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Abstract
Laos is a mountainous, rainy and less developed country in Southeast Asia. In Laos, floods 
represent a major constraint on social economic development, causing a large number of 
casualties and property losses each year, among which the impact from flash floods is also 
very prominent. Especially in recent decades, with the development of social economy 
and the intensification of hydropower development, the serious threat from flash floods is 
becoming more and more obvious. However, there is no fundamental defence system for 
flash floods been established yet in this country, and the basic knowledge on local flash 
flood development is also ignored. For filling this gap, taking the Nam Ou River Basin 
as an example, this paper tries to find out the most helpful hazard assessment method for 
current Laos based on comparative analysis from the flash flood potential index, the calcu‑
lation of curve number–rainfall erosivity and the extrapolation method. The results show 
that the extrapolation method based on spatial lag model constructed by the data from Yun‑
nan, China, presents the most reliable outcome compared with the other two methods, indi‑
cating the spatial autocorrelation model can also be useful for extrapolation, effectively. 
Besides, the scale effect of different potential impact elements on flash flood, i.e. the spatial 
correlation between each element and the distribution of flash flood events at different spa‑
tial statistic units, was also preliminary studied. It is found that the degree of correlation 
in spatial analysis depends on the short board effect, i.e. only the element that restricts the 
regional flash flood developmental system can be the key factor. The correlations of most 
watershed elements increase or decrease directly with the rise of watershed scale, and the 
values of coefficients tend to be stable at large watershed scales.
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1  Introduction

The flash flood or mountain torrent here, as a kind of dramatic surface runoff that fea‑
tures abrupt rise and fall on water level, often develops in the hilly or mountain areas and 
becomes flooding in low-lying areas (National Weather Service, NWS). It is usually caused 
by natural or human factors such as rainstorm, snow melting or dam failure from natural 
or artificial dams. The abrupt rise and fall on water level are the most significant feature 
in flash flood processes, lasting no longer than 6 h with an influential area no more than 
400 km2 in general (Georgakakos 1986; Marchi et al. 2010).

Since most flash floods are the result of concentrated release of water accumulated in a 
very short time, their peak discharges could be up to 500–2000 m3/s or higher even if the 
watershed area is only tens of square kilometres (Li et al. 1979; Tang and Tie 2009; Liu 
et al. 2011; Gan et al. 2012; Su et al. 2012). This is also one of the reasons why the flash 
flood is so powerful and could trigger landslide and debris flow easily. As the statistical 
data show, only in terms of fatality rate, flash flood is the second major meteorological 
disaster next to extreme heat in USA (Ashley and Ashley 2008) and also the second major 
flood disaster next to storm-surge flood in Europe (Borga et al. 2011). Likewise, the casu‑
alty and missing people proportion of flash flood/general flooding events in China have 
been over 60% for a long time and the rate even up to 87.6% in 2010 (Chinese Flood Con‑
trol and Drought Relief Headquarters 2013). Thus, it is believed that the flash flood is one 
of the most important threats that cannot be ignored all over the world.

As a mountainous, rainy and undeveloped country in Southeast Asia, Laos suffers fre‑
quent flood disasters every year. The flooding from the Mekong River causing great threats 
to the lower reaches’ residents (Plate 2007), and the losses caused by flash floods are 
also very prominent. According to the historical record, the flash flood events occurred 
in Oudomxay of northern Laos in 1986 caused 52 casualties (Laos Water Resource and 
Environment Administration 2008). Especially in recent years, with the accelerated devel‑
opment of hydropower, the potential risk of flash flood disasters increases sharply. Only in 
2018, the flash flood happened due to the dam failure in Attapeu of southern Laos caused 
more than 100 people dead or missing. However, in facing such a severe threat, Laos has 
not yet established a fundamental risk management system for flash floods prevention from 
the central government to local administrations, even in conceptual. Therefore, the hazard 
assessment, as an important premise of risk management, is the first gap should be filled in 
current status.

The concept of hazard assessment came from the theory of risk on natural disasters, 
in which the risk was defined as a mathematical expectation of losses in a disaster-prone 
process (Alexander 1993). Generally, it is believed that the concept of natural disaster risk 
and its basic formula, proposed by the Department of Humanitarian Affairs of the United 
Nations in 1992, are the theoretical basis for corresponding assessment work. In this for‑
mula, the natural disaster risk is expressed by the product of the hazard degree of natu‑
ral process and the vulnerability of the corresponding disaster-bearing body. Obviously, 
as a representation of the occurrence probability of potential disaster process, the hazard 
assessment is also a very fundamental and important work; it can provide a basis for the 
planning of villages system and the layout of prevention facilities.

Hazard assessment on flash flood disasters can be roughly categorized into two types, 
i.e. the process analysis method and the cause analysis method, according to their differ‑
ent analytical perspective. The process analysis method is mainly based on rainfall–runoff 
simulation and flood routing model, and the output could be specific on inundation range 
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and velocity distribution of the floods at different recurrences. For instance, Zaharia et al. 
(2015) estimated the possible affected area, buildings and roads under 1%, 5% and 10% 
probabilities of flood discharge in a catchment of 427 km2 of Romania based on the HEC-
RAS model; Zhang et  al. (2016) simulated a typical mountain torrent event in Yunnan, 
China, by using the Floodarea model in order to obtain the critical rainfalls under differ‑
ent inundation depths. Compared with the normal models for flash flood forecasting, the 
process analysis method can provide more details on physical mechanism theoretically 
because of no limitation on lead time.

Based on runoff hydrograph, some scholars proposed indicators to reflect the charac‑
teristics of a specific catchment on hydrological responses to the potential causative rain‑
storm, such as the rising curve gradient, flood magnitude ratio and flood response time 
by Bhaskar et  al. (2000) and the flashiness by Saharia et  al. (2017). These indices usu‑
ally express a single feature like rising limb, time to peak, magnitude of peak or the com‑
prehensive part of them, and they do reflect some key features of flash flood processes in 
many cases. However, hazards from flash floods are not only related to some part of the 
hydrograph, but also to the uncertainties from runoff yield, flood routing, bridge and cul‑
vert siltation, formation and collapse of barrier body and so on. The idea can be treated as a 
special or simplified process analysis method.

Basically, the process analysis method relies heavily on the reliability of data on rain‑
storm distribution, runoff yield, channel roughness and cross-section morphology. Moreo‑
ver, some key parameters, such as the infiltration rate in a rainfall–runoff model, need the 
field work of calibration to achieve higher output accuracy. Therefore, the process analysis 
method is poorly reliable in completely ungauged areas, especially in current Laos, and it is 
also hard to be widely promoted.

In cause analysis method, hazard attributes are calculated based on the empirical rela‑
tionships between the flash flood disasters and their main natural elements generally, and 
the GIS method of layer algebraic overlay is used commonly to synthesize the layers of 
different elements, in order to obtain the hazard pattern of assessment objects. The build‑
ing of indices system and relevant weights design are the two core works in this method. 
Researchers usually establish an indices system by selecting the data from rainstorm, 
topography, soil texture, lithology, fracture, vegetation, land use, historical disasters or 
even some flood process indices, based on the qualitative and quantitative knowledge of the 
causes of flash flood disasters.

If the historical disaster events are recorded and supported sufficiently, the contribu‑
tion of each index to the historical events can be estimated by the methods of regression, 
information model, sensitivity analysis, grey incidence model or other models, so as to 
assist the weights design (Luo et  al. 2011; Du et  al. 2015; Costache and Zaharia 2017). 
Otherwise, the subjective method, objective methods or the combined methods, such as the 
analytic hierarchy process (AHP), the entropy method and the scoring method are mostly 
used for scoring. For instance, Youssef et al. (2011) scored the risk-related indices from 11 
sub-basins in Egypt based on the relationships between the bifurcation ratio and the drain‑
age density or drainage frequency; Zeleňáková et al. (2015) determined the importance of 
flash flood causal factors in a Slovakia basin by using AHP; Zeng et  al. (2016) used a 
mixed method of the AHP and the information entropy theory for generating a FFPI map in 
Yunnan, China.

Besides, the machine learning related methods, such as the logistic model, support vec‑
tor machine, decision tree or random forest, can also be used to obtain the output directly 
based on an appropriate setting of the input/output parameters, rules or classification logic. 
Wang et al. (2015) evaluated the flood hazard in Dongjiang River, Southern China, based 
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on 5000 samples by using the random forest model and found that the maximum 3-day 
precipitation, runoff depth, typhoon frequency, DEM, and topographic wetness index are 
the most important five indices. Costache (2019a, b) compared different machine learning 
models and the related hybrid algorithms on flash flood potential assessment in Romania, 
and several quantitative methods, such as the ROC Curve model, were used to validate 
the outputs. The results indicated that the hybrid models performed excellent (AUC val‑
ues > 0.87) and presented significant advantages with the subjective weighting method 
listed in the study. It is believed that the machine learning technology would play a more 
and more important role on natural hazard assessment in the future, with the accumulation 
of historical data and the optimization of various classification algorithms.

Compared with the process analysis method, the cause analysis method is more 
mature on theoretical framework, more flexible on application and lower requirements for 
data accuracy. Although the specific range of flooding cannot be provided, the output of 
regional hazard pattern can still be very useful for preliminary risk management, and it is 
easier to be verified. Therefore, for current Laos where lacks the basic prevention and event 
record system on flash flood disasters in most area, it is believed that the cause analysis 
method is more suitable for local promotion and application.

The Nam Ou River, one of the most important tributaries of the lower Mekong in north‑
ern Laos, is rich on hydropower and ecological resources. In addition, its population and 
navigation capacity also rank the first class among the main rivers in Laos. Because of the 
high relief on topography and the intensified and frequent rainstorms, the Nam Ou River 
Basin is always highly susceptible to flash floods and threatens the local residents’ pro‑
duction and life heavily. Accordingly, a comparative study focused on flash flood hazard 
assessment of the Nam Ou River Basin is implemented here based on the methods such 
as GIS, flash flood potential index (FFPI), regression and curve number calculation in this 
paper, in order to (1) obtain a reliable map on hazard pattern for local flash flood disaster 
prevention; (2) compare and analyse the applicability of the assessment methods used in 
this study for the area with little fundamental work.

2 � Methodology and data preparation

2.1 � Study area

The Nam Ou River originates from the mountain area at the frontier between the 
Jiangcheng County, Yunnan, China, and the Phongsaly, Laos (Fig. 1). It is one of the most 
important tributaries in the lower Mekong River in Laos, drainages an area of 24,600 km2 
and has a length with 475  km in mainstream, ranking first among the 12 biggest rivers 
except the Mekong mainstream in Laos, respectively. Besides, the regional population, i.e. 
404,000 persons in 2015, and the ecological and navigation scales are also ranking the 
first class among the above rivers. The average annual discharge of the Nam Ou River is 
about 610 m3/s, contributing 3% discharge to the whole Mekong River only. However, its 
hydropower potential is up to 1670 MW, accounting for 11.3% of the technically available 
hydropower resources of the Mekong Basin. In recent years, with the confirmation of the 
“corridor country” economic strategy in Laos national level, i.e. promoting cross-border 
trade from inland areas, the Nam Ou River, as a border river among China, Laos and Viet‑
nam, would play a more and more important role in future regional trade.
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Although the development prospects of the Nam Ou River Basin are highly expected, the 
current situation on flood control is not optimistic. The regional topography is dominated by 
mountainous area with typical features of tectonic denudation, erosion accumulation and karst 
landform. Slope gradient more than 30% accounts for about 60% of the total area of the basin, 
while only 2.2% of the area inner basin is flat. On the other hand, influenced by warm and 
wet airflow from the Bay of Bengal and the Beibu Gulf, tropical monsoon climate prevails 
in the basin, with abundant rainfall and distinct dry and wet season characteristics. The aver‑
age annual rainfall in the basin can reach 1610 mm, which decreases gradually from north 
to south. The wet season rainfall from June to November can account for 80% of the whole 
year. In addition, the regional surface is occupied widely by acrisol, a kind of thin, sticky and 
low-fertility soil, which is not conducive to the traditional cultivation and tillage. Thus, the 
shifting cultivation, mainly slash-and-burn method, was popular in this area naturally, which 
in turn intensifies the destruction of forest resources, leading to runoff increased locally. Based 

Fig. 1   Nam Ou River Basin, Lao PDR
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on these backgrounds, the regional floods, especially the flash floods, occur frequently in the 
Nam Ou River Basin, causing a great threat to local residents. However, due to the low level of 
social productivity and the lack of financial and technical support, there is still a long way to 
go on flash floods prevention for local administration, currently.

2.2 � Methodology

The hazard pattern of regional flash floods can be quantitatively described by the methods 
such as FFPI, regression or other runoff yield methods. Considering the current data support, 
the convenience of promotion and the reliability of methods, herein the FFPI, the calculation 
of curve number–rainfall erosivity and the so-called extrapolation method are used to make 
a comparative analysis of the hazard distribution of flash floods in the Nam Ou River Basin. 
Among these three methods, the one with the results closer to the actual disaster situation 
would be the preferred plan.

2.2.1 � FFPI method

The FFPI is an assessment method of flash flood occurrence based on factor empirical anal‑
ysis, which was developed in 2003–2004 by the Colorado Basin River Regional Forecast 
Center, NWS. The original intention of developing this method is to participate in forecasting 
and pre-warning of flash floods as a supplement to LFFG, i.e. Lumped Flash flood Guide sys‑
tem. However, since its principles and considerations are of indicative significance to describ‑
ing the threat level of regional flash floods, it can also be used for hazard assessment of flash 
flood disasters (Stanimir et al. 2017). The principle of FFPI is to quantize and score the effect 
of each element by 10 degrees based on physical and empirical relationships between the four 
elements, i.e. the soil type, land use, slope and vegetation cover, and the runoff generation 
(Smith 2010); then, with the support of GIS technology, the distribution map of flash flood 
occurrence potential can be calculated through the algebraic overlay of layers of the four ele‑
ments. The formula for FFPI is as follows:

where IFFPI is the specific value of FFPI with a theoretical range of 0–10: the higher the 
value is, the greater the occurrence potential of flash floods would be; M, L, S and V 
indicate the slope gradient, land use, soil property and forest cover, respectively, and the 
numerical range of these indicators is also 0–10; k1, k2, k3 and k4 are the respective weight 
coefficients, generally set as equal weight; considering that the slope gradient plays a more 
important role on flash flood development commonly, the k1 is usually given a higher 
value; N = k1 + k2 + k3 + k4.

Since the release of FFPI, the model and its related derivatives have been applied in many 
countries or regions including the USA, China, Vietnam, Japan and Serbia. Currently, the 
FFPI may be one of the most influential cause analytical methods of flash flood occurrence 
worldwide.

2.2.2 � Curve number–rainfall erosivity method (C–R method)

The famous NRCS runoff curve number is an indicator proposed in 1972 by the US Natu‑
ral Resources Conservation Service, i.e. Soil Conservation Service formerly, to reflect the 

(1)IFFPI =
(

k1 ⋅M + k2 ⋅ L + k3 ⋅ S + k4 ⋅ V
)

∕N
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regional potential runoff yield. Its principle is to propose an empirical parameter reflecting the 
infiltration or runoff yield performance of the underlying surface according to the hydrological 
relationship between the soil, land use type and the runoff yield. Theoretically, combined with 
the data of real-time rainfall and antecedent soil moisture (Table 1), the parameter can be used 
further to calculate the specific amount of runoff yield from each rainfall event.

In this study, only the general scenario is calculated, i.e. CN value of AMCII (CN2), which 
can be obtained with reference to the SCS handbook (SCS 1972). Since the effect of slope 
is not considered in traditional CN method, the Sharpley and Williams (1990) method (for‑
mula 2) is used to obtain the improved CN2 value, i.e. CN2α

where α indicates the slope gradient.
After the CN2α is obtained, the amount of runoff yield in each rainfall event can be calcu‑

lated by the formulas (3)–(5)

where Q indicates the amount of runoff yield in each rainfall event; P indicates the amount 
of each event; Ia indicates the initial interception; and S indicates the potential maximum 
moisture capacity.

Unfortunately, only the monthly precipitation data in recent decades were supported by the 
Laos government; thus, the specific runoff depth cannot be calculated in this study. For fully 
used these data, the Wischmeier’s empirical formula on rainfall erosivity (formula 6), in which 
the storm-related rainfall intensity is also considered, is used instead to reflect the rainfall 
power on flash flood development.

(2)CN2� = CN2

322.79 + 15.63(�)

� + 323.52

(3)Q =

(

P − Ia
)2

P − Ia + S

(4)Ia = 0.2S

(5)S =
25400

CN
− 254

(6)R =

12
∑

i=1

(

1.735 × 10

(

1.5 log
P2
i

P
−0.8188

)
)

Table 1   Antecedent soil moisture condition (AMC) used to determine CN value. Source: Chow et al. (1988)

Grade AMC Antecedent precipitation in 5 days (cm)

Non-monsoon period Monsoon period

I. Optimum soil conditions from plastic limit to wilting point Lower than 1.25 Lower than 3.5
II. Average annual flood 1.25–2.75 3.5–5.25
III. High or low precipitation and low temperature 5 days 

before the rainstorm
Higher than 2.75 Higher than 5.25
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where the P indicates the mean annual precipitation (mm) and the Pi indicates the monthly 
precipitation (mm). The R is the rainfall erosivity in the unit of 100 ft t in ac−1 h−1 a−1.

Once the layers of CN2α and R are prepared, the hazard outcome based on the C–R 
method can be obtained by the overlay of the two layers in GIS.

2.2.3 � Extrapolation method

This method is based on the relationships between flash flood disasters and their impact 
factors in the Yunnan Province, China, where borders the Nam Ou River Basin and shares 
a similar geographical environment in general. In this method, the stable empirical rela‑
tionships between the disaster events and the development elements should be established 
first by regression or other mathematical tools, and then, the relationships would be extrap‑
olated into the target area, i.e. Nam Ou River Basin here, with the inputs of corresponding 
local data of impact factors.

As one of the most commonly used models in the world, the general linear regression is 
selected as a basic model of extrapolation method. Recently, the logistic model is proved 
to be very useful on flash flood assessment (Costache 2019a; Xiong et al. 2019); thus, the 
model is also chosen for comparing. Besides, considering that the flash floods usually 
develop in clusters widely in mountain area (Du et al. 2016; Xiong et al. 2019), presenting 
significant autocorrelation characteristic and in line with the first law of geography (Tobler 
1970), the spatial regression model, i.e. the spatial lag model or the spatial error model in 
this study (Anselin 1988), was also used as an important statistical tool in addition to the 
ordinary multiple regression and the logistic model. Since the latter two models are well 
known in academic world, the following will focus on the fundamental principles of spatial 
regression model and its general parameter settings of this study.

The classical linear regression model (formula 7) consists of dependent variable Y, con‑
stant term a, independent variable X and its coefficient b, as well as error term e. In this 
model, the dependent variable Y is only affected by the independent variable X, and the 
error terms e are completely independent and subject to normal distribution. However, for 
the phenomena of spatial autocorrelation, the use of a classical regression model may lead 
to fitting failure or inadequate goodness of fit, resulting from two situations: firstly, the 
dependent variable Y is not only affected by independent variable X, but also affected by 
the adjacent dependent variable Y′, i.e. spatial autocorrelation exists between dependent 
variables; secondly, although spatial autocorrelation of the dependent variable itself is not 
significant, there is a spatial autocorrelation between error terms e for some reasons. For 
the first situation, the spatial lag model (SLM) can be used for fitting (formula 8), which 
has a spatial weight matrix ρWY of dependent variable added on the basis of classical 
regression model; for the second situation, the spatial error model (SEM) can be used for 
fitting (formula 9), which has a spatial weight matrix λWε of error term added on the basis 
of classical regression model

The spatial weight matrix W is an important concept in spatial autoregressive simula‑
tion. It is a set of matrices built to describe the spatial adjacent relation of an object or unit. 

(7)Y = a + bX + e

(8)Y = a + �WY + bX + e

(9)Y = a + bX + �W� + e
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Suppose that there are n neighbouring units around a central unit, each neighbouring unit 
gives the central unit an influential weight of 1/n; when n = 0, it means that the spatial auto‑
correlation is not necessary to be considered for the central unit. There are three forms of 
adjacent relation: The Queen contiguity, i.e. units contact by point and edge; the Rook con‑
tiguity, i.e. units contact only by edge; the Distance contiguity, i.e. units contact according 
to a certain distance threshold. It is believed that the selection of adjacent relation should 
follow a principle, which is the less neighbouring units, the better (Florax and Rey 1995; 
Griffith 1996; Meng et al. 2007). Accordingly, the Rook contiguity is used here to deter‑
mine the number of adjacent units.

2.3 � Data sources and layers calculation

2.3.1 � Rainfall erosivity

Based on the monthly rainfall data, i.e. 13 stations during 1994–2009 in Laos and 68 sta‑
tions during 1951–2002 inner and around Yunnan, provided by the Ministry of Natural 
Resources and Environmental Protection of Laos and the China Meteorological Adminis‑
tration, respectively, the rainfall erosivity of each station was calculated by the empirical 
formula (formula 6) of Wischmeier and interpolated by the Kriging method in ArcMap so 
as to obtain the raster layers (Fig. 2).

2.3.2 � Soil and land use indices

The effect of soil on runoff yield is mainly reflected by infiltration performance, which is 
closely related to the soil texture. Studies show that the soil with better pore development 
usually presents higher infiltration level, and the clay, silt and sand grains support the pore 
development differently due to their different mechanical compositions and organic con‑
tents (Helalia 1993; Shan et al. 1998). It is believed that the clay presents low-level infiltra‑
tion because the soil pores can be hardly developed for its smaller grain size trending to 
form crust easily when exposed to water (Helalia et al. 1988), while the sandy soil is on the 
contrary. Accordingly, the soil potential of flash flood development in different regions can 
be defined based on the soil texture.

FFPI quantifies the soil potential of flash flood development into 10 levels based on the 
mechanical components of different types of soil (Table 2). In this study, the vector layer 
of soil texture distribution in the Nam Ou River Basin and Yunnan was generated by GIS 
based on the data from the World Soil Properties Database and the official literature (Laos 
Department of Water Resources 2016), and then the scoring process was implemented 
according to the FFPI standard on soil (Fig. 3a).

The land use types also affect runoff yield theoretically. On one hand, the urban and 
industrial land presents more runoff yield than that of other land use types due to the hard‑
ening of the earth surface. On the other hand, unreasonable development activities may 
lead to a regional reduction in vegetation coverage and aggregation of soil erosion, which 
increases the runoff yield to a certain extent. The FFPI on land use sets the quantitative 
levels according to the empirical effects of different land use types on runoff yield (Lin 
et al. 2016). In this study, the land use types of Yunnan in China and Nam Ou River Basin 
in Laos are assigned with values based on the standards (Table 3, Fig. 3b). Relevant data 
derive from the Resource and Environmental Science Data Center of the Chinese Academy 
of Sciences and Laos Ministry of Natural Resources and Environmental Protection.
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The CN value reflects the potential runoff generation on different kinds of under‑
lying surfaces. Specifically, it is an indicator reflecting the maximum retention capac‑
ity of precipitation (Smith 2010), including the interception by vegetation and soil and 
the infiltration of underlying surface. The higher values on CN mean lower infiltration 
rates and higher amount on runoff yield. The soil characteristic and land use are two 
key aspects of CN values estimation. By checking the hydrological soil data (Table 4) 
determined by the US Department of Agriculture in 1986 based on the soil infiltration 
rate from high to low, the hydrological soil groups of the study area can be determined. 
Meanwhile, the original CN assignment table and the corresponding vector layer can be 

Fig. 2   Distribution map of rainfall erosivity in Nam Ou River Basin and Yunnan
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obtained (Fig.  3c) by referring to historical research (Hadley 2002; Ebrahimian et  al. 
2009).

2.3.3 � Slope

The steep mountain causes various topographic rains, especially the night storm which 
causing disaster easily. Besides, it can also accelerate the processes of runoff generation 
and confluence. Furthermore, the mountainous area usually leads to large-scale land‑
slides and collapses, providing source and path for the occurring of debris flows. Hence, 
the topography affects the development of flash flood significantly and directly. The FFPI 

Table 2   Scoring basis of soil 
FFPI value. Source: Smith (2010)

FFPI index Sand% Silt% Clay%

1 92 5 3
2 83 11 6
3 74 17 9
4 65 24 12
5 56 30 15
6 47 32 21
7 37 36 27
8 28 27 45
9 19 27 55
10 10 30 60

Fig. 3   Layers of underlying surface elements and hazard degree in Nam Ou River Basin and Yunnan
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system divides the gradient of the slope into 10 grades at equal intervals, in which Grade-1 
is between 0 and 10% and Grade-10 is 90% and above (Smith 2010). Based on the revised 
ASTER 30 m DEM, this study divides the gradient of Yunnan and Nam Ou River Basin 
into different FFPI grades and generates the vector layer in GIS (Fig. 3d).

2.3.4 � Forest coverage

The growth of forest can retain the rainfall and runoff effectively by canopy interception, 
water storage from fallen leaves and dry branches as well as soil structure improvement 
by the root system. Though these effects could be weakened or even reversed due to the 
vegetation’s water conservation under continuous storm floods, it is believed that the forest 
vegetation is generally effective in inhibiting the formation of flash floods. Similar to the 
slope grades, FFPI system divides the forest coverage rate into 10 levels at equal intervals, 
of which Gradel-1 is between 91 and 100% and Grade-10 between 0 and 10%.

Table 3   Assignment of CN and FFPI values based on land use types and hydrological soil properties

Land use types in 
China

HSGs Land use FFPI Land use types in 
Laos

HSGs Land use FFPI

A B C D A D

Towns or industrial 
zones

98 98 98 98 10 Cities or building 
areas

98 98 10

Bare rocks 98 98 98 98 10 Other agricultural 
land

64 85 6

Bare land 89 94 92 95 9 Bamboo forest 30 77 4
Shrub land 67 85 77 88 7 Shrub land 67 88 7
Dry farmland 64 82 75 85 6 Agricultural planta‑

tion
– 85 6

Paddy field 64 82 75 85 6 Paddy field 64 85 6
Grassland 49 79 69 84 5 Grassland 49 84 5
Orchard 64 82 75 85 6 Mixed fallen leaves 30 77 4
Open woodland 30 70 55 77 4 Open woodland 30 77 4
Woodland 30 70 55 77 3 Non-forest land 30 77 3
Wetland 20 40 35 40 2 Dried dipterocarp 30 77 3
Swamp 20 40 35 40 2 Low-dry evergreen 

forest
30 77 3

Open water area 0 0 0 0 1 Open water area 0 0 1
Perennial ice and 

snow
0 0 0 0 1

Table 4   Hydrological soil groups 
of disturbed soil profiles. Source: 
NRCS (1986)

HSG Soil texture

Group A Sand, loam, or sandy loam
Group B Silt loam or loam
Group C Sandy clay loam
Group D Clay loam, silty clay loam, 

sandy clay, silty clay or 
clay



1405Natural Hazards (2020) 102:1393–1417	

1 3

With the monthly synthetic product from MODIS-500 m-NDVI during 2000–2002, the 
forest coverage rate in Yunnan and Nam Ou River Basin was mapped and scored based on 
relevant standards of the FFPI system (Fig. 3e).

2.3.5 � Shape and area of watershed units

The shape and area of the watershed are important hydrological parameters to the develop‑
ment of flash flood. In this study, the shape coefficient Ke, i.e. the ratio of actual perim‑
eter of the watershed to the hypothetical perimeter of a circle with the same area, is used 
to reflect the hydrological influence from the watershed shape. When the shape of water‑
shed becomes more and more like a circle, the Ke value is closer to 1, and the duration of 
confluence is shorter, which is more favourable to the formation of flash floods. Once the 
scales of watershed units been decided, the Ke value and the area can be directly calculated 
in GIS with the raster calculator tool.

2.3.6 � Flash flood hazard pattern in Yunnan based on historical disaster records

According to the historical disaster events reported by the administration of Yunnan in the 
project of National Planning for Flash Floods Disasters Prevention and Control in China, 
738 flash flood points (952 disaster events) and 1481 debris flow points (1532 disaster 
events) caused by flash floods were collected and recorded during 1949–2002. Unfortu‑
nately, no sufficient messages, such as the losses, the estimated frequency or scale of each 
flood or rainfall, the involved areas, were provided in this database except the locations. 
In addition, the historical disasters represent only where the events have happened but no 
clear indication of the disaster-prone range.

For presenting the disaster-prone or hazard areas of flash floods in Yunnan more closely 
(Fig. 3f), the method of spatial interpolation was used to complement necessary informa‑
tion based on the assumption of that area adjacent to disaster points share the similar disas‑
ter-prone environment. The assumption is rational according to the spatial autocorrelation 
of flash flood development.

The specific steps are as follows: (1) a concrete hazard value is set for each flash flood 
point according to its frequency. For instance, a point where the flash flood occurred for n 
times shall have the hazard value of n; (2) considering that the debris flow is more complex 
and causes greater threats to local residents commonly, the hazard value for each debris 
flow point is three times of the frequency; (3) the areas have no events recorded definitely 
would be interpolated points with the hazard value of 0, the points should be distributed 
in space as evenly as possible; (4) the interpolation is performed with the inverse distance 
weighting (IDW) method, and the best parameter setting should be the minimum value of 
root-mean-square error (RMSE) of the result.

3 � Results and discussion

3.1 � Scale effect of the watershed unit

It is common to explore the correlation between two elements by their geographical 
relevance in spatial analysis. However, the relevance might be changed at different spa‑
tial statistic scales, i.e. there might be a scale effect between the elements on spatial 
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correlation. The previous studies have paid great attention on the scale effect of sin‑
gle geographical phenomena (Lam and Quattrochi 1992; Xu and Yan 2005; Shi 2008), 
instead of the changes of spatial relationships between elements with different scales. 
Besides, the proper statistic scale, i.e. the most representative area scale of watershed 
units, in Yunnan also needs to be clarified in the extrapolation method of this study. 
Accordingly, a scatter analysis was made by using the tool of hydrology in GIS. In this 
tool, various statistic scales of watershed units can be generated based on different flow 
accumulation thresholds. Once the scales of watershed units were determined, the geo-
statistic characteristics of each element, including the potential impact factors and the 
average hazard degree based on historical events recorded of Yunnan, could be obtained 
and the Pearson correlation analysis between each factor and the hazard degree would 
be processed; then, the changes in the correlation coefficients at different scales could 
be presented.

Theoretically, potential impact factors, such as land use and slope, play important roles 
in flash flood development. However, in spatial analysis whether the element becomes the 
key or ‘bottleneck’ factor depends on the so-called short board effect, i.e. only the ele‑
ment that really restricts the entire development system can be the key factor in a specific 
area. For example, it is believed that the rainstorm is an important trigger factor for a spe‑
cific flash flood event, but to an area that basically presents the same rich level on rainfall 
characteristics, the role of rainstorm can hardly be detected in a spatial analysis because 
the flash flood events are not sensitive to rainstorm distribution in macroscopical sense. 
In other word, if the role of rainstorm in commonsense could not be detected in a specific 
area, it does not mean the rainstorm has no impact on flash flood development; only indi‑
cates that it is not the ‘bottleneck’ factor in this region.

In this case, the indices of land use FFPI and the rainfall erosivity in Yunnan present 
negative correlations with the hazard degree, i.e. the greater the rainfall erosivity or land 
use FFPI is, the smaller the frequency of events will be (Table 5), which is contrary to 
the common recognition. Obviously, it indicates that these indices are definitely not the 
key factors on flash flood development in Yunnan. Similarly, the shape coefficient of Ke 
also presents a false correlation in this area. Generally, the larger the Ke is, the shape of 
watershed tends to be narrower and longer, and the capacity of runoff yield and confluence 
becomes weaker. However, the correlation analysis shows that the coefficients between Ke 
and the hazard degree are positive at most statistic scales.

Except for the obvious false correlation of land use FFPI, rainfall erosivity and Ke, the 
rest indices of slope FFPI, soil FFPI, vegetation FFPI as well as the watershed area at dif‑
ferent statistic scales were connected with the hazard degree to form a scatter diagram on 
correlation coefficients (Fig. 4). It seems that except the soil FFPI, the correlation between 
the other factors and hazard degree basically increases with the larger of the statistic scale, 
of which the watershed area has the highest correlation level at 555 km2 average watershed 
area and after that remains stable, and the vegetation FFPI varies similarly, while the cor‑
relation of the slope FFPI reaches the highest level at the largest statistic scale.

Although the water amount of flash flood comes from the mountainous parts of a water‑
shed mostly, the disasters occur mainly in low-lying parts where human activities are relatively 
frequent. Hence, the effects from natural elements such as landform and vegetation cover on 
flash flood events are easily disturbed by human activities at small spatial scales, showing low 
correlation levels. However, with the increase in spatial scales, the effects from natural char‑
acteristics of watershed become more and more obvious, and the corresponding correlations 
increase accordingly. Since the soil properties are not necessarily related to the formation of a 
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watershed, and the spatial heterogeneity of soil FFPI is also very high in Yunnan (Fig. 3a), the 
correlation between soil FFPI and hazard degree presents more complex trend (Table 5).

As a summary, most of the indices, i.e. watershed area, vegetation FFPI and slope FFPI, 
have the highest or relatively stable correlation level with the development of flash flood 
events at the scale of average watershed area of 555 km2. Accordingly, the corresponding flow 
accumulation threshold, i.e. 40,000 here, would be set as the basis for watershed division in 
the subsequent extrapolation study.

Table 5   Correlation coefficients between potential impact factors and the flash flood hazard based on his‑
torical data on different scales in Yunnan

FAT flow accumulation threshold, accumulation units in GIS, AWA​ average watershed area, km2, Landuse 
land use FFPI, Slope slope FFPI, Soil soil FFPI, Vfc vegetation fractional cover, Re rainfall erosivity, Area 
watershed area, Ke coefficient of basin shape
a Means the value is insignificant statistically

FAT AWA​ Landuse Slope Soil Vfc Re Area Ke

5000 61 − 0.036 0.018 0.042 0.043 0.043 0.331 − 0.028a

10,000 126 − 0.065 0.042 0.048 0.061 − 0.059 0.417 − 0.021a

15,000 204 − 0.095 0.067 0.058 0.085 − 0.079 0.433 − 0.017a

20,000 249 − 0.118 0.067 0.044a 0.094 − 0.084 0.442 0.024a

30,000 418 − 0.123 0.089 0.066a 0.116 − 0.102 0.564 0.133
40,000 555 − 0.162 0.093 0.078a 0.129 − 0.094 0.578 0.223
50,000 690 − 0.175 0.088 0.048a 0.131 − 0.119 0.570 0.246
60,000 854 − 0.18 0.128 0.051a 0.131 − 0.123 0.575 0.261
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Fig. 4   Scatter plot of correlation coefficients between main potential impact factors and the flash flood haz‑
ard based on historical data in Yunnan during different scales. Note: the vertical dashed line indicates the 
selected watershed scale in the following study
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3.2 � Hazard maps based on the three methods

Combined with the data layers of various elements prepared previously and the method 
of algebraic overlay in GIS, the hazard pattern of flash floods in the Nam Ou River Basin 
based on FFPI algorithm can be obtained by the formula (1) (Fig. 5, left). Similarly, by 
the product overlay of the layers of revised CN and rainfall erosivity, the hazard map 
based on C–R algorithm can also be achieved (Fig. 5, right). The two outcomes present 
the same direction of value, i.e. the larger the hazard value is, the higher the regional 
occurrence probability or hazard degree of the flash flood is. The data presented in FFPI 
outcome remain unchanged, while that in C–R outcome is normalized in 0–1.

Normally, the FFPI outcome reflects the comprehensive effects of the underlying 
surface on flash flood development. In the Nam Ou River Basin, the influence of soil 
infiltration properties is highlighted. The high content of gravel and sand in cambisol 
weakens the runoff yield; thus, the local occurrence rate of flash floods is significantly 
lower than that of the area no cambisol developed (Fig. 5, left). Meanwhile, the topogra‑
phy also plays an important role, causing the high-relief mountain areas in the northern, 
central and southern parts of the basin at relatively high hazard degrees. In comparison, 
the hazard outcome based on C–R method has a more obvious feature on spatial trend: 
the hazard degree gradually decreases from northwest to southeast, reflecting the direct 
influence of rainfall pattern on flash flood development (Fig. 2).

The analysis in part 3.1 indicated that the FFPI indices of soil, vfc, slope and the area 
index in Yunnan were correlated with the development of flash flood effectively. There‑
fore, in the method of extrapolation, the four indices as well as the CN value were used 
as the independent variables to build the regression models, i.e. the spatial lag model, 
spatial error model, general regression model and logistic model, for understanding the 
fundamental empirical relationships between the potential impact factors and the flash 
flood disasters in this area, and the basic statistic units are set in 555 km2 of average 
watershed area accordingly.

Fig. 5   Hazard maps based on FFPI and C–R method
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The flash flood hazard degree in Yunnan was divided into three levels based on an 
objective classification method, i.e. the Jenks Natural Breaks, which can provide the best 
arrangement of values by reducing the variance within classes and maximize the variance 
between classes (Esri 2010). Taking the three-level hazard characteristics as the dependent 
variables (Table 6), the multinomial logistic model (MLM) was built for hazard assessment 
firstly. Although the model was significant statistically, it performed bad on identifying the 
watershed units with medium and high hazard level in test (Table 8). Except for the large 
amount of noises of the samples, another reason for this is the independent variables are all 
continuous or quasi-continuous and can hardly be categorized with rational basis. Hence, 
the units with medium and high hazard levels were combined into one category for build‑
ing the binary logistic model (BLM) in order to obtain better prediction performance, and 
the model is acceptable after some noise data were eliminated (Tables 6, 7, 8). However, 
when the model was extrapolated into the Nam Ou River Basin, all the watersheds were 
identified as the units with medium and high hazard level because of the high value on 
regional slope, which means all of the watersheds are prone to develop flash floods. The 

Table 6   The characteristics of dependent variables in logistic models

MLM Samples number Percentage (%) BLM Samples number Percentage (%)

Hazard 3 Hazard 2
 1 320 59.5  1 273 62.2
 2 179 33.3  2 166 37.8
 3 39 7.2

Sum 538 100.0 Sum 439 100.0

Table 7   Results of independent variables in logistic models

β, SE and Exp (β) denote the partial regression coefficient, standard error and odds ratio, respectively

MLM − 2 log likelihood Chi square Sig. BLM β SE Exp (β) Sig.

CN 876.201 16.511 0.000 CN 0.229 0.029 1.258 0.000
Slope 891.199 31.509 0.000 Slope 3.710 0.387 40.849 0.000
Vfc 878.686 18.995 0.000 Vfc 2.651 0.324 14.168 0.000
Area 874.549 14.858 0.001 Area 0.000 0.000 1.000 0.141
Intercept 907.893 48.203 0.000 C − 35.809 3.821 0.000 0.000

Table 8   Test results of the logistic models

MLM BLM

Observed Predicted Correct% Observed Predicted Correct%

1 2 3 1 2

1 287 33 0 89.7 1 238 35 87.2
2 134 44 1 24.6 2 52 114 68.7
3 29 9 1 2.6
Overall 61.7 Overall 80.2



1410	 Natural Hazards (2020) 102:1393–1417

1 3

accuracy of this result is hard to judge, but it cannot provide the hazard distribution pattern 
in the target area at least.  

As for the other three regression models, according to the three statistic indicators pro‑
posed by Anselin (1988), i.e. the log-likelihood value, the Akaike info criterion and the 
Schwarz criterion, as well as the corresponding criteria for model judgement, the larger the 
logarithm likelihood value is or the smaller the statistic value of Akaike and Schwarz crite‑
rion are, the better the fitting performance of the model will be. The logarithmic likelihood 
value of the general regression model is − 2124.98, much smaller than that of the spatial 
regression models (SLM, − 765.20; SEM, − 768.40), while its statistic value of Akaike and 
Schwarz criterion is much larger than that of the corresponding spatial regression models. 
These indicate that in this study the general regression model is indeed worse than the spa‑
tial regression model on fitting performance due to the insufficient consideration on spatial 
autocorrelation. Similarly, the indicators of spatial lag model are slightly better than that of 
the spatial error model, meaning the SLM is the preferred plan among the three regression 
models (Table 9).

Based on the results of statistic indicators of each factor in SLM, the spatial autocorrela‑
tion factor of dependent variable presents the most significant level among the independent 
variables, followed by slope FFPI and Vfc FFPI, while the CN value that reflecting the 
comprehensive properties of land use and soil presents the lowest significance. It seems 
that besides the strongly influenced by the spatial autocorrelation of processes themselves, 
the flash flood disasters in Yunnan are mainly affected by the elements of landform and 
forest cover. Assuming that the Nam Ou River Basin and Yunnan share the similar natural 
environment on flash flood development, the corresponding data of independent variables 
can be substituted into the SLM model to output the hazard map on flash floods in the Nam 
Ou River Basin.

3.3 � Comparison and validation

For comparison, the Jenks Natural Breaks is used to classify the three hazard maps based 
on the methods of FFPI, C–R and SLM, respectively (Fig.  6). It seems that the funda‑
mental distributed characteristic in the maps of FFPI and SLM is similar: the low-hazard 
areas are all distributed in the northern part of the basin, while the high-hazard areas are 
concentrated in the central and southern parts. Differences between the two maps are only 
focused on some local changes of hazard degrees. By contrast, the hazard map based on 
C–R method presents more differences on spatial trend, i.e. the hazard levels of watershed 
units gradually decrease from northwest to southeast. In principle, the FFPI and SLM maps 
mainly present the effects of an underlying surface on flash flood development, while the 
C–R map basically reflects the role of rainfall pattern. Therefore, methodologically speak‑
ing, the three methods have different underlying assumptions, and the difference in the 
results shows that either the underlying assumption of SLM and FFPI, or the C–R map 
assumptions may not be valid. However, since the annual precipitations in the whole areas 
of Nam Ou River Basin are very rich and concentrated, the rainfall can hardly be the ele‑
ment that restricts the regional development of flash floods; thus, the map based on C–R 
plan may not represent the hazard pattern accurately.

For further comparing the reliability of the hazard maps based on different plans, the 
flood disaster events in recent period were collected and summarized by the field investi‑
gation, literature research (Laos Department of Water Resources 2016; Changjiang Insti‑
tute of Survey, Planning, Design and Research 2018) and interviews with local officials in 
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Phongsaly, Oudomxay and Luangprabang. By using the statistic tools in GIS, the average 
hazard values at district scale were extracted from the three hazard maps, and the scatter 
diagrams were drawn with the density of historical events in each district (Fig. 7). Besides, 
although the final result from the binary logistic model is not distinguishable in the target 
area, its intermediate result, i.e. the probability, is quantified. Thus, this outcome can still 
be used to plot the scatter diagram with the density of historical events, so as to further 
understand the effect of the model.

Because there are no statistical data specifically for flash flood disasters in Laos offi‑
cially at present, the historical events data collected here are the total flood disaster events, 
and the statistical scope is general and broad; thus, the linear fitting relationships of the 
scatter diagrams are generally poor. Relatively speaking, the plan based on SLM model 
presents the best fitting performance, i.e. the higher the hazard degree, the greater the dis‑
aster density; thus, it is indeed the best plan among the six models. On the contrary, the 
fitting performance of the plan based on C–R method is very poor and illogical because 
it seems that the higher the hazard degree, the lower the disaster density. As mentioned 
above, the hazard map from C–R method mainly reflects the rainfall distribution, and the 
rainfall is always been an important trigger factor for a specific flash flood event. However, 
hazard assessment here is not designed for a specific flash flood forecast but for under‑
standing the overall flash flood development pattern. The rich rainfall is not the restrict fac‑
tor for flash flood distribution in the Nam Ou River Basin; thus, it is possible for a water‑
shed which has relatively lower rainfall level but suffering greater disasters, because other 
factors ignored by the C–R method may play the key impacts.

The fitting performance of the binary logistic model ranks second in the four models 
listed (Fig. 7). Considering the parameters of this model has been calibrated based on the 
extrapolation method framework, this goodness of fit is unacceptable. The logistic model is 
essentially a linear regression model; its fitting performance mainly depends on the linear 
relationship of the samples. However, since the flash flood disasters are very complicated 
and dangerous, it is difficult to record the first hand data and define the flood types, espe‑
cially in undeveloped region. Hence, the collected historical disaster data from Yunnan and 
Laos contain noises, inevitably. Obviously, these noises seriously interfere with the fitting 
of general linear model (Table  9), and the logistic regression model can hardly achieve 
an ideal result, either. On the other hand, the logistic model is not good at distinguish‑
ing the non-balance samples. For example, the proportion of the first, the second and the 

Fig. 6   Hazard maps based on FFPI, C–R and SLM in watershed units
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third categories of samples in the multinomial logistic model of this study is close to 6:3:1 
(Table 6), which means the final loss function can still be acceptable even if the samples 
from the second and the third categories are all identified as the first one.

3.4 � Rational hazard assessment plan of flash flood for current Laos

In previous studies, the spatial autocorrelation models, especially the spatial lag and error 
models, were used mostly in the correlation analysis of element layers rather than extrapo‑
lation in hydrological geography. Because the results from these models are usually very 
sensitive to the spatial zoning, while different zoning may change the neighbouring rela‑
tionships among the statistic units dramatically. However, in this study the fundamental 
statistic unit is determined by the natural water system, and the watershed scale was also 
decided based on the analysis of scale effect. Thus, the statistic relationships from SLM 
can be extrapolated into the other region with the similar environment and watershed scale, 
theoretically. The optimal fitting performance in the Nam Ou River Basin indicated that the 
SLM may be the best hazard assessment plan of flash floods for current Laos among the 
three methods. The successful practice means the spatial autocorrelation models can also 
be used for extrapolation, effectively.

Nevertheless, considering that the extrapolation method relies heavily on historical 
recorded, the SLM in this study may lead to misestimating to some extent if it be promoted 
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to the whole land of Laos and the data used to build the model has not been updated in 
time, especially in the southern Laos where the situation of precipitation, population, veg‑
etation cover and landform are quite different from that of northern mountainous area. In 
this case, it is believed that the FFPI can still be useful as an important auxiliary tool due 
to its comprehensive consideration on the main formed elements of flash floods. Besides, 
the FFPI is easier to promote for its simpler in the calculation and no validation process. 
Therefore, we believed that the rational hazard assessment plan of flash flood for current 
Laos is a mixed method, i.e. SLM proposed here can be implemented as the main assess‑
ment tool for the whole country while the FFPI map could also be made for reference in 
southern Laos.

The performance of logistic model in this study is not as good as that from the reports 
of Xiong et al. (2019) and Costache (2019a). One important reason for this is the quality of 
samples here is not good enough for the linear-relationship-based model, which also indi‑
cates that the spatial regression model is more adaptable to the rough samples of this study 
because of the spatial autocorrelation of the flash flood disasters. Optimistically, with the 
improvement on historical recorded system of flash flood in Laos, the new SLM updated 
by local input of data would become more and more reliable, and the revised FFPI based 
on logistic model or other machine learning methods could also be more useful in future 
study.

4 � Conclusions

Hazard assessment for the ungauged area is always been a knotty problem on flash flood 
disaster prevention. As a mountainous, rainy and less developed country in Southeast Asia, 
Laos suffers a lot from flash floods for poorly preparation on flood monitoring, event record 
and prevention system construction. In this paper, taking the Nam Ou River Basin in Laos 
as an example, three basic methods that represent three different solving ideas, including 
six models totally, were presented and compared, in order to provide a relatively reliable 
and easy-to-promote plan for current Laos on flash flood hazard assessment.

The FFPI and C–R here are the two methods that do not have to be calibrated, in which 
the FFPI focuses on representing the influence of underlying surface on the development 
of flash floods, while the C–R prefers to reflect the runoff yield and rainfall distribution 
characteristic. At the stage of validation, the fitting performance of the two methods is rela‑
tively poor, of which the FFPI method performs better because the development of flash 
flood in the Nam Ou River Basin seems to be affected greatly by the underlying surface 
elements.

The model parameters of extrapolation method need to be calibrated by the data from 
the adjacent region, i.e. Yunnan, China here, firstly. Hence, the fitting performance is better 
than FFPI and C–R in general. However, the four models from the extrapolation method 
present different effects at the stages of calibration and validation. Since the spatial auto‑
correlation of flash flood disasters is considered, the two spatial regression models, i.e. the 
SLM and SEM, are much better than that of the multiple linear regression model in terms 
of the statistic indicators for model judgement, and the goodness of fit of the two spatial 
models can reach more than 0.7, while the corresponding indicator is about 0.1 for the lin‑
ear regression model.

Although the binary logistic model (BLM) can achieve a comprehensive accuracy 
rate of recognition at 80.2% in test, the rate on identifying the high and medium hazard 
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watershed units is only 68.7%, which made the model fail to provide the hazard distribu‑
tion pattern in the Nam Ou River Basin, and its goodness of fit is also far from satisfactory 
at validation stage. Too much noises in the samples maybe the main reason for this result.

In the end the SLM, as well as the FFPI was selected as a mixed plan for current Laos’ 
flash flood hazard assessment, in which the SLM performed as the main assessment tool 
because of the best fitting performance, and the FFPI applied as an auxiliary tool for 
reference.

Since the adjacent relationships of units could be changed dramatically in different spa‑
tial scales, the spatial autocorrelation models, especially the SLM and SEM, have rarely 
been used for extrapolation in previous studies. This work indicated that the models can 
also be used for extrapolation effectively, even if the samples are not good enough for gen‑
eral linear and logistic models.

Besides, the scale effect of different potential impact elements on flash flood, i.e. the 
spatial correlation between each element and the distribution of flash flood events at dif‑
ferent spatial statistic units, was also preliminary studied. It is found that the degree of 
correlation in spatial analysis depends on the short board effect, i.e. only the element that 
restricts the regional flash flood developmental system can be the key factor. The correla‑
tions of most watershed elements, such as the average slope, vegetation cover and water‑
shed area, increase or decrease directly with the rise of watershed scale, and the values of 
coefficients tend to be stable at large watershed scales.
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