
Vol.:(0123456789)

Natural Hazards (2020) 102:519–552
https://doi.org/10.1007/s11069-020-03936-7

1 3

ORIGINAL PAPER

Selection of a basin‑scale model for flood frequency analysis 
in Mahanadi river basin, India

Sonali Swetapadma1 · C. S. P. Ojha1

Received: 28 August 2019 / Accepted: 16 April 2020 / Published online: 28 April 2020 
© Springer Nature B.V. 2020

Abstract
The present study provides an insight into a systematic evaluation of probability distribu-
tions using some statistical measures along with a few relevant catchment and flow prop-
erties to select a basin-scale model for flood frequency analysis (FFA) of Mahanadi river 
basin, India. A comprehensive analysis identified generalized extreme value (GEV), Pear-
son type 3, generalized Pareto, and Gumbel as the best-fit candidates for FFA of the water-
shed. GEV was selected as the basin-scale model based on a descriptive statistical ranking 
method followed by its test for predictive ability through bootstrap sampling. The distribu-
tion parameters were correlated with a few hydrological and physiographic characteristics 
of the watershed through regression analysis. The predictive capability of the regressed 
equations was assessed by comparing the observed mean annual flood (MAF) with the 
anticipated MAF derived from the expected value of GEV density function. Various return 
period quantiles were estimated using the parameters obtained from these equations and 
compared with the observed values, which confirmed the robustness of the physically 
based GEV model over the entire watershed. Flood flow values estimated at the gauging 
sites considering the site-wise best distribution and the basin-scale standard model were 
compared. The marginal difference of error between them further supported the application 
of a standard model for the entire basin despite site-wise different models.

Keywords  Design flood estimation · Annual maximum series · Regression analysis · 
Statistical ranking method · Generalized extreme value · Bootstrap sampling

1  Introduction

Flood is one of the pervasive natural disasters, where every year, numerous catastrophic 
river floods, urban floods, and other flash flood events affect the fragile ecosystem along 
with human lives and other properties all over the world. Such situations demand an accu-
rate prediction of flood flow values at various frequencies, which is a prerequisite for the 
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effective planning and design of hydraulic structures, risk analysis, and management of 
resources (Stedinger et  al. 1993). A comprehensive understanding of the probabilistic 
behavior of extreme events can be better analyzed by flood frequency study, which has 
been widely researched in hydrology but still has certain limitations regarding the sam-
pling of random events and choice of an appropriate probability distribution. Out of the 
two types of sampling approaches such as annual maximum series (AMS) and partial 
duration series (PDS), AMS consists of the maximum flow value of each year, i.e., annual 
flood value and PDS involves all the discharge above a particular threshold. Application 
of PDS in flood frequency analysis is much constrained due to the complexity involved in 
the selection of thresholds and also, the independence criteria of exceedances. Therefore, 
in most of the circumstances, the statistical method of flood frequency analysis is applied, 
which involves fitting theoretical distributions directly to the observed AMS to estimate 
higher return period quantiles. Accuracy of such approaches depends upon various factors 
such as the length of available data, presence of outliers, selection of the best-fit distribu-
tion, etc. (Saghafian et al. 2014).

Mesbahzadeh et al. (2019) analyzed the frequency of flooding in the Loot river basin 
using annual peak discharge coupled with the method of maximum L moments. They 
found the log Pearson type III (LP III) distribution to have higher correlation statistics for 
the entire watershed. Calenda et  al. (2009) proposed a sample quantile criterion for the 
selection of optimum distribution for flood frequency analysis and applied the same to the 
AMS observed at Ripetta gauge of the river Tiber in Rome. Drissia et al. (2019) compared 
the at-site and regional frequency analysis using the annual peak discharge of 43 stations 
spread over the state of Kerala, India. The best-fit model for both the cases was found to be 
completely different and no single distribution agreed to all the sites in case of at-site anal-
ysis. Bhat et al. (2019) performed a flood frequency analysis of River Jhelum in Kashmir, 
where LP III distribution gave relatively better estimates of various return period values. 
Langat et al. (2019) analyzed certain methods to select the best-fit distribution to model the 
maximum, minimum, and mean stream flows of the Tana river basin. Rizwan et al. (2018) 
carried out a flood frequency study on four rivers in Pakistan to select the best-fit distribu-
tion for the right-tailed flood events using Monte Carlo simulation of synthetic data series 
along with various goodness of fit and statistical criteria. The results confirmed GP and 
Weibull as the most suitable distribution model for the entire study area. Cassalho et al. 
(2018) researched on flood frequency study coupled with multi-parameter distributions 
using 106 AMS for the Rio Grande do Sul State—Brazil. They observed that Kappa and 
Wakeby had better performance than two-parameter distributions, and other shorter series 
were best described by GEV distribution. Farooq et al. (2018) carried out flood frequency 
analysis using four commonly used distributions such as generalized extreme value (GEV), 
Log Pearson 3 (LP 3), Gumbel, and Normal at four different gauging locations of river 
Swat. Based on goodness of fit tests, GEV and LP 3 were selected as the top two models 
for the study area. Similarly, Kamal et  al. (2017) researched on the upper Ganga region 
using the statistical approach of fitting distributions to the AMS observed at two gaug-
ing sites to decide the best-fit model applying various goodness of fit criteria. Benameur 
et al. (2017) applied a complete flood frequency analysis using excellent statistical tools, 
and some modern techniques in Abiod watershed, Algeria. Generalized Pareto distribu-
tion coupled with the maximum likelihood parameter estimation method was found to be 
robust for the entire basin. Heidarpour et al. (2017) analyzed the effect of unexpected mas-
sive floods on at-site frequency study by identifying them with statistical outlier tests and 
standard probability plots. Chen et al. (2017) used generalized gamma distribution for fre-
quency analysis along with the principle of maximum entropy theory for the estimation of 
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its parameters. Comparison of T year design flood with other distributions concluded the 
superiority of the proposed model. Guru and Jha (2015) carried out frequency analysis by 
fitting 14 different probability distributions to the AMS and PDS observed at two gaug-
ing sites of Tel basin located in the Mahanadi river system. They identified generalized 
Pareto distribution was the best candidate for the annual peak flow values in the study area. 
Rahman et al. (2013) investigated the suitability of fifteen probability distributions to an 
Australian annual maximum data set and identified three distributions that must be consid-
ered in the frequency analysis of the study area as generalized extreme value, log Pearson 
3, and generalized Pareto. Haddad and Rahman (2011) applied various model selection 
criteria to identify the best-fit model for the annual flood data obtained from Tasmania, 
Australia, where the two-parameter distributions performed better than the three-parameter 
ones. Lognormal, coupled with Bayesian Markov chain Monte Carlo method of parameter 
estimation, was identified as the best model for the entire area. Laio et al. (2009) analyzed 
different model selection criteria used in flood frequency study through a numerical simu-
lation to reduce uncertainty in the estimation of the design flood. Laio et al. (2009) com-
pared the well-known information criterion such as the akaike information criterion (AIC) 
and Bayesian information criterion (BIC). They proposed another method based on Ander-
son–Darling Test statistics (ADC) for flood frequency model selection. The numerical sim-
ulation and data analysis from 1000 catchments of the UK confirmed all three approaches 
produced comparable results, and AIC or BIC should be combined with ADC for better 
results. Kidson and Richards (2005) conducted a detailed study of flood frequency analysis 
and its assumptions. Karim and Chowdhury (1995) compared four probability distributions 
to be applied in Bangladesh based on root-mean-square error, probability plot correlation 
coefficient, and L moment ratio diagram, and GEV represented the observed AMS more 
precisely. Haktanir and Horlacher (1993) evaluated the performance of nine probability 
distributions applying them to 11 gauging sites in the Rhine basin in Germany and two 
streams in Scotland. GEV and three-parameter lognormal distribution gave accurate results 
for higher return periods. Vogel et al. (1993) studied the suitability of flood frequency mod-
els by L moment diagram in the Southwestern USA, which revealed the better performance 
GEV, LP 3 and lognormal distribution for the study area. Some of the other significant 
research in this field includes (McCollum and Beighley 2019; Pandey et al. 2018; Alam 
et al. 2016; Aziz et al. 2014; Ishak et al. 2011; Taylor et al. 2011; Merz and Blöschl 2005; 
Ouarda et al. 2001; Kuczera 1999; Bobée and Rasmussen 1995; Haktanir 1992; Cunnane 
1988; Eagleson 1972).

The detailed literature survey indicates that the at-site analysis of a complete watershed 
always leads to the choice of multiple probability distributions based on specific model 
selection criteria. In the present study, an attempt is made to propose a generalized basin-
scale model for site-wise frequency analysis of an entire watershed applying a systematic 
approach. The performance of this method is evaluated using the annual maximum series 
of twenty gauging sites located in the Mahanadi river basin, India. After a preliminary 
analysis of AMS at those sites, eight commonly used probability distributions are fitted to 
them. Based on some suitable model selection methods such as goodness of fit tests, infor-
mation criteria, and other statistical measures, the top three models at each site are finalized 
using the statistical ranking method adopted by Olofintoye et al. (2009). The top distribu-
tions satisfying the maximum number of stations are identified, which must be a part of 
any FFA of the study area. Such descriptive statistical outcomes are coupled with the test 
for its predictive ability through the bootstrap technique. Also, a physically based regres-
sion analysis is performed to establish relationships between the distribution parameters 
and a few essential catchments and flow properties. These regressed equations are applied 
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to all the sites to estimate model parameters and, thereby, various return period quantiles. 
Both numerical and graphical comparison of the anticipated flood quantile values with the 
observed ones suggest a basin-scale parent distribution for the entire watershed.

Overall, the two primary objectives of this study are; identifying the best-fit distribu-
tions which should be considered as a minimum while performing any flood frequency 
analysis in the study area, and thereby, selecting a generalized basin-scale model based on 
a detailed statistical examination and also, regression analysis of distribution parameters 
with watershed and flow properties.

2 � Description of the watershed

The Mahanadi river is one of the major rivers in east-central India with origin lying near 
Pharasiya village of Raipur, Chhattisgarh. A significant portion of the stream flows in the 
state of Chhattisgarh, Odisha, and some part in Jharkhand, and finally, it joins the Bay of 
Bengal through some channels near Paradeep, Odisha. The Mahanadi river basin extends 
mainly over two states, i.e., Chhattisgarh and Odisha, having a total drainage area of 
141,589 km2 which lies within the geographical coordinates of 19°08′–23°32′ N latitude 
and 80°28′–86°43′ E longitude (Fig. 1). Because of its large size, a lot of geographical and 
climatic variation is observed over the entire watershed. The basin experiences more than 
90% of total rainfall during monsoon season, i.e., from June to October, with an average 
rainfall of 1438.1 mm. The deltaic region formed by the river is often affected by disas-
trous flood events due to heavy rain in the upper part of the watershed, along with the 
effect of cyclonic storms and inadequate drainage system. The basin has witnessed serious 
flood problems in the year of 2003, 2008, 2011 and 2013, causing severe loss to human 
lives and materials. This basin is expected to be one of the worst affected river basins in 
India in terms of the increased intensity of floods, where the last decade has already seen 
five significant flood events (Jena et  al. 2014). Central Water Commission (CWC) has 
placed 46 observational sites in Mahanadi Basin, out of which discharge is measured at 21 
sites. Hirakud reservoir is situated nearly at the center of the watershed draining an area of 
83,000 km2 into it. The location of all the 21 sites along with the Hirakud dam is shown in 
Fig. 1b. Out of these, seventeen sites lie on the upstream of the Hirakud dam, hence do not 
carry regulated flow from the reservoir. The remaining three sites also do not have regu-
lated flow because of their locations concerning the main channel in the downstream of the 
reservoir except for Tikarapara (Kar et al. 2012). Therefore, daily discharge data of these 
20 gauging locations lying on the non-regulated part of the catchment were downloaded 
from Indian-WRIS official Web site, and the extracted annual maximum series were used 
for flood frequency analysis of the study area.

3 � Methodology

Flood frequency analysis was carried out using annual maximum series (AMS) to iden-
tify the best-fit probability distribution at each site along with the selection of a regional-
ized basin-scale model for the entire study area following the methodology presented in the 
flow chart (Fig. 2). The detailed theoretical background of this methodology is described 
later in this chapter.
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Fig. 1   a Location of Mahanadi river basin in India (source: South Asia Network on Dams, Rivers and Peo-
ple); b digital elevation model of the basin along with the geographical location of gauging sites and Hira-
kud dam; c catchment area; and d total length of AMS (the 18 sites finalized after the preliminary analysis 
is shown in c and d)
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Fig. 1   (continued)
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3.1 � Choice of candidate probability distributions

The annual maximum series at each site were fitted to eight commonly used probabil-
ity distributions such as Gumbel, Normal, Logistic, generalized extreme value (GEV), 
generalized logistic (GL), generalized Pareto (GPA), log Pearson 3 (LP 3) and Pear-
son Type III (PE 3) because of their enormous hydrological applications in frequency 
analysis all over the world (Drissia et al. 2019; Ghorbani et al. 2010; Rao and Hamed 
2000; Karim and Chowdhury 1995; Cunnane 1988). The expressions for cumulative 

Fig. 2   The methodology implemented for the selection of basin-scale parent distribution
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distribution function (CDF) of each distribution along with their L moment equations 
are illustrated in Table 1.

The two-parameter distributions have an advantage of the ease in the fitting. At the same 
time, the inclusion of shape parameters in the three-parameter models helps to consider 
the effect of skewness involved in most of the hydrologic series used in frequency analysis 
(Kidson and Richards 2005). LP 3 and PT 3 from the Gamma family are two commonly 
applied models in frequency analysis of hydrological processes such as discharge, rainfall, 
etc. (Bobee and Ashkar 1991). GPA and GL distribution have an excellent capability to 
model annual flood peak values used in frequency analysis (Zakaria et al. 2012; Oztekin 
2005). GEV distribution and its particular case, i.e., Gumbel from the extreme distribution 
family, have been widely used in the frequency analysis of hydrological events. Several 
significant research carried out on FFA of Indian river basins have previously applied these 
distribution models such as (Kumar et  al. 1999a, b, 2003, 2006; Kumar and Chatterjee 
2005; Bhuyan et al. 2010; Kar et al. 2012; Basu and Srinivas 2016; Kumar 2019; Pandey 
et al. 2018)

The parameters of these models can be estimated by applying numerous available meth-
ods such as the method of moments, maximum like-hood, L moment, probability weighted 
moments, the principle of maximum entropy theory, etc. (Rao and Hamed 2000; Hosking 
and Wallis 1997). In the present study, the method of L moment is applied to estimate 
parameters of all the distributions because more accurate or less unbiased inferences can 
be made by using this method (Hosking 1990). Also, the statistical analysis and bootstrap 
sampling become computationally more effective by using the L-moment method. The 
expressions of the first three L moments for a sorted sample of length n (such as x1 ≤ x2 ≤ 
x3 ≤ x4 ≤ …….  ≤ xn−1 ≤ xn) are given below.

L moment ratios can be defined as, tr = λr/λ2, r = 3, 4, etc. For example, if r = 3, t3 = λ3/λ2, 
known as L skewness, which lies within a range of (− 1, 1) that makes it easier to inter-
pret than conventional skewness, which can take arbitrarily large values. These L moments 
and L moment ratios are beneficial for summarizing any probability distributions which is 
described in many pieces of literature such as (Hosking 1990; Hosking and Wallis 1997; 
Sankarasubramanian and Srinivasan 1999; Bezak et al. 2014).

3.2 � Model selection criteria

The accuracy of flood frequency analysis is mostly subjective to the choice of probabil-
ity distributions along with appropriate model selection criteria for their evaluation (Kid-
son and Richards 2005). In the present study, two goodness of fit (GOF) tests such as 
Anderson–Darling (AD) and Kolmogorov–Smirnov test (KS); two information-based cri-
teria such as modified Akaike Information Criterion (AICC) and Schwarz Bayesian Cri-
terion (BIC) and a few statistical measures of error between the observed and predicted 
flood quantiles such as root-mean-square error (RMSE), relative root-mean-square error 
(RRMSE), maximum absolute error (MAE), correlation coefficient (CC) and the modified 

�1 = �0; �2 = 2�1 − �0 and �3 = 6�2−�1 + �0

where, �r = n
−1

n∑

i=r+1

(i − 1)(i − 2)……… .(i − r)

(n − 1)(n − 2)…… ..(n − r)
xi
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Anderson–Darling statistics (ADC) were applied to assess the performance of the probabil-
ity distributions at any site. Details of these test statistics are illustrated in Table 2.

Both the GOF test statistics, KS, and AD, consider the empirical and predicted cumula-
tive distribution functions to assess the degree of fitness of a model. However, AD gives 
more weightage to the right tail of the distributions, which has a vital significance in the 
frequency analysis of extreme events. The combination of ADC with information-based 
criteria such as AICC or BIC provides a useful tactic in flood frequency analysis (Laio 
et al. 2009). All the three statistics give similar results while recognizing the parent distri-
bution; however, ADC has a better performance with increasing skewness coefficient (Laio 
et al. 2009). A combination of these criteria, along with the statistical measures mentioned 
in Table 2, evaluates the degree of fitting of probability distributions to the observed AMS 
over the entire sample length as well as in the higher quantile region. The results obtained 
by applying these performance indicators were subjected to a statistical ranking method 
proposed by Olofintoye et al. (2009). Each distribution was allotted a rank between 1 and 
8 based on the value of these test statistics, such as rank one was given to the distribution 
with the lowest RMSE, RRMSE, MAE, AICC, BIC, KS, AD or the highest value of CC. 
The ranks assigned from each of these nine test statistics were summed up, and the dis-
tribution having the minimum total rank was selected as the best-fit model at a particular 
gauging site.

3.3 � Basin‑scale model

At-site flood frequency analysis over a particular catchment always results in a mixture 
of site-specific probability distribution models. In the present study, an attempt was made 
to propose a single standard model for an entire catchment, which gives optimal fitting to 
the maximum percentage of sites based on both statistical and physically based analysis of 
annual peak flow values.

3.3.1 � Statistical analysis

The statistical indicators described in the previous section assessed the degree of fitting 
of each distribution model to the AMS. It helped to identify the top models satisfying the 
maximum percentage of sites, which must be a part of any FFA of the study area. Among 
these models, the top one having an optimal fitting at more number of sites was selected 
as the standard model for the entire watershed based on a descriptive statistical analysis 
of AMS. This result is mostly affected by the choice of model selection criteria illustrated 
in Table 2, which considers all most all aspects of statistically examining an AMS. The 
predictive ability of a model should be evaluated as it mostly influences the accuracy of 
peak flow estimation. The present study applied the bootstrapping method to analyze the 
predictive capacity of the best model obtained from descriptive analysis at all the sites. 
Bootstrapping is a useful technique to generate several synthetic samples having the same 
length as the existing series and analyze the same to describe the nature of distribution 
even though the information about the parent distribution is lacking (Efron and Tibshirani 
1994). So the statistics derived from these bootstrap samples accurately represent the order 
statistics of the underlying distribution (Vogel 1995). In the present study, one thousand 
bootstrap samples were generated, having the same size as the existing AMS at each site, 
and the best model obtained from the descriptive analysis was fitted to these samples. 5-, 
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20-, 50-, and 100-year return period values were estimated, and the respective 95% confi-
dence intervals were plotted and analyzed to assess the sampling uncertainty.

3.3.2 � Physically based analysis

Basic catchment properties are area (A), length of the basin (L), effective basin width (B), 
perimeter (P), and slope (S). Along with this, other flow properties of AMS like mean 
annual flood (Qmean) and skewness coefficient (Cs) were calculated by processing Carto-
sat-1 DEM of the watershed in the ArcGIS toolbox. Jena et al. (2016) analyzed the per-
formance of Cartosat–1 DEM for flood modeling in data scare regions of Mahanadi river 
basin and observed a better performance of this model derived cross sections as com-
pared to other available global DEMs. Swamee et  al. (1995) developed a dimensionless 
model for mean annual flow (MAF) estimation in 93 catchments of India, where most of 
the forecasted values fell within ± 50% of the observed ones. The proposed model com-
prised of average rainfall (p) of duration (D) and recurrence interval (T), catchment area 
(A), slope (So), and forest cover fraction (Cf) as independent variables for the estimation of 
Qmean. Similar findings from other research such as (Garde and Kothyari 1990; Mckerchar 
1991; Merz and Blöschl 2005; Griffiths and Mckerchar 2008, 2012) also suggest that the 
mean annual flow is correlated with other physical characteristics of a catchment. Hence, 
in the present study, model parameters are related to the mean annual flow since MAF 
in itself  represents the combined effect of various other catchment properties. Therefore, 
as discussed, no attempts are made to develop explicit relationships between the model 
parameters and all other pertinent catchment characteristics.

Regression analysis (RA) was performed to relate the parameters of top models with 
various hydrological and physiographic properties considered in the study. The equa-
tions thus developed were applied to all the sites to estimate the parameters of the models. 
Before the assessment of a basin-scale distribution from this physically based analysis, the 
predictive ability of RA was evaluated by comparing the observed and anticipated mean 
annual flood (MAF) over the entire watershed. MAF is one of the vital hydrological param-
eters that represents an index of the potential magnitude of flood flows and hence used in 
flood frequency studies and also in the designing of many hydraulic structures. Here, MAF 
was calculated as the expected value of probability density function, as given below.

The expected value of a continuous random variable (x) defined by its probability den-
sity function ‘f’ is given as,

For example, the above expression of MAF for the GEV distribution model becomes,

where k, µ, and σ represent the shape, location, and scale parameter of GEV distribution, 
respectively. The anticipated values of MAF from the above expression were calculated 
using the distribution parameters obtained from the regressed equations and also, the con-
ventional method of L moments. Return period quantiles of all the sites estimated using 
parameters from these equations were compared to the observed ones. The distribution 
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showing a better fit over the entire catchment was considered as the standard model based 
on the physically based analysis.

Finally, a graphical, as well as an analytical comparison, was made between the results 
of FFA using site-wise best-fit distributions and the basin-scale model.

4 � Results and discussion

4.1 � Preliminary analysis of AMS

Annual maximum series at 20 gauging sites of the Mahanadi basin, India (Fig. 1), were 
initially subjected to the preliminary investigation, i.e., check for the presence of trend and 
outlier in the series. The Cumulative sum or CUMSUM test (Mcgilchrist and Woodyer 
1975) and Mann–Kendall test for trend analysis revealed the presence of a significant neg-
ative trend in the AMS of two sites at 5% significance level. After removing these two 
sites, AMS of the remaining 18 locations were tested for the existence of outlier applying 
Grubb’s outlier test at 10% significance level (Grubbs and Beck 1972). This data screen-
ing procedure finally led to 18 gauging sites with the total data length varying from 12 to 
41 years, with an average of 31 years and 75th percentile of 38 years. Hence, the AMS in 
the present study satisfied the criteria of a minimum 10-year record length for flood fre-
quency analysis in poorly monitored watersheds (Cassalho et  al. 2018). Details of these 
gauging sites such as available data length, catchment area, mean annual flow, and skew-
ness of observed annual peak values are listed in Table 3.

Manendragarh, located in the district of Chhattisgarh, had the minimum catchment 
area with the highest peak water level recorded in 1990. Basantpur possessed the larg-
est drainage area, which leads to an average annual flow of 13,272 cumecs observed 
over the period from 1972–1973 to 2010–2011. The lowest and highest mean annual 
flow was recorded at Andhiyarkore and Basantpur, respectively. The AMS derived at 
all the sites were positively skewed except for Kurubhata. The highly positive skewness 
of the AMS signified the presence of a more massive right tail than the left part. The 
Cartosat-1 digital elevation model of the study area was processed in the Arc GIS tool-
box to delineate the watershed along with the preparation of various maps, as shown in 
Fig. 1. The same was further examined to derive five essential physical characteristics 
such as catchment area, length, perimeter, effective basin width, and slope of the drain-
age region delineated at individual sites (Fig.  3). These properties were later used in 
the regression analysis of distribution parameters to identify a basin-scale model on a 
physical basis.

4.2 � Site‑wise FFA

Continuous probability distributions such as Gumbel, logistic, Normal, GEV, GL, GPA, 
Pearson type III, and LP 3 were fitted to the annual maximum series at all the gauging 
sites. At first, their degree of fitting was graphically assessed through quantile–quan-
tile (Q–Q) plots. Q–Q plots of all AMS considered in the study indicated the better 
fitting of most of the three-parameter distributions as compared to the two-parameter 
models except the extreme value type I or Gumbel. Also, the right-tailed parts were 
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overestimated or underestimated by the models at many sites. For illustration purpose, 
Q–Q plots of all the eight models at Andhiyarkore is shown in Fig. 4.

However, the choice of the best model cannot be solely based on graphical comparison 
due to insufficient information about the performance of models at higher quantile range. 
Therefore, a numerical assessment based on the statistical ranking method was applied 
using nine different model selection criteria (Table  2), as described in the methodology 
section, and the models were ranked according to these performance indicators. The final 
rank of distribution at any site was the sum of all the ranks. Rank of these distribution 
models and the total rank at Andhiyarkore (Site ID 1) is shown in Fig. 5 as an example.

A similar analysis was performed at all the sites to identify the top three models 
based on this statistical ranking scheme and listed in Table 4.

As evident from the result, no single distribution occupied the first rank at all the 
sites, and in many cases, two different distributions were found to have the same rank-
ing. Mostly the tie of rank was between GEV and Extreme value type I or Gumbel dis-
tribution (Fig.  6). However, GEV satisfied the best fit at a maximum number of sites 
as compared to other three-parameter distributions. Also, it was one of the top three 
choices at all the locations of the watershed considered in this FFA except Kesinga. The 
two-parameter distributions showed a lack of fit to the AMS derived at most of the sites, 
which could be due to the absence of shape parameter that helps to account for the effect 
of skewness involved in the AMS. This outcome agreed well with the findings from the 
graphical comparison. Considering the best-fit distribution at each site GEV satisfied 
44% of sites (i.e., 8 out of 18 sites) while PT 3 had the first rank at 28% of sites (i.e., 5 
number of locations) and GPA and Gumbel each held the first position at 17% of sites. 
So based on this, GEV, PT 3, GPA, and Gumbel were finalized as the top models for the 

Table 3   Details of the gauging stations considered in the study

Site ID Name of gauging sites Record 
length 
(years)

Catchment area (km2) Mean annual 
flow (cumecs)

Skewness 
coefficient 
(Cs)

1 Andhiyarkore 32 2217.476 290.31 1.3073
2 Baronda 33 3180.687 2189.49 0.9751
3 Basantpur 38 58,506.650 12,750.541 0.5150
4 Jondhra 34 29,623.540 5000.85 0.7520
5 Kantamal 40 21,431.260 8458.08 0.1839
6 Kelo at Raigarh 18 1111.090 656.65 1.3279
7 Kesinga 31 13,049.430 6179.08 0.7967
8 Kotni 32 6946.871 2092.08 0.9682
9 Kurubhata 33 4750.212 1516.66 − 0.3290
10 Manendragarh 21 1021.254 2160.14 1.0008
11 Paramanpur 12 2967.634 1536.48 0.6267
12 Pathardhi 22 2486.606 1026.77 0.1336
13 Rajim 41 8400.822 3782.75 0.4927
14 Rampur 39 3413.592 1695.81 0.2856
15 Salebhata 35 4610.593 2054.24 0.4933
16 Seorinarayan 25 47,750.210 10,845.75 0.1147
17 Simga 38 16,703.357 4373.50 0.9416
18 Sundargarh 32 5875.998 1939.35 1.8291



534	 Natural Hazards (2020) 102:519–552

1 3

Mahanadi river basin, India, which must be taken into consideration as a minimum for 
practical application of FFA in the watershed.

4.3 � Identification of basin‑scale model

In the present study, a generalized basin-scale model for the entire watershed was proposed 
considering both statistical and physical aspects, as described in the methodology section.

4.3.1 � Statistical analysis

The statistical approach includes the identification of a model which satisfies the maximum 
percentage of sites by analyzing the performance of various distributions based on a few sta-
tistical indicators. The site-wise analysis was performed initially, and it was observed that 
among the top distributions, i.e., GEV, PT 3, GPA and Gumbel, GEV showed the best fit at 
44% of sites and also, it was one of the three top choices at 17 sites considered in the study. 
Therefore, GEV was selected as the basin-scale model based on descriptive statistical analy-
sis. As compared to the other two distributions, GEV is derived from statistics of the extreme 
value theory, which gives it a more fundamental basis to be selected as the single model for 
the entire region. The predictive ability of GEV distribution was analyzed through a bootstrap 
sampling method in which one thousand samples with the same data length as the original 
series was generated. GEV distribution was fitted to those series to estimate various return 
period quantiles, and the respective 95% confidence interval (CI) of 5-, 20-, 50-, and 100-year 
flood flow values were plotted and analyzed for uncertainty, as shown in Fig. 7.

As evident from the above plots, the GEV predicted return period values at all the sites 
of the study area lie within a 95% confidence interval of the AMS obtained from boot-
strap sampling. The 5- and 20-year estimates have a relatively narrow confidence interval 
as compared to 50- and 100-year values, and this narrowed down CI of lower return period 
values signifies higher accuracy of prediction. Even though the limited data length of the 
AMS influenced the estimation of higher return period values, the predicted quantiles at all 
the sites found to lie within limits, which justified the predictive ability of GEV distribu-
tion as the standard basin-scale model for the entire watershed.

4.3.2 � Physically based analysis

For the selection of a standard basin-scale model, a physically based analysis was also per-
formed, which involved the comparison of flood flow quantiles predicted by fitting distribu-
tion models with parameters estimated from a few catchment and flow properties. A few 
essential physical characteristics of the catchment were derived with the help of the Arc GIS 
toolbox (Fig. 3) along with flow properties like the skewness coefficient and the mean annual 
flood at each site (Table 3). Regression analysis was performed between the parameters of 
the top distributions (dependent variables) and the catchment and flow properties (independ-
ent variables). As a prerequisite of this study, all the dependent and independent variables 
were first checked for the presence of outliers applying Grubb’s test since the outliers might 

Fig. 3   Physical characteristics of the drainage region at each gauging site, a catchment area  (km2); b 
perimeter(km); c length (km) and effective basin width, and d slope (Note: sites are represented by their ID 
given in Table 3)

▸
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affect the predictive capability of the models. The independence of those observations was 
tested by using Durbin–Watson statistics (Durbin and Watson 1951). The data were graphi-
cally analyzed for homoscedasticity by plotting standardized regression residuals against the 
predicted values to check the variance along the best-fit line. The normality of residuals was 
also verified using a normal probability plot and a histogram superimposed with the normal-
ity curve. After close examination of these variables, regression analysis was performed for 
each case, and the best-fit equations were derived as listed in Table 5.

Among the physical and flow characteristics of the watershed considered in the regres-
sion analysis, the skewness coefficient of the observed AMS had a better correlation with 
the shape parameter of all the distributions. Likewise, the mean annual flow (Qmean) and 
catchment area (A) possessed a fair degree of accuracy in predicting the location and scale 
parameter of the distributions. For the Pearson type 3 distribution, all three parameters had 
a better relationship with the skewness coefficient. The location and scale parameters of 
Gumbel were best expressed in terms of a linear relationship with the mean annual flood. 
Before analyzing the results in-depth, the robustness of the RA method was evaluated by 
comparing the observed MAF with the predicted values, as described in the methodology 
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section. The anticipated and observed MAF at all the sites of the watershed using GEV 
distribution are compared as given in Fig. 8. As evident from the figure, for a few locations, 
the MAF calculated from both the methods showed a comparatively larger deviation from 
the observed MAF. Overall for the entire watershed, the correlation coefficient between the 
observed and estimated MAF using parameters from the RA method was slightly higher 
than the L moment method. The accuracy of the approach was also evaluated in terms 
of absolute percentage error averaged over the basin, i.e., mean absolute percentage error 
(MAPE). As evident, the Qmean estimated by considering the model parameters from the 
physically based regression analysis was nearly 12%, where for the L moment method, it 
was around 11%. The performance of the RA method was very close to the conventional 
way of L moments, which justified the predictive ability of the regression equations and 
hence, the aptness of this approach for the choice of a generalized basin-scale model for the 
study area. 

The specific outcomes of regression analysis for GEV distribution are listed in Table 6 
for illustration purposes. The linear regression indicates that the skewness coefficient of the 
AMS was statistically significant in predicting the shape parameter of the GEV model with 
F equals to 112.50 and p value less than 0.05. The R2 was 0.9494, i.e., the predictor ‘Cs’ 
explained the 94.94% variance of the dependent variable, i.e., shape parameter (k). Simi-
larly, the scale and location parameters were well predicted by two variables Qmean and A, 
with a relatively higher value of R2, as given in Table 6.
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Fig. 7   95% CI of 5-, 20-, 50-, and 100-year return period estimates from bootstrap sampling
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The Durbin–Watson statistics for all three cases were higher than the standard upper 
limit proposed by (Savin and White 1977) based on sample size and number of terms, 
which concluded that there was no correlation between the observed values. Along with 
these statistical indicators, residual plots were analyzed for better assessment of the regres-
sion output and some underlying assumptions regarding homoscedasticity and normality. 
Four types of residual plots, such as the normal probability plot, the histogram of residuals, 
residual versus fit, and residual versus order for each parameter of the GEV model is shown 
above in Fig. 9. 

Table 5   Best-fit regression equations

Cs skewness coefficient, A catchment area and Qmean average of annual peak discharge

Parameters 
distributions

Shape Scale Location

GEV k = 0.3141 − (0.3376 × Cs) σ = −163.9 + (0.7668 × 
Qmean) − (0.0575 × A)

µ = −0.80 + (0.7259 × Qmean) 
+ (0.01943 × A)

PT 3 α = 9.314 − (6.896 × Cs) β = 867 + (71 × Cs) ϒ = −1140 + (1053 × Cs)
GPA k = −0.873 + (0.772 × Cs) σ = 814.2 + (0.5540 × A) µ = −425.9 + (0.1105 × Qmean)
Gumbel NA σ = 387 + (0.295 × Qmean) µ = −223 + (0.8298 × Qmean)
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Fig. 8   Comparison of MAF obtained from the method of L moments and physically based regression anal-
ysis
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Fig. 9   Residual plots for all the three parameters of the GEV model, a shape parameter (k), b scale param-
eter (σ), and c location parameter (µ)
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Since the length of samples for each case was less than 20, the bars in the histo-
gram of residuals might not have sufficient data points to identify outliers or skewness 
in the data. So instead of relying upon histogram plot for small sample sizes, the normal 
probability plot was analyzed for the residuals. An approximate straight line of the nor-
mal probability plots for all the three cases indicated that the residuals were normally 
distributed. The graph between residual and their corresponding fitted values proved 
that the residuals were randomly distributed with a constant variance. The independ-
ence of residuals was also observed from the plots of the residuals versus the order. A 
similar analysis was performed to evaluate the best-fit regression equation for all the 
parameters of the top distribution models, as listed in Table  5. Out of all the physi-
cal characteristics of the basin, the catchment area was better at predicting the model 
parameters with a relatively higher degree of accuracy. The skewness coefficient of the 

Table 6   Regression results for the GEV model

Regression parameters Regression F value Two-tailed p value R2 (%) Adjusted R2 (%) Durbin–Wat-
son statistics 
(W)

k versus Cs 112.50 < 0.05 94.94 94.09 1.99874
σ versus (Qmean, A) 542.97 < 0.05 99.54 99.36 1.60880
µ versus (Qmean, A) 2111.51 < 0.05 99.88 99.83 2.34245

Fig. 9   (continued)
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AMS was statistically significant to describe the variance of shape parameter for all the 
three models. The location and scale parameter of PT 3 distribution also had the best-fit 
relationship with the skewness coefficient. The 95% prediction intervals (PI) of these 
models are shown in Fig. 10, along with R2 values. The regression equation obtained for 

Fig. 10   95% Prediction interval of all the parameters, a PT 3 distribution, b GPA distribution, and c Gum-
bel distribution
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the scale parameter of the PT 3 model possessed a small R2 indicating a relatively poor 
predictive ability.

The derived regression equations for the top models (Table 5) were applied to evalu-
ate the distribution parameters at all the 18   sites of the watershed and thereby esti-
mating flood quantiles of various return periods such as 5, 20, 50, and 100 years. The 
observed and model-predicted return period flow values were compared both graphically 
and analytically. Q–Q plots for 20 year return period estimates from all the four models 
are shown in Fig. 11 as an example. From the graphical analysis, GEV performed better 
among all the distributions over the entire catchment. The regression equations devel-
oped for extreme value type I or Gumbel distribution also had good accuracy in predict-
ing the return period quantiles.

The performance of these models was also assessed by calculating the correlation 
coefficient (R2) and the averaged relative absolute error (RAE) of various return period 
estimates at all the gauging sites, as shown in Fig.  12. GEV predicted the flood peak 
values more accurately than other models with R2 lying in the range of 0.963–0.996 
and mean RAE varying between 0.073 and 0.157. For higher return periods of 50 and 
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Fig. 13   Comparison between the predicted flood quantiles from site-wise best-fit models and the basin-
scale GEV model, scatter plot for a 5 year return period, b 20 year return period, c 50 year return period, d 
100 year return period, and e correlation coefficient and mean RAE between observed and predicted quan-
tiles for both the cases
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100 years, the accuracy of model prediction is relatively less, which might be due to the 
extrapolation of smaller available data series to calculate the observed quantiles. How-
ever, the performance of a physically based GEV model over the entire watershed was 
the best among the top models obtained from site-wise frequency analysis. The results 
obtained from this error evaluation were in agreement with the Q–Q plots.

The result signifies the application of the GEV model as a single basin-scale model for 
the entire watershed, where the parameters were estimated considering the physical and 
flow characteristics of AMS. The finding of this physical approach matched well with the 
statistical analysis discussed in the previous section. Before suggesting GEV as the stand-
ard model for the study area, a comparison was made between the flood peak values pre-
dicted from site-wise best-fit models (Table 4) and the basin-scale GEV model. Predicted 
quantiles from both the cases were plotted against each other for T = 5, 20, 50, and 100 year 
return periods. As evident from the scatter plots, the basin-scale GEV model outputs were 
very close to the flood quantiles predicted from respective best-fit models at all the sites. 
Further analysis was made to calculate the correlation coefficient and mean relative abso-
lute error between the observed and predicted peak flow values obtained from both the 
cases, as shown in Fig. 13e. As there is no significant difference between the two cases, 
instead of using different best-fit distribution model at each site of the study area, GEV can 
be applied as a basin-scale standard distribution for station wise frequency analysis of the 
entire watershed.

5 � Conclusions

The present study has a significant focus on a systematic evaluation of probability distribu-
tions for FFA considering the effect of catchment and flow characteristics along with some 
useful model selection criteria. The methodology was implemented to the AMS of twenty 
gauging sites situated in the Mahanadi river basin, India.

•	 GEV yielded the best fit for 44% of sites. PT 3 had the first rank at five locations of the 
watershed, whereas GPA and Gumbel each performed better at three gauging sites con-
sidered in the present study. GEV, PT 3, GPA, and Gumbel distributions were selected 
as the ideal candidates for site-wise flood frequency analysis of the Mahanadi river 
basin based on a statstical ranking approach.

•	 The descriptive statistical analysis proposed GEV as the basin-scale model for the 
watershed, and its predictive ability was tested through a bootstrap sampling procedure. 
The 95% confidence interval of bootstrapped samples for 5, 20, 50, and 100 year return 
period estimates justified the predictive capability of the GEV model at all the sites.

•	 A physically based regression analysis was also performed where the parameters of the 
top models were correlated with a few relevant catchment and flow properties. Mean 
annual flow (Qmean), skewness coefficient of AMS (Cs), and catchment area (A) were 
more effective in predicting the model parameters.

•	 The robustness of these regression equations was analyzed by comparing the observed 
and predicted mean annual flood flows obtained from the expected values of the GEV 
density function. The parameters estimated from RA performed close to the conven-
tional method of L moments in predicting MAF.
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•	 The performance of these regression equations was evaluated in terms of F value and 
correlation coefficient, along with various residual plots, normal probability plot, and 
also 95% prediction interval.

•	 5-, 20-, 50-, and 100-year return period quantiles were estimated using the param-
eters obtained from the regression equations of top models and compared with the 
observed values in terms of correlation coefficient and mean of relative absolute 
error. The results confirmed the performance of a physically based GEV model over 
the entire watershed was the best among the top models with R2 varying between 
0.97 and 0.99.

•	 Finally, the flood flow quantiles obtained using site-wise best-fit distributions, and the 
basin-scale GEV model was compared both graphically and statistically. Since there 
was a marginal difference between the two cases, instead of using different models at 
each site of the study area, GEV can be applied as a standard distribution for at-site 
frequency analysis of the entire watershed.

Similar studies can be carried out on different watersheds to compare the performance 
of various probability distributions employing both statistical and physically based regres-
sion analysis to propose a generalized basin-scale model.
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