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Abstract
The increase in the frequency of natural disasters in recent years and its consequent social, 
economic and environmental impacts make it possible to prioritize areas of risk as an 
essential measure in order to maximize harm reduction. This case study, developed in the 
city of Novo Hamburgo, Rio Grande do Sul state, Brazil, aims to identify and evaluate 
areas susceptible to mass movements, through the development of a model based on logis‑
tic regression, associated to Geographic Information System (GIS). The construction of the 
model was based on the use of only four independent variables (slope, geological aspects, 
pedological aspects and land use and coverage) and a binary variable, which refers to the 
occurrence of mass movements. In total, 123,308 pixels were used as samples for the logis‑
tic regression modeling in SPSS software. As a result, we have the spatialization of a mass 
movement probability map with 87.3% of the correctly sorted pixels. A validation with the 
landslide susceptibility map built by the Brazilian Geological Survey was also performed 
using the receiver operating characteristic (ROC) curve, indicating a prediction accuracy 
of 82.5%. This research showed the efficiency of the integrated use of GIS and logistic 
regression, with emphasis on the relative simplicity of the model, speed of application and 
good ability to identify areas susceptible to landslides. The proposed model allowed the 
determination of the probability of occurrence of landslides with good predictive capacity, 
surpassing the usual model used by the Geological Survey of Brazil (CPRM).
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1 Introduction

Natural disasters occur due to the physical processes present in the natural dynamics of 
the planet, but anthropic actions play an increasingly intense role in the occurrence of 
these phenomena (Smith 2013; Tehrany et al. 2014; Noh et al. 2016). According to the 
Intergovernmental Panel on Climate Change (IPCC 2014), natural disasters have been 
occurring with higher frequency and magnitude, causing, consequently, an increase in 
the damages to society. Factors such as the influence of unplanned urbanization and 
economic development, intensification of human activities and climate change disrupt 
the natural balance of the environment, which enhances the occurrence of both envi‑
ronmental problems and the susceptibility to landslides (Kjeldsen 2010; Bai et al. 2011; 
Dou et al. 2015a).

The impacts of disasters caused by both natural phenomena and anthropogenic 
actions can be accentuated by socioeconomic issues, such as the lack of urban planning, 
public policies and effective disaster prevention actions (Farber et al. 2010; Mata‑Lima 
et al. 2013). According to reports from the emergency events database, most disasters 
occur in developing countries, associated with high population density in areas at risk 
and social vulnerability of the population (EM‑DAT 2017). As these phenomena are not 
completely predictable, it is necessary to identify the areas susceptible to disasters prior 
to human occupation, so that mitigation measures can be implemented (Bai et al. 2011).

Mass movements consist of slope mass‑wasting processes, which can be derived from 
soil, rocks or debris, under the influence of gravity (Gariano and Guzzetti 2016), charac‑
terizing themselves as some of the most destructive phenomena in nature and one of the 
most common risks, responsible for immense property damage and hundreds of deaths 
and injuries each year, as well as causing impacts to the environment. In this article, we 
highlighted the landslides, which are phenomena that can occur naturally, but they can 
also be induced by human activities (Saha et al. 2002; Highland and Bobrowsky 2008; 
Pradhan 2010; Ozdemi 2013; Chen et al. 2015). Landslides usually result from the asso‑
ciation of several environmental factors, especially heavy rainfall on sloping terrain, 
conditions in which this phenomenon is more likely to occur. Topography is the most 
influential factor in the occurrence of landslides, along with the geological, geomor‑
phological and vegetation cover characteristics (Bai et al. 2011; Ozdemi 2013; Sujhata 
and Rajamanickam 2014). Changes in land cover, deforestation and increased livestock 
activity on the slopes are some of the factors that can trigger large landslides (Shirzadi 
et al. 2012).

Through scientific analysis, it is possible to identify areas susceptible to landslides, 
which is of great value in the urban and regional planning process, as this information 
can be used in the elaboration of measures to avoid or at least reduce the impacts caused 
by these extreme events. The susceptibility maps that illustrate the areas most prone to 
landslides are of high interest and can be used in environmental management, land use 
planning and infrastructure development (Dou et al. 2019). However, the challenge of 
understanding or predicting landslides is still great. Based on the relationships between 
past occurrences of landslides and a set of environmental factors, it is possible to estab‑
lish modeling of the susceptible areas (Pradhan 2010; Oh and Pradhan 2011). Several 
attempts were made to reduce the subjectivity and error of the mappings and with the 
development of both computing and geographic information systems (GIS), expecta‑
tions for the use of large datasets have increased. GIS has been widely used for the 
determination of landslide areas due to the innumerable built‑in statistical methods. In 
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the last decades, the use of quantitative methods for the creation of susceptibility maps 
and statistical models using bivariate or multivariate techniques has become popular 
(Nandi and Shakoor 2009; Bai et al. 2010; Wu and Song 2018).

To obtain a reliable evaluation, it is necessary to choose an appropriate methodology for 
analysis and modeling. There are several studies on the evaluation of susceptibility to land‑
slides using GIS and logistic regression (LR). Nandi and Shakoor (2009) used bivariate 
and multivariate statistical analyses to predict the distribution of landslide areas and GIS 
to evaluate the relationship between the events and the factors that contribute to its occur‑
rence. Pradhan (2010) carried out the landslide hazard map approach through the cross‑
validation of a multivariate logistic regression model, using 10 input variables. Shirzadi 
et al. (2012) describe the application of logistic regression to rock‑fall susceptibility. The 
results from this study demonstrated that use of a logistic regression model within a GIS 
framework is useful and suitable for rock‑fall susceptibility mapping and can be used to 
reduce susceptibility associated with rock‑fall. Schlögel et al. (2018) evaluated the effect 
of the spatial resolution of the digital elevation model (DEM) on the modeling quality of 
areas susceptible to landslides and used logistic regression techniques. Despite the efficient 
results in the mentioned models, they require a wide range of data, which is difficult to 
obtain. The advantages of using LR methods are the ease of dealing with categorical inde‑
pendent variables, as well as classifying individuals into categories. In addition, the results 
provide probability and have a high degree of reliability.

The objective of this work was to develop and assess a landslide prediction model using 
geomorphological variables and logistic regression. GIS was used to map areas susceptible 
to landslides, using only four predictive variables (slope, geology, pedology and land), hav‑
ing as a case study the municipality of Novo Hamburgo, Rio Grande do Sul, Brazil. The 
assessment of the results generated by the developed model was carried out by means of 
comparison with the results from a traditional model for assessment of landslides, pro‑
posed by the Geological Survey of Brazil (CPRM).

2  Study area

The municipality of Novo Hamburgo is located at coordinates 29°47′ S and 51°13′ W, in 
the State of Rio Grande do Sul, southern Brazil. The number of inhabitants is approxi‑
mately 238,940 and the territorial area is 224  km2 (IBGE 2010) (Fig. 1).

The study area is part of the phytogeographic region classified as semideciduous Sea‑
sonal Forest, which nowadays only exists on the slopes of the Serra Geral, and the cli‑
mate is subtropical, with four well‑defined seasons. The average annual precipitation is 
125.2 mm, with the rainiest months being September and June (Fig. 2).

The largest expansion of urban area of the municipality and the triggering of occupation 
of irregular areas occurred between 1977 and 1997. The exhaustion of the territory suit‑
able for urban occupation resulted in flood and landslides problems, due to the invasion of 
hazard areas by the population of low income. During the last 25 years, three episodes of 
landslides occurred in inhabited areas: in 1993, the first landslide in the municipality was 
recorded, which occurred on the outskirts of the city and reached two residences; in 2002, 
another landslide occurred, partially destroying two houses and causing the evacuation of 
the area, where there were approximately 80 houses; and in 2011, a landslide led to the 
deaths of three children (Riegel and Quevedo 2015).
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3  Materials and methods

The susceptibility map proposed and validated by Riegel and Quevedo (2015) was used 
as a dependent variable for the logistic regression model (LRM). The method for iden‑
tifying areas susceptible to landslides proposed by Riegel and Quevedo (2015) is based 

Fig. 1  Location of the study area
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on the crossing of thematic maps, considering the use of weights and hierarchical values 
(Fig. 3a). The work is based on the methodology proposed by Ross (1994), which aims 
to attribute ranges of environmental fragility, so the use of weights and values of impor‑
tance were proposed based on a bibliographical review.

The susceptibility map constructed by Riegel and Quevedo (2015) aims to identify 
landslide areas and used the following thematic maps: map of the slope, map of land 
use and coverage, pedological map and map of geological aspects. The first procedure 
was the reclassification of the maps, based on the definition of pre‑established weights, 
followed by the transformation of the files from vector to raster. The hierarchical impor‑
tance between the thematic maps was established and values of importance for each 
variable were assigned. The scores from 1 to 5 attributed to each of the variables were 
established by Riegel and Quevedo (2015) based on Ross (1994), Highland (2008) and 
Brazil (2012), where 1 corresponds to the smallest contribution to the susceptibility to 
landslides and 5 to the bigger susceptibility to landslides (Table 1).

To adjust the susceptibility map for the construction of the LRM, the first step was to 
establish a binary formulation using the software ArcGIS®. Thus, high and very high‑
risk areas were scaled with a value of 1, while regions of moderate, low and very low 
risk of susceptibility were defined as 0, according to Fig. 3b. This procedure was per‑
formed in order to separate the susceptible regions from the low‑risk areas, establishing 
an entry map for the LRM formulation.

As predictive variables for the LRM process, the following thematic maps were used: 
slope, geological aspects, pedological aspects and land use and coverage. The slope 
map was extracted from the digital terrain model (DTM), obtained through the ASTER 
GDEM system, with a resolution of 30 m, using the ArcGIS software. The pedologi‑
cal and geological maps were extracted from the bases built by the RADAMBRASIL 
project (1983). Finally, the map of land use and coverage was taken from the databases 
provided by the MONALISA Project (2005), with an update of the urban area of 2009.

Figure 4 presents the thematic maps used as independent variables. The slope map 
(Fig.  4a) shows a variation from 0 to 52°. According to Bai et  al. (2011), Ozdemi 
(2013), Paulín et al. (2014) and Meten et al. (2015), the slope is one of the determining 
factors in the occurrence of landslides.

Fig. 3  (a) Susceptibility map proposed by Riegel and Quevedo (2015) (b) Map reclassified with the 
dependent variable
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Geology is one of the main factors influencing the occurrence of landslides, being used 
in the LRMs of Bai et al. (2011) and Paulín et al. (2014). The geological map (Fig. 4b) is 
composed of the following characteristics: (1) Alluvial deposits, (2) Alluvial Caves, (3) 
Serra Geral Formation—Facies Gramado, (4) Botucatu Formation, (5) Pirambóia Forma‑
tion and 6) Peat. The Coluvial and Alluvial Reservoirs, composed mainly of sands and 
silty‑clayey sediments, were formed in the Holocene, Quaternary. The Serra Geral Forma‑
tion is composed of basic effusive rocks (basalts), having their origin in the Cretaceous. 

Fig. 4  (a) Map of slope (b) Map of geological aspects (c) Map of land use and coverage and (d) Pedologi‑
cal map
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The Botucatu and Pirambóia Formations are composed by sandstones and date, respec‑
tively, to the Jurassic and Permian periods.

In relation to the map of land uses and coverage (Fig.  4c), the following classes are 
observed: (1) native forest; (2) native forest and rural anthropic environment; (3) second‑
ary vegetation and rural anthropic environment; (4) forestry; (5) rural environment; (6) 
urban sprawl; (7) urban occupation; (8) bathed; (9) water blade. Anthropogenic actions are 
directly linked to a variety of disasters, including landslides, given their changes in the 
environment (Kjeldsen 2010; Bai et al. 2011).

Finally, in the pedological map (Fig. 4d), the following classes are observed: (1) Arse‑
nic Red Dystrophic Argisol, (2) Reddish Argisol Latossolic, (3) Typical Dystrophic Red 
Argisol, (4) Typical Orbicular Haplico Chernosol and (5) Hydromorphic Eutrophic Arse‑
nic Planosol. With the increase in landslides, the use of pedological maps has enabled per‑
tinent information to identify areas of risk (CPRM 2008).

After the compilation and organization of the data, the maps were transformed into ras‑
ter format, considering the spatial resolution of 30 m, thus allowing the compatibility of 
all the files. Once this procedure has been performed, the files have been exported from 
ArcGIS to the ASCII Raster extension, which allows one to view the data in a spreadsheet 
format, in which each cell corresponds to a pixel in the study area. As input data for the 
LRM, 50% of the pixels of the study area were used, i.e., 123.308 pixels. The remaining 
pixels were subsequently used for calibration and validation of the model.

The process proposed in this study relates the use of LR to GIS, which began to be more 
used after the 1990s and became more recurrent in the last years (Venticinque et al. 2007; 
Nandi and Shakoor 2009; Pradhan 2010; Schlögel et al. 2018). LR consists of a model that 
relates a set of p independent variables to a dependent binary variable Y that assumes only 
two possible states, 0 or 1. The logistic model allows the direct estimation of the probabil‑
ity of occurrence of an event (Y = 1):

in which βi (i = 0, 1, …, n) are the parameters of the model, estimated by the maximum 
likelihood method. Thus, the likelihood function will be given as:

with yi = {0,1} e πi = P(Y = 1/X = xi).
The method consists in estimating β that maximizes the log‑likelihood function, deter‑

mining the parameters that best reproduce the observed data, maximizing L(β). After the 
estimation of the parameters of the model, the verification phase of the model adjustment 
to the data was initiated, in which the likelihood ratio test consists of comparing the joint 
probabilities of the samples, determining the inclusion or not of the variables to the model 
(Owen 2001).

The model was generated in the software SPSS®, which indicated an equation of prob‑
ability of occurrence to landslides, which was applied and validated, using all the pixels of 
the mapping (246,615 pixels). Then, in the ArcGIS® software, using the “Raster Calcula‑
tor” tool, the map was spatialized. The final result was also validated with the landslide 
susceptibility map constructed by CPRM (2015) using the receiver operating characteristic 
curve (ROC) (Peres and Cancelliere 2014).

(1)P(Y = 1) =
exp(�0 + �1x1 +⋯ + �nxn)

1 + exp(�0 + �1x1 +⋯ + �nxn)

(2)L(�) =

n
∏

i=1

�
yi
i

(

1 − �i
)1−yi
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In order to assess the accuracy of the model in predicting risk areas for landslides, a 
field study was carried out in the susceptible areas of the municipality of Novo Hamburgo, 
considering free access areas. In this field study, 29 points that already presented the occur‑
rence of landslides or evidence of imminent landslides were selected, as exemplified in 
Fig. 5.

4  Results and discussion

Multiple logistic regression was initially constructed based on four variables (Table 1) and 
on the classification shown in Fig.  3b, where high and very high‑risk areas were scaled 
with a value of 1. The likelihood‑ratio test estimator was used to determine which variables 
would be added to the model (Shirzadi et al. 2012). Among the analyzed variables, accord‑
ing to Fig. 4, the best prediction model was obtained considering all four variables. The 
results presented significant values (X2 = 1276,552; p < 0.01) for the Hosmer and Leme‑
show test (1989), indicating that the model is useful for analysis of probability of occur‑
rence of landslides. The Nagelkerke (R2) value resulted in 0.430, that is, the model can 
explain 43% of the variations recorded in the dependent variable. The coefficients of the 
model and the significance of these are shown in Table 2:

Fig. 5  (a) Landslide in an urban area located close to a school (b). Landslide in the backyard of a residence, 
located on the side of a road

Table 2  Coefficients used in LRM

a Variable(s) inserted in step 1: Pedological, Land use, Geological, Declivity

Equation variables

B E.P Wald gl Sig Exp(B) 95% C.I. for EXP(B)

Inferior Superior

Step  1a Pedological .089 .005 305.714 1 .000 1.093 1.083 1.104
Land use  − .079 .004 483.575 1 .000 .924 .918 .931

Geological .105 .006 296.019 1 .000 1.111 1.098 1.124
Declivity .133 .001 35,837.727 1 .000 1.142 1.140 1.143
Constant  − 4.129 .037 12,471.837 1 .000 .016
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The coefficients are introduced in Eq. (3) in order to define the probability of landslides.

The four variables used to predict the susceptibility to landslides in the studied area 
were considered significant and included in the model. According to the results of the coef‑
ficients B and C.I. for EXP (B) presented in Table 2, the variable with the least contribu‑
tion in the model, although significant, was land use and coverage. Shirzadi et al. (2012) 
eliminated the variable uses and occupations of the soil from their model because it was 
considered non‑significant. Pradhan and Lee (2010) and Dou et  al. (2015a) suggest that 
factors with very low or zero predictability should be removed, in order to reduce noise and 
uncertainties, improving the prediction and capacity of the model. In this study, it was con‑
sidered pertinent to keep the variable of land use and coverage, given that most of the area 
susceptible to landslides is found in areas undergoing urbanization.

The LRM had a total success rate of 87.3%, i.e., a satisfactory classification ability 
(Table 3). Despite the reduced number of predictive variables, the model achieved a “total 
success rate” close to models that consider a much larger number of variables, such as the 
ones shown in studies conducted by Pradhan and Lee (2010), Bai et al. (2011), Shirzadi 
et al. (2012) and Dou et al. (2015a).

Figure 6a presents the result of cross‑thematic maps from the equation derived from the 
LRM, which was applied to all pixels in the study area. The initial continuous scale result 
was subdivided into three classes: High (> 40%), Moderate (20–40%) and Low (< 20%). 
The classes were established in order to approximate the RLM to the classification method 
of Riegel and Quevedo (2015) and allow the comparison with the CPRM susceptibility 
map, since these methods do not present results in terms of probability but in classes of 
levels of occurrence. The maps used for calibration and validation of the model are shown, 
respectively, in Fig. 6b and c: Riegel and Quevedo susceptibility map (2015) and CPRM 
susceptibility map (2015). In the three maps, it is possible to verify the similarity between 
the susceptible areas, consolidated to the North in the urban region, and in the South and 
Southeast ends of the rural environment. The three models were able to signal these regions 
as areas susceptible to landslides; however, the differences between them are visible, espe‑
cially in areas of moderate susceptibility, where a very large variation is perceived.

LRM was validated based on the comparison of the results provided by the suscep‑
tibility map proposed by the CPRM (2015). Specifically, the results were examined 

(3)

P(Y = 1) =
exp

(

−4.129 + 0.089xPED − 0.079xUSO + 0.105xGEO + 0.133xDEC
)

1 + exp
(

−4.129 + 0.089xPED − 0.079xUSO + 0.105xGEO + 0.133xDEC
)

Table 3  Classification of LRM

a The cutoff value is .500

Classification  tablea

Observed Predicted

Susceptibility Correct 
percent‑
age0 1

Susceptibility 0 197,940 6720 96.7
1 24,646 17,309 41.3

Global percentage 87.3
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quantitatively using the receiver operating characteristic (ROC) curve. To examine the 
reliability and efficiency of the landslide probability model, the area under the curve 
(AUC), which represents the accuracy of the success of the model, was calculated. 
The area under the curves explains how well the method and factors classify landslides 
and total area = 1 denotes perfect prediction accuracy (Shirzadi et al. 2012; Dou et al., 
2015b). The prediction curve for the model is presented in Fig.  7, in which the AUC 
value is (0.825) (Table 4), which corresponds to a prediction accuracy of 82.5%. The 
AUC value obtained by the LRM is considered excellent according to Hosmer and 
Lemeshow (1989).

Fig. 6  (a) Map of susceptibility to mass movements—LRM (b) Riegel and Quevedo Susceptibility map 
(2015) and (c) CPRM susceptibility chart (2015)

Table 4  Area under the ROC curve (AUC)—accuracy of the mapping of susceptibility to mass movements

a Under the non‑parametric assumption
b Null hypothesis: true area = 0.5

Default  errora Asymptotic Sig.b Confidence interval 95% asymptotic

Inferior limit Superior limit

0.822 0.001 0.000 0.819 0.825
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To validate the LRM, 29 points were geo‑referenced, in which there have already been 
landslides or, at least, there is evidence of imminent landslides. Figure 8 shows an enlarge‑
ment of the areas where the fieldwork was carried out, in which the 29 selected points 
were marked. Thus, it was possible to establish that the LRM correctly classified 86% of 
the points identified in the field work as being points of high or moderate probability of 

Fig. 7  ROC curve—accuracy of 
mapping susceptibility to mass 
movements

Fig. 8  (a) Expansion of the landslide susceptibility map (LRM) with 29 validation points (b) CPRM sus‑
ceptibility map (2015) with 29 validation points
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occurrence of landslides. In comparison with the map presented by CPRM, the percentage 
of correct classification is reduced to 79%, with many points being classified as having a 
moderate probability of landslide.  

It was considered that the RLM performed well in the classification of areas susceptible 
to landslides, even though it was estimated with a small number of predictive variables. 
According to Chang et al. (2019), quantitative methods such as logistic regression are use‑
ful for problem‑solving and have been used successfully in risk assessment applications. It 
was also found that use of Riegel and Quevedo (2015) method as an information base to 
generate the landslide (1) and non‑landslide (0) points did not compromise the predictive 
potential of the RLM. The model showed satisfactory levels for both accuracy and clas‑
sification, equivalent to other studies that use RL and that are based on the compilation 
of landslide inventories, such as Pradhan and Lee (2010), Bai et al. (2011), Shirzadi et al. 
(2012) and Schlögel et al. (2018) (Fig. 8).

LR is the most popular susceptibility model; it is simple, straightforward, highly inter‑
pretable and produces an accurate and robust prediction (Chang et  al. 2019). Thus, the 
LRM can be considered an efficient tool to support public managers to potentiate the 
reduction in the impacts of natural disasters. Planning should not allow the appropriation 
of these places unfit for occupancy. However, the current reality of the analyzed municipal‑
ity shows that the most worrying region is located above RS 239, an area already occupied 
by low‑income housing and low purchasing power. In addition to being characterized as 
susceptible, these regions are also considered Environmental Protection Areas, which have 
a certain occupation restriction, through low occupancy rates and utilization rates, imposed 
by the Municipal Master Plan (Novo Hamburgo 2004, 2010). In some parts of this region, 
Permanent Preservation Areas are also observed, whose occupation is not allowed (Bra‑
zil 2012). However, the displacement of the population that today occupies these areas to 
suitable environments is almost unviable in a territory such as the municipality of Novo 
Hamburgo, which has undergone several landslide processes in irregularly occupied areas. 
Thus, the first step would be the inclusion of susceptibility patches in the master plan and 
the total restriction for new occupations, in order to reduce the impact on these areas with 
steep hillslopes. On the other hand, because they are irregular dwellings, frequent inspec‑
tion is the most appropriate method to inhibit occupation and to avoid harming society.

5  Final considerations

Over the years, the frequency of natural disasters has become a concern. The fact that land‑
slides have very specific characteristics, and sometimes cause fatal victims, makes plan‑
ning important through preventive strategies that potentiate the reduction in their negative 
effects. The use of GIS associated to LR was efficient in the analysis of the probability of 
susceptibility to landslides, resulting in a fast and practical method, which uses few vari‑
ables, reducing the need for data collection, low computational cost and at the same time 
adequate coefficients for the definition of areas with greater or lesser degree of risk.

The simplicity of the method and the use of input data from the model that do not 
require an extensive field assessment establishes a response that can be used as a previ‑
ous model of susceptibility analysis. This may serve as an indication of the most prob‑
able regions for the occurrence of landslides for a detailed field investigation and survey of 
variables to be used in more robust models. Therefore, it is characterized as a replication 
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method for other regions, as well as presents consistent results for inclusion in zoning and 
occupation plans.
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