image Landsat/Copernicus dated 06 Mar 
2014), with marked triangular facets in the study area. (Note: Flow direction of the Alaknanda river is from 
North to South)

Fig. 8  Cross plot between a Stream frequency vs. bifurcation ratio and b drainage density vs. bifurcation 
ratio, indicating flash flood possibilities using some hydro-morphometric parameters based on El Shamy’s 
model (El Shamy 1992) in UAB and its sub-basins
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5.2  Case study of a major flood event

In UAB, Khiro Ganga (SB4) river meets Alaknanda river at Benakuli and has devastat-
ing effect caused by the flash flood during June 2013 flood event. Benakuli village is 
near to Badrinath temple in UAB, having sharp changes in the geomorphology of the 
study area. The Khiro Ganga river travels through wide valley having loose unconsoli-
dated glacial moraine and colluvial deposits with good vegetation cover (Mehta et  al. 
2016). As per the Iat classification and presence of triangular facets, SB4 sub-basin 
also comes under highly tectonically active region (Table  5, Fig.  7). The Khiro val-
ley is having thick forest of Deodar, Oak, Birch and meadows in the higher reaches of 
the region. According to local peoples, heavy rainfall during June 15–17th, 2013 huge 
landslides was occurred all over the valley causing due to toe cutting by the high flood 
in the river. Local peoples also told that the valley was having huge number of springs 
with high discharge all over the year. When the discharge of the river due to flood was 
high, it brought and deposited enormous amount of debris, boulders and big trees which 
resulted blocking the main Alaknanda river. During the flood event, there were huge 
number of tree trunks deteriorating river water quality in the form unusual odour (kind 
of rotten smell from river water) all over the valley. Figure 9 and 10, shows the spam of 
the Khiro Ganga changes from 63 m to 196 m at the confluence sight and pushed the 
main flowing Alaknanda river toward left bank by depositing huge amount of debris at 
the confluence sight. The El Shamy’s model shows that UAB is highly flood-prone zone, 
but erosion classification shows SB4 sub-basin (Khiro Ganga basin) is comparatively 
highly resistive to erosion (Fig. 8). The most prominent reason behind less susceptibil-
ity to erosion of SB4 basin is due to high vegetation cover and low drainage density and 
hence huge amount of stored groundwater.

At the downstream of the Benakuli village, flood water destroyed and completely 
filled the 14  m high 400-megawatt J.P. Vishnuprayag Hydro-Electric Dam site with 
huge debris (Fig. 11). The effect of the flood was so much devastating that it changed 
the Alaknanda river spam from 49 m to 194 m, at upstream of the dam. The small town 
of Lambaghar (downstream of the Dam) was entirely washed away and no proof of set-
tlement was left (Mehta et  al. 2016). The high flood possibility in this region bellow 

Fig. 9  Google Earth Image of Khiro Ganga river a before and b after major flood event of June 2013. Red 
and violet line representing Khiro Ganga and Alaknanda river profile before the flood event, whereas yellow 
line represents the change on the span of the confluence sight. Both the google earth image are from Maxer 
Technologies, Image Landsat/Copernicus, dated a 11 Sept 2012 and b 06 Mar 2014
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Fig. 10  Photographs of Khairo Ganga during a 2012 and b 2014 along with Google Earth image of c 2012 
and d 2014 showing huge landslide in the Khiro Ganga on 16 June 2013. After the cloud burst event river 
brought enormous debris and destroyed the vegetation cover in the valley. (Photograph a from Mehta et al. 
2016). Both the google earth image are from Maxer Technologies, Image Landsat/Copernicus, dated c 11 
Sept 2012 and d 06 Mar 2014
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Fig. 11  Photographs of Alaknanda river during a 2012 and b 2014 along with Google Earth image of c 
2012 and d 2014 showing huge debris cover (~ 20 m) before JP 400-megawatt Vishnuprayag Hydro-Electric 
Project on 16 June 2013. [Photograph a from Mehta et al. (2016)]. Google earth image is from c Maxer 
Technologies, Image Landsat/Copernicus, dated 11 Sept 2012 and d CNES/Airbus, Landsat/Copernicus 
dated 06 Mar 2014
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Benakuli in compression to Badrinath basin is the low valley floor to valley height ratio 
and high bifurcation ratio.

A similar kind of flood event was observed in Pulna village (SB5), situated 5  km 
upstream from the Govind Ghat on the right bank of the Laxman Ganga. During the dis-
aster, flooded Laxman Ganga dumped a huge amount of sediment in Pulna village and the 
village was totally suppressed under thick debris cover (Mehta et al. 2016) (Fig. 12b, c). 
Pulna village is established at, respectively, wide valley in the SB5 sub-basin having high 
basin relief, indicating tectonically highly active and susceptible to flood events (Table 5).

5.3  Sub‑basins susceptibility to tectonic activity and soil erosion

On the basis of Relative Tectonic Activity Index (Iat) (Table 5, Fig. 13a), UAB is classified 
under tectonically active region. SB1, SB4, SB6, SB7, SB8 and SB9 (60% area) are very 
highly tectonically active, while the sub-basin SB2 and SB5 are high tectonically active. 
SB10 and SB3 are moderately and the lowest tectonically active region, respectively. Thus, 
almost 80% of the UAB comes under high tectonically active region. The different geo-
morphic expressions such as offsetting of stream courses, presence of landslide cones and 
presence of triangular fault facets are indicator of faulting and hence clearly indicates that 
the study area is undergoing differential tectonic activity (Fig. 7).

137 m

60 m

137 m

(a)

(c)

(b)

NN

N

2012 2014

2014

Fig. 12  Google Earth image of Laxaman Ganga river near Pulna village during a 2012 and b 2014 along 
with c photograph during 2014 taken through Helicopter ride, showing huge debris cover after the major 
flood event on 16 June 2013. Google earth image is from a CNES/Airbus, Landsat/Copernicus dated 27 
March 2012 and b Maxer Technologies, Image Landsat/Copernicus dated 06 March 2014
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The combined morphometric and LC results were analysed, which show that the prior-
ity order of sub-basins for erosion rate is SB1 > SB2 > SB6 > SB3 > SB8 > SB7 > SB4 > SB
9 > SB5 > SB10 (Table 5). Figure 13b represents the sub-basins susceptible to soil erosion. 
UAB basin SB4, SB5, SB9 and SB10 are the lowest susceptible to soil erosion, whereas 
other sub-basins are characterized as highly susceptible to soil erosion (Table  8). Thus, 
almost 60% of the area comes under highly vulnerable to soil erosion (Fig. 13b).

6  Conclusion

In the present study we have tried to evaluate the role of morphometry and morphotec-
tonic on drainage behaviour in Upper Alaknanda river basin on the basis of remote sensing, 
GIS, and statistical analysis tool. Fifty morphometric and six morphotectonic parameters 
were calculated to understand the tectonic setting of the UAB basin. The morphometric 
analysis showed that first-order stream in all the sub-basins is having maximum stream 
length and the highest-order stream is having minimum stream length. Bifurcation ratio 
and stream frequency shows that streams up to third order is having steep gradient and roll-
ing through highly dichotomized terrain, due to which high overland flow and less ground-
water recharge takes places, whereas drainage density clearly indicates the high flood pos-
sibility in the region. Morphotectonic parameters indicates relatively young to early mature 
geological stage of sub-basins and tectonically active region. Drainage basin asymmetry 
factor indicates 40% of the area underlined the leftward tilting and 30% of the area under-
lined the rightward tilt in sub-basins, whereas rest 30% lies under stable environmental 
setting. The UAB is having comparatively high relief and is linked with minor/major thrust 
faults and triangular facets that indicate tectonic activity, ultimately having significant role 
in the basin hydrology. Statistical modelling (HCA and factor analysis) were used to iden-
tify the most significant constraints over these ten sub-basins. HCA shows that SB4 and 
SB5 comes in a same group and are having high flood possibilities. PCA analysis with 
the help of varimax transformation derive seven principal factors with eigenvalue greater 

Fig. 13  Map representing a degree of tectonic activity and b susceptible to soil erosion, in sub-basins of 
Upper Alaknanda river basin
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than 1. The factor 1 accounts for 43.9% of the total variance, whereas factor 2 accounts for 
18.3% of the total variance. The combination of morphometric analysis with landcover of 
the area determines that about 60% of the area is highly susceptible to soil erosion. How-
ever, flood hazard degree assessment using El Shamy’s model indicates high flood possi-
bility in all the sub-basins. The relative tectonic analysis shows that about 80% of the area 
is under high tectonically active zone. SB1, SB4, SB6, SB7, SB8 and SB9 are very high 
tectonically active regions, whereas SB2 and SB5 are high tectonically active while, SB10 
and SB3 are moderately and the lowest tectonically active region, respectively. The three 
case studies of major flood event during June 2013 in the basin support the results obtained 
from morphometric and morphotectonic analysis.

Overall, this study will help in ranking the basins and decision making for captivating 
soil and water conservation procedures that are susceptible for integrated watershed man-
agement in highly critical and important zone. However, accessibility to the higher region 
is not possible due to adverse climatic and logistical conditions, hence a more detail work 
is required with more field-based investigations and surveys to understand the hydrology of 
region in more detail.
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