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Abstract
Karst geology is widely distributed in China; the great differences in natural conditions 
bring it an array of characteristics in different regions. There is a huge area of the buried 
karst in Wuhan, exhibiting a unique, but complicated engineering geological environment. 
This paper summarizes the geological conditions in Wuhan, with special focus on its karst 
geology. At present, a total of six karst belts have been detected, and they were divided 
into five structure types. For shield tunnelling in karst region, some problems such as water 
ingress or mud inrush, partial ground collapse, damage or failure of shield machine, and 
metro operation and management issues may be raised as a result of the activity of the 
karst geology. To prevent occurrence of possible hazards, a series of countermeasures sug-
gested for hazard and risk mitigation were discussed in this paper. A case history, where 
the study section belongs to the Wuhan metro line 6, is referred to evaluate effectiveness of 
the adopted treatment measures. The feedbacks demonstrated that water ingress was suc-
cessfully avoided, and ground deformation was effectively controlled in the study section 
throughout the construction phase. This study can provide significant reference information 
and experience for metro tunnel constructed in karst region.

Keywords Karst geology · Metro tunnel · Geologic hazards · Prevent and 
countermeasures · Case history

1 Introduction

Because of the largest karst distribution area, China is home to some of the rarest types of 
karst in the world (Huang and Cai 2007; Wang et al. 2004). It is mainly developed in car-
bonatite region, with an area of about 1.3 million square kilometres, accounting for about 
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13.5% of total land area of China (Wang et  al. 2020a). Owing to complexity of control 
factors and diversity of developmental morphology in karst, it brings a series of difficul-
ties to design and construction in civil engineering (Zini et al. 2015; Song et al. 2020, Liu 
et al. 2020a, b). A large number of the hazards and incidents caused by adverse impacts 
of the karst have been recorded when a tunnel passes through the karst region (Alija et al. 
2013; Qiu et al. 2020a; Cheng et al. 2020). Thus, to minimize the risk of the geological 
hazards, many scientific findings are available regarding the aspects of the karst forma-
tion mechanism, development regularity, and their impacts on metro systems. Based on the 
numerical and analytic methods, Wang et al. (2018c) studied influence of karst cave span, 
height–span ratio, and filling degree on safe thickness of cave roof, and then proposed a 
predictive model for the safe thickness of cave roof. In order to deal with possible hazards 
during shield tunnelling undergoing karst caves, Cui et al. (2015) developed a construction 
framework consisting of field investigation, judgment, treatment, and effectiveness check, 
to avoid the occurrence of excessive ground surface settlement. Sun et al. (2018) analysed 
development conditions, mechanism, and mode with reference to the karst in Jinan, and 
proposed the method of “shallow-deep” and “region-target” for use in karst detection. 
Despite all this, it is noted that the vast karst geology still seriously affects the development 
of Chinese transportation infrastructures (Li et al. 2018; Zhang et al. 2020a, b).

Wuhan, one of the oldest megacities in China, is located in the Jianghan Plain and 
administrates seven main urban districts (main urban area) and six distant urban dis-
tricts (distant urban area), as shown in Fig. 1. The karst deposited in limestone strata is 
mainly developed in its main urban area. (WGSC 2018). Dramatically, the overall city’s 
area is 8494 km2, with a limestone area of 1100 km2, which provides necessary materi-
als for karst development. The presence of karst often leads to striking hazards during 
the rapid urbanization. Over the recent twenty years, more than twenty hazards caused 
by karst activity have occurred in Wuchang, Hongshan, Hanyang and Jiangxia districts 
(Zhou et al. 2017; Fan 2006). The karst-associated hazards not only affect project con-
struction, but also cause huge economic losses. Wuhan has experienced intensifying 
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Fig. 1  Location of Wuhan and its administration district division
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demands for urban expansion; its infrastructure construction has come into a boom in 
recent years (Bai et al. 2016; Wang et al. 2020b, c, d). The metro system’s efficiencies 
are marked by saving land and energy, reducing noise and pollution, which makes it the 
best choice for modern cities to develop urban transportation. Also, shield-based exca-
vation plays an indispensable role in metro tunnel construction (Maeda and Kushiyama 
2005; Zhang et al. 2020c). Fig. 2 presents the UMT Network Planning in Wuhan city, 
where a 439.1 km urban rail transit network system will be established by 2020 (WHRT 
2018). However, the complex geological conditions in Wuhan bring difficulties and 
challenges to metro tunnel construction in terms of some metro systems passing through 
karst regions. A series of geo-hazards have been confirmed from the past engineering 
research data and experiences. Karst strata with water-rich caves or poor load-bearing 
capacity may cause water ingress, mud inrush, formation sliding, tunnel structure dam-
age, or even ground collapse, etc. (Ma et al. 2020, Qin et al. 2020, Wang et al. 2018a, 
b). The previous investigations were mainly conducted based on the specific engineer-
ing events. Thus, it is still an increasing demand for studies on how to construct and 
extend the operational life span of metro system constructed in karst regions (Li et al. 
2015; Knez et al. 2008; Wang et al. 2016a; Wu et al. 2020c; Yang and Xiao 2016; Cao 
et al. 2020). 

In view of the lack of a systematic summary on karst geology and protective meas-
ures on hazards during metro system construction in Wuhan, this paper pays more atten-
tion to: (1) present a brief introduction to features, distribution and structures of karst 
geology in Wuhan, (2) to discuss possible hazards and damages for shield tunnelling 
in karst regions, and (3) to introduce some countermeasures for hazards mitigation and 
treatment effectiveness on basis of a case history.
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Fig. 2  Planning map of the Wuhan metro system by 2020
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2  Geological and hydrogeological conditions in Wuhan

The overall landform in Wuhan is mainly dominated by typical hilly plain, and the 
lithology is mainly composed of bedrock and loosening overlay. The overall geomor-
phology of the city is transformed from an erosion-accumulation area to an alluvia-dilu-
via area (i.e., from Grade-III terrace to Grade-I terrace of the Yangtze river, in which 
the stepped topography stretches along the river valley due to the erosion and accumula-
tion), with an elevation varying from 21.6 to 26.8 m. The typical geological section of 
the plain area in Wuhan is shown in Fig. 3.

There are two modes of the rock-soil structures in the main urban area. One of these 
two modes is the Grade-I terrace region, where the upper part distributes soft clay and 
sandy soil of the Holocene series. This region has a typical dualistic structure of the 
upper soft soils and lower sand, with an overburden thickness varying from 30 to 60 m. 
The other one is the Grade-II to III terraces region, in which the upper part distributes 
plastic clay and gravel soil of the mid-upper Pleistocene, with an overburden thickness 
varying from 12 to 30  m. The underlying bedrock of Silurian Cretaceous system can 
be divided into soluble carbonatite and insoluble clasolite. The soluble carbonatite is 
distributed in the core and two limbs of the regional syncline. The soluble rocks of the 
syncline core region are developed in Daye formation of the lower Triassic, and some of 
them are in the Guanyinshan and Lushuihe formations. The carbonatite in the two limbs 
is developed in the Huanglong and Chuanshan formations of the upper Carboniferous, 
and the Qixia formation of the lower Permian. They are separated by insoluble clasolite 
that developed in the Gufeng formation of the Permian. Figure 4 shows the geology map 
of Wuhan.

Wuhan has a huge area of the surface water body due to its low-lying topography. 
The strata are commonly developed with karst caves in different properties as a result 
of the wide distribution of karst geology. The groundwater is generally stored in these 
caves that marked by sharp variations in the quantity and size. It mainly consists of the 
perched water in loosely backfill layer, the Quaternary pore confined water in sandy soil 
layer, the fracture karst water in carbonatite, and a small amount of the fracture water in 
clasolite layer, as indicated in Table 1. The Quaternary pore confined water and carbon-
ate fracture karst water along the river shows a complementary relationship with the 
Yangtze river water. At the same time, the amount of the fracture karst water in bur-
ied carbonate layers is controlled by the lithology, fracture structure and development 
degree of karst, etc.

Fig. 3  Geological profile of plain area in Wuhan. After Gao (2017)
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3  Karst geology in Wuhan

3.1  Features and distribution

Wuhan situates at the north margin of the Yangtze paraplatform and the southern margin of 
the Qinling folding system. The metamorphic rock series of the Archean and Proterozoic 
are mainly developed in the Qinling folding system, but the carbonate rock series are miss-
ing. The Yangtze paraplatform region, during the period from the middle Silurian to the 
middle Triassic, was in a depositional environment of shallow sea and open platform. After 
the twice transgression-regression cycles, forming the Huanglong formation of the middle 
Carboniferous, the Qixia formation of the lower Permian, and the Daye and Guanyinshan 
formations of the lower Triassic, which is advantageous to development and evolution of 
the karst in Wuhan.

As a result of the long-term tectonic actions, the underlying bedrock approximately runs 
from east to west, as indicated in Fig. 5. Based on the topographical relationship between 
the limestone depositional districts and the Yangtze river, there are six karst belts from 
north to south were detected in the main urban area and its adjacent areas, which spread 
across the Yangtze river in east–west direction (Luo 2013). Table 2 presents the characteri-
zation of these karst belts.  

KB1: The Tianxingzhou karst belt is mainly composed of the carbonate rocks of the 
Yushan-Qingshan syncline, and the core and two limbs of the Jinggangshan syncline.
KB2: The Daqiao karst belt is located near the reverse Daqiao syncline where the core 
is the Daye formation of the Triassic, and the two limbs is the Permian strata.
KB3: The Baishazhou karst belt belongs to the Xinglong-Baozixie compound reverse 
syncline, and mainly consists of limestone of the Xinglong-Baozixie reverse syncline 
core of the Daye formation, and the two limbs of the Huanglong and Qixia formations.
KB4: The Zhuankou karst belt mainly consists of the carbonate belonging to the core 
and two limbs of the Zhuankou-Liufangling compound syncline.

Fig. 4  Geological map of Wuhan
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KB5: The Junshan karst belt was formed in carbonate from the Junshan-Tianliang-
shan syncline, and the core and two limbs of the Yuanlongshan-Guanjiafan syn-
cline.
KB6: The Hannan karst belt is located in the core of the Doubucun syncline and is 
of north-west extended.

3.2  Structure classification

The development degree of the buried karst weakens with the increase in its buried 
depth. There are many karst types, but in Wuhan they are mainly in caves, dissolved 
holes and karst fissures. The carbonatite is usually covered with rock, old clay and 
silty sand. As shown in Table 3, karst geology in Wuhan could be classified into five 
structural types based on the differences in the overlying strata and engineering perfor-
mance of rock-soil layers. The diverse karst structures may produce geological hazards 
under the influence of different disaster factors.

Fig. 5  Distribution of the karst belts in Wuhan. After Luo (2013)

Table 2  Summary of karst belts in Wuhan. Data from Luo (2013)

No. Name Length (km) Width (km) Area  (km2) Affected metro line

KB1 Tianxingzhou 39 1.6–3.6 96.8 Line 3
KB2 Daqiao 47 0.5–2.4 105.7 Lines 2, 3, 4 and 6
KB3 Baishaozhou 63 1.1–6.2 150 Lines 2, 3, 6 and 11
KB4 Zhuankou 56 3.2–15 541.3 Lines 2 and 6
KB5 Junshan 39 0.9–3.9 166.2 Lines 4 and 5
KB6 Hannan 35 1.5–1.9 7.8 Lines 5 and 7
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4  Hazards and damages in metro system

Previous engineering experiences confirmed that karst caves result in many hazards in 
engineering construction, and the following problems may be encountered during Wuhan 
metro construction in karst region: (1) water ingress and mud inrush, (2) partial karst 
ground collapse, (3) damage and failure of shield machine, and (4) metro operation and 
management issues.

4.1  Water ingress and mud inrush

Karst caves were formed by a long-term dissolution of the groundwater (Waltham and 
Fookes 2003). The metro tunnels in Wuhan often pass through the water-rich stratum with 
karst caves. The adverse impacts from karst water on fractured rocks not only reflect in 
its softening effect, but also the corrosion action, resulting in appearance of water-ingress 
structural planes and reduction in rock strength (Gui et al. 2017; Qiu et al. 2020b). Some 
adverse aspects such as the accumulation of groundwater, rapid decline in karst-water level, 
and fast flowing of groundwater in karst systems may create negative pressure in fissures 
near bedrock surface. To reach a new pressure balance, pore water in overlying soil layers 
would be accelerated to replenishment karst aquifer, which will increase the hydraulic gra-
dient acted on soft rocks and soils near the concentrated seepage area. The insufficient roof 
thickness of karst caves cannot bear karst water pressure duo to metro tunnelling exposing 
the caves or excavation of upper rock and soil layers, and then the cave roof could be break-
down, causing water ingress and mud inrush (Fig. 6).

4.2  Partial karst ground collapse

The ground subsidence faced by metro construction can be categorized in the following 
two forms: karst surface collapse and karst foundation collapse. The karst cave, a kind of 
underground hole, is formed by karst action in soluble rocks, and it is usually stable and 
safe when it is in natural state (Wang et al. 2016b; Huang et al. 2017). The tunnelling dis-
turbance during the metro tunnel passing through the karst region where the caves develop, 

Fig. 6  Illustration of water ingress and mud inrush in metro system (Ren et al. 2016; Wang 2014)
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will lead to a destruction on the natural balance of the caves. It may cause cave roof to fall 
off and ground settlement exceeding standard value, or even lead to a ground surface or 
foundation collapse. In addition, dewatering works in metro construction may produce a 
devastating and irreversible destruction on cave’s roofs. The water-level-decline-induced 
lag effect forms an osmotic pressure, which will further erode and scour the cave roof over-
lay, and then accelerating the ground destruction. The collapse hazards not only threaten 
metro project, but also cause damages to nearby buildings and traffic systems around the 
area (Fig. 7).

4.3  Damage and failure of shield machine

The karst caves have significantly adverse impacts on the shield cutter head, segments and 
structure stability, whereas the use of shield machines may be dramatically threatened by 
a variety of karst caves during Wuhan metro construction. Thus, a favourable tunnelling 
environment is crucial for a shield tunnel constructed in karst region so as to ensure safe 
excavation. In the construction area, karst water in caves may swarm into shield, resulting 
in losing control of the machine postures. When shield excavation faces the karst caves 
below the tunnel, these corrosion-induced caves and their fillings with poor load-bearing 
capacity always cannot be able to meet safe construction requirements. In this case, the 
downward postures of shield cutter head may easily lead to the shield jammed in caves 
or overproof displacements of shield segments. In some extreme situations, the shield 
machine may have to embrace the risks of side slip, fall, or even subsidence, as a result of 
the cave roof thickness failing due to an imbalance in upper pressure.

4.4  Metro operation and management issues

The metro system generally services for decades, or even hundreds of years; however, 
the potential hazards caused by karst caves may threaten the long-term stability of 
metro tunnel structures. The possible operation and management threats in metro sys-
tem may come from any of the following aspects: (a) under the influence of ground-
water activities and environmental changes, caves filled with poor fillings may be con-
fronted with body collapse as time goes on (Wei and Sun 2017; Wu et al. 2020a, b), 
(b) post-construction differential settlement of movement joints in karst region, (c) soil 
layers with certain conditions may enhance a new development of karst caves in the 

a b

Fig. 7  Photograph of ground collapse induced by shield tunnelling in (a) Wuhan metro line 3 and (b) metro 
line 6 (Qu 2017)
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region nearby, (d) the adverse impact from train vibration during metro operation on 
karst caves, (e) potential water-flow-driven sand loss due to the dewatering activity of 
a foundation pit near the tunnel, and (f) differential settlement between various strata 
and potential leakage from shield segment.

5  Prevention and treatment of hazards induced by karst

Generally, tunnel line selection in karst area is a rather time-consuming work of the metro 
construction. To prevent issues that cause cost overruns or delayed project delivery, the 
tunnel lines should be designed to avoid karst caves or, if they are unavoidable, to extend 
through the regions with fewer and smaller caves (Cui et al. 2015). When passing through 
the caves is unavoidable, they need to be treated before tunnelling so as to avoid the safe 
issues. Usually, the effective treatment measures are used to provide adequate load-bearing 
capacity, reduce deformation of metro structures, improve strength of the cave fillings, and 
control differential settlement of movement joints, and so on. Thus, the aforesaid hazards 
could be prevented by: (1) karst cave detection and early warning, (2) slurry grouting meth-
ods, (3) ground improvement, (4) waterproofing techniques, and (5) shield machine param-
eter optimization.

5.1  Karst cave detection and early warning

Figure 8 presents a framework consisting of cave early detection and early warning system 
for use when a metro system is constructed in the karst region. An advanced detection 
system is crucial for the planning and implementing of the construction phase, safety and 
health of employees, follow-up maintenance and later tunnel construction within the same 
area. It is considered one of the most efficient way for exploration of unfavourable engi-
neering geology, and then can give an early warning of risk. Several cave detecting tech-
niques have been successfully employed in Wuhan metro system, these mainly includes 
geological radar, computed tomography (CT), transient electromagnetic method, high-den-
sity resistivity method and geological drilling. Usually, the geological radar usually does 
well in gaining geometric characteristics and filling degree of the karst caves, while the 
CT is always used to obtain the rock-soil boundary and their fragmentation degree. The 
high-density resistivity method is commonly adopted to detect the pattern and occurrence 
features of the stratum section, while the geological drilling is effective in determining the 
physical and mechanical parameters of karst geology. The reasonable techniques could 
be employed according to the priorities of the detection purpose during tunnel construc-
tion. These methods were also technicality complimented by other survey methods such 
as pumping test, groundwater quality analysis and petrochemical analysis. The risk assess-
ment in terms of such aspects as cave location, scale, quantity and filling degree should be 
conducted first to determine whether to implement the treatment or not, or what kind of 
construction programs can be effectively used.

5.2  Slurry grouting techniques

Figure 9 illustrates an example of grouting filling in karst caves, which usually realized by 
the order of pre-backfilling and post-grouting. It can significantly overcome malpractices 
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of weak load-bearing capacity of cave fillings and resist the water pressure from water-rich 
caves during metro tunnelling, and thus reducing the possibility of the water ingress and 
mud inrush.

Fig. 8  Illustration of a work framework for metro tunnel construction in karst region

Fig. 9  Illustration of grouting 
filling. After Cui et al. (2015)
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Figure  10 shows grouting treatment criteria of karst caves around metro tunnel 
(TROWM 2014). The karst caves above metro tunnel’s axis must be treated. And if the 
cave horizontal distance L from the tunnel is less than 3  m, the caves must be treated. 
Accordingly, if the cave vertical distance D in rock stratum is less than 6 m while that is 
less than 8 m in soil stratum, then the caves must be treated. If the cave height H is less 
than 1 m, it can be treated by static pressure grouting (SPG) with pure cement pulp. If the 
H is between 1 and 3 m, it can be treated by intermittent SPG with a 20-min grouting time 
and 6-h intermittent time. If the H is between 3 and 6 m, it must be treated with beforehand 
gravel and followed by slurry grouting. If the L is more than 3 m and the D is more than 
8 m, it does not have to be treated. However, if the H is more than 6 m, a special treatment 
scheme is required.

5.3  Ground improvement

An improvement method for rock cover, shown in Fig.  11, which is similar to the con-
cept of subgrade construction, was developed by Li and Tao (2015) to improve the load-
bearing capacity of bedrock and stabilize the ground for safe construction and operation. 
When metro tunnel passes through the region with karst caves, the full-paved improved-
soil treatment can be carried out at the interface between favourable ground and formation 
developed with karst caves, so as to reinforce natural ground. This method can effectively 
control uneven settlement of foundation induced by variations of rock and soil properties, 
and significantly improve load-bearing capacity of the underlying layer, and thus reduce 
construction risks accordingly.

Fig. 10  Treatment criteria of karst caves around metro tunnel. Note: L is the cave horizontal distance 
from the tunnel, D is the cave vertical distance from the tunnel and H is the cave height (Cui et al. 2015; 
TROWM 2014)
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Figure 12 depicts an example of basement reinforcement by jet-grouting pile, and it can 
be effectively employed for basement treatment of metro stations constructed in area with 
karst caves. The application of lattice-type jet-grouting pile can significantly slow down the 
water flow by dividing the basement into multiple regions. This method can also prevent 
sand loss, improve basement strength, and then reduce occurrence risk of ground collapse 
as well as other geo-hazards.

5.4  Waterproofing techniques

Apart from the implementation of artificial dewatering measures and the installation of 
waterproofing elements in tunnel liner structures, the diaphragm wall is always employed 
in open-cut metro station to remove cave-water-flow-induced hazards, that may affect metro 
later operation (Fig. 13). It can cut-off hydraulic connection inside and outside enclosure 
and forms a closed waterproofing system (Ding et al. 2011). Then, it contributes to ground 
reinforcement and interrupt of water flow so as to realize the seepage prevention and plug-
ging. The advantage of this method is, after necessary treatment for karst caves inside the 
wall area, the risks of geo-hazards outside the treatment region can be significantly reduced 
at the same time.

Fig. 11  Illustration of ground improvement. After Li and Tao (2015)

Fig. 12  Basement reinforcement by jet-grouting pile in metro station. Note:  D1 is pile diameter and  D2 is 
pile space. After Liu (2018)
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For the case of metro constructed in downtown areas or crowded regions, He et  al. 
(2017) developed the grouting curtain technique for cutting off water flow, it not only 
ensures metro system safety, but also addresses the issues of large construction site dur-
ing waterproofing structure installation. It can be seen from Fig. 14 that this technique was 
commonly composed of the upper bored or jet-grouting pile and the lower grouting cur-
tain. It minimizes adverse impacts of the karst caves on metro tunnels from two aspects, 
that is, load-bearing capacity improvement and water flow isolation.

5.5  Shield machine parameter optimization

In addition to above-mentioned treatment measures and safe construction guidelines, there 
are other benefits to be derived from optimization of shield machines and their accessory 
elements (Qu and Zhou 2016). These can be summed up as:

1. In terms of the shield segment designed for avoiding uneven settlement of tunnel struc-
tures and ensuring a safe construction, the following considerations should be taken into 
account: (a) adopting reinforced concrete segment, (b) adopting high strength bolt, (c) 
setting rebate at longitudinal joints of segment to increase longitudinal stiffness, and (d) 

Fig. 13  Illustration of diaphragm wall applied in Wuhan metro system (created based on the concept of Liu 
2018)

Fig. 14  Illustration of a grouting curtain for cutting off water (after He et al. 2017)
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adding reserved grouting hole to ensure the conditions of reinforcement on the stratum 
after the metro is put into operation.

2. Control the driving parameters of shield. (a) when water pressure is too large, the pres-
sure pump device should be in operation to reduce construction disturbance on surround-
ing ground, and (b) synchronous grouting should be sufficient and secondary grouting 
should block groundwater passage timely, and thus stabilize shield segments.

6  Case history

The first-stage project of the Wuhan metro line 6 starts from Dongfeng Company station 
and ends at the Jinyinhu Park station, and it has 27 underground stations with a total length 
of 36.1 km. The study section focus is between Qianjincun station and Mayinlu station, 
which mainly underwent the aforementioned I-type and II-type karst geology structures.

6.1  Description of metro construction site

The project site is dominated by the Grade-I terrace of the Yangtze river, where the bed-
rock is buried under the Quaternary stratum. The geological structures are mainly fold-
ing and fault, while fracture structures are found through the drilling cores. The site is 
located in the Tangjiashan-Xinancun fan-shaped syncline, and the core of the syncline is 
dominated by the Guanyinshan formation of Triassic, and two limbs are dominated by the 
Daye formation of the Triassic and Wutong formation of the Devonian. One fault (labelled 
F1) was detected at the site, and it is mainly filled with argillaceous limestone with strong 
crush and corrosion (Fig. 15). The groundwater in the project site is mainly the upstream 
water, with some pore confined water and bedrock fissure water, as shown in Table 4. 

6.2  Countermeasures applied in Wuhan metro line 6

To avoid occurrence of hazards during metro tunnel construction, a series of countermeas-
ures were adopted during the construction stage of the Wuhan metro line 6. The main 
purpose is to, (a) cut-off water leakage path between overlying layer and karst caves; (b) 
reinforce overlying loose layers, especially the fine sand layer, and prevent seepage-type 
sand-carrying action caused by karst collapse from affecting the stability of shield segment 

Fig. 15  Sectional view of geologic conditions of the case project. After Gao (2017) and He et al.( 2017)
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structures. The countermeasures used in this case history are summarized as follows (Gao 
2017).

1. The full-grouting filling method was employed for shallow karst caves around the metro 
tunnel based upon drilling surveys. By eliminating hidden danger of slurry exudation, it 
guaranteed a better effectiveness of the grouting and was verified by conducting regular 
field measurements, in which the maximum value of the ground heave was 2.26 mm 
throughout the grouting period (Fig. 16a).

2. One row or more rows of curtain grouting holes are set in the bedrock surface of the 
lower limestone. The drilling holes are of 10 m below the bedrock surface, with a plum-
blossom-shape arrangement, and thus forming a vertical isolated diaphragm wall. The 
in situ observations revealed a great filling effect of the caves inside the wall, and no 
cases of less or excessive grouting were observed (Fig. 16b).

3. A full-range of grouting was employed to improve the strength of the interface between 
soil and rock below the shield tunnel. To ensure its reliability, some detailed techniques 
and requirements need to be considered: (a) the drilling-hole deviation from designed 
position is less than 10 cm; (b) an automatic grouting recorder should be used to control 
the grouting pressure in a range of 0.3–0.5 MPa. (c) at the maximum grouting pressure 
of 0.5 MPa, the grouting rate is less than 1 L/min (Fig. 16c).

4. In some cases such as difficulties and poor effectiveness of grouting encountered in 
sand layers above the karst, jet-grouting pile reinforcement was used for treatment. The 
80-cm-diameter piles were arranged in a space of 60 cm and the length embedded in 
the bedrock is not less than 50 cm.

6.3  Feedback analysis of monitoring data

To avoid large deformation and failure of shield segment caused by cave collapse, its dis-
placement value must be strictly controlled during tunnel construction to prevent ground 

a c

b

Fig. 16  Photographs of in situ slurry grouting. a, b and c are sealed grouting hole, cement slurry solid and 
drill core after grouting (Gao 2017)
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collapse. Gao (2017) conducted a series of in  situ measurements and studied treatment 
effectiveness from the monitoring data. Table 5 presents a brief introduction to karst caves 
in this case history. After implementing the treatment measures, vertical deformation and 
horizontal convergence of segment structures were monitored regularly, and the results are 
plotted in Fig. 17. 

The results indicate that the vault settlement, bottom uplift and horizontal convergence 
increase linearly within 30 d, and then tend to grow slowly, and finally tend to be stable. 
The vault settlement, bottom uplift and horizontal convergence at the sections of K11 + 804 
and K11 + 877 are − 4.34 mm, 2.05 mm, 8.82 mm and − 6.2 mm, 4.83 mm and 10.26 mm, 
respectively. The effectiveness of the proposed countermeasures is verified by small defor-
mation amount and reduction in the time needed to achieve stability.

7  Conclusions

The geology and karst conditions in Wuhan are studied, and a series of countermeasures 
were summarized for hazards and risk mitigation during metro system construction in this 
paper, and the following conclusions can be drawn:

1. Wuhan is characterized by unique, but complex geological conditions, and developed 
a large area of the karst geology. The twice transgression-regression cycles during the 
late Palaeozoic and the early Mesozoic eras, forming two sets of carbonate strata of 
the Huanglong formation of the middle Carboniferous and the Daye and Guanyinshan 
formations of the lower Triassic, which provide the material basis for karst development.

2. Under the influence of the tectonic action, the underlying bedrock in Wuhan distributes 
in an approximate east to west direction. There are six karst belts that have been detected 
in the main urban area of Wuhan, and five types of karst geological structure were 
obtained based on the differences of geological performance of the overlying rock-soil 
layers.

3. Due to the wide distribution of karst geology in Wuhan, a shield tunnel constructed in 
karst region may disrupt its stable state, and then results in a host of engineering prob-
lems and hazards, such as (a) water ingress and mud inrush, (b) partial karst ground 
collapse, (c) damage and failure of shield machine, and (d) metro operation and manage-
ment issues.

4. To eliminate tunnelling-induced geo-hazards, several countermeasures were summa-
rized, which includes (a) karst cave detection and early warning system, (b) slurry 
grouting techniques, (c) ground improvement, (d) waterproofing techniques, and (e) 
shield machine parameter optimization. These suggested countermeasures can be flex-
ibly applied as the geological conditions vary to ensure safe construction and operation 
of the metro tunnel in karst region.

Table 5  Description for karst caves in case history. Data from Gao (2017)

Section Cave size Cave roof thickness 
(m)

Distance between 
tunnel and bedrock 
(m)Height (m) Span (m)

K11 + 804 2.78 3.17 0.41 15.3
K11 + 877 3.5 2.79 0.6 14.8
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Fig. 17  In situ monitoring data. 
a, b and c are vault settlement, 
bottom uplift and horizontal con-
vergence. Data from Gao (2017)

a

b

c
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5. The case history regarding the Wuhan metro line 6, in which the tunnel passing through 
the typical karst stratum, was referred for further analysis. The countermeasures used 
during tunnel construction include the slurry grouting, ground improvement and water-
proof treatment. The measured vault settlement, bottom heave and horizontal conver-
gence at sections of K11 + 804 and K11 + 877 are − 4.34 mm, 2.05 mm, 8.82 mm and 
− 6.2 mm, 4.83 mm and 10.26 mm, respectively, verifying the effectiveness of these 
adopted measures.
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