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Abstract
We implemented a fine-scale fire modeling approach to assess wildfire exposure in the 
highly valued resources and assets (HVRAs) of Ardabil Province (18,000  km2), north-
western Iran. For this purpose, we used the minimum travel time algorithm and simulated 
60,000 wildfires under wildfire season most frequent weather scenarios. Wildfire exposure 
was analyzed on different vegetation types and municipalities using burn probability (BP), 
conditional flame length (CFL), and fire size (FS) modeling outputs. Also, we obtained 
the fire potential index (FPI) and source–sink ratio metrics to assess wildfire transmission 
across the study area. The BP ranged from 0.0003 to 0.013 (mean = 0.0008) and varied 
substantially among and within the HVRAs of the study area. While the lowest BP val-
ues located in broadleaf forests, the highest BP values concentrated on flashy fuel areas, 
including cereal crops, mountain meadows, and grazed pastures. The average CFL was 
0.3  m, with the highest values peaking in cereal crops and wooded pastures located on 
slopes. FS ranged from about 1–1700 ha, with an average value of 225 ha. Fires ignited 
in the northern part of the study area resulted in the most significant FS values, due to the 
large contiguous patches of high fuel loads. High FPI values were associated with large fire 
ignition areas and anthropic fire occurrence hotspots in the northern and southern parts of 
the study area. Cereal crops and grazed pastures behaved as relevant wildfire sources of 
fires exposing rural communities. The results of this study may help support the develop-
ment of an improved wildfire risk management policy in the study area. The methods from 
this study could be replicated in neighboring areas and other cultural landscapes of the 
Middle East, where wildfires pose a threat to human assets and natural values.
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1  Introduction

Wildfires in forests and grasslands are prevalent throughout Iran, and the vulnerabil-
ity of these natural ecosystems to fire will likely increase in the future as a result of cli-
mate change (Jahdi et al. 2014; Abatzoglou et al. 2018). In fact, every year in the coun-
try some 1500 fires burn about 15,000  ha of forest and rangelands (2003–2016) (Data 
from FRWO personal communication 2016; Andela et al. 2019). Nonetheless, preemptive 
wildfire management is scarce and the implementation of risk mitigation efforts requires 
the occurrence of a catastrophic events while decision-making relies on expert criteria. 
Most previous studies conducted in Iran analyzed the relation between weather condi-
tions and biophysical variables with the forest fire occurrence, hazard, and wildfire risk at 
various scales using remote sensing data and geographic information systems (Mahdavi 
et al. 2012; Jafarzadeh et al. 2017; Pahlavani and Bigdeli 2017). Jafarzadeh et al. (2017), 
for instance, evaluated forest fire risk in the west of Iran using the a priori algorithm and 
fuzzy c-means (FCM) clustering. The results showed strong relationships between wild-
fire occurrence and multiple variables including distance to urban areas, population den-
sity, distance to roads, slope, type of vegetation, temperature, land cover, and distance to 
farmlands. Adab et al. (2018) applied the ecological niche theory through the maximum 
entropy (MaxEnt) method to estimate fire hazard potential and the association with dif-
ferent anthropogenic and biophysical conditions, by using different modeling approaches 
(heuristic, permutation, and jackknife metrics) in northern Iran. However, limited studies 
explored the contribution of the main causative factors to wildfire exposure in the Hyrcan-
ian and Zagros ecological regions (northwestern Iran) despite the high socioeconomic and 
natural interest of these sites (Adab et al. 2013; Eskandari et al. 2013; Eskandari and Chu-
vieco 2015; Jahdi et al. 2015, 2016; Jaafari et al. 2017).

The terms of wildfire hazard, exposure, and risk are related, but not synonymous (Miller 
and Ager 2013; Scott et al. 2013). Hazard is a physical situation with the potential to cause 
damage to specific highly valued resources and assets (HVRAs) (Scott 2007), resulting in 
losses (of value). The hazard in wildland fire is “the potential for loss but does not inte-
grate the likelihood of the event occurring, and fire intensity and crown fire activity are the 
most widely used metrics” (Miller and Ager 2013). Fire risk is the expectation of loss or 
benefit to any number of social and ecological values affected by fire (Finney 2005). The 
risk assessment framework allows assessing the potential risk posed by wildfire to HVRAs 
across vast landscapes (Scott et al. 2013). On the other hand, exposure describes the spatial 
juxtaposition of values with fire behavior in terms of likelihood and intensity but does not 
explicitly describe fire effects on those values (Ager et  al. 2012; Miller and Ager 2013; 
Salis et al. 2013). Quantitative wildfire exposure and risk assessment provide the founda-
tion for cost-effective mitigation of risks and restoration of landscapes and further for mon-
itoring exposure and risk trends through time (Thompson et al. 2013; Dunn et al. 2020).

The variety of wildland fire behavior models with varying inputs, structures, outputs, 
and intended uses is developed to better understand potential wildfire activity, quantify 
landscape wildfire exposure and risk, evaluate alternative risk management strategies, and 
assess the effects of varying environmental conditions on fire behavior (Sullivan 2009a, b, 
c; Thompson and Calkin 2011; Miller and Ager 2013). These models are typically based 
on forward rate-of-spread algorithms that were predominantly developed using observa-
tions of experimental fires (Duff et al. 2018). Fire growth models can simulate a number 
of scenarios and have been increasingly used in fire risk assessment in the last decades 
(Ager et al. 2010, 2014, 2019; Haas et al. 2013; Salis et al. 2016, 2018; Thompson et al. 
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2016; Alcasena et al. 2016, 2019; Palaiologou et al. 2018, 2019; Parisien et al. 2018). The 
focus on much of this work has been estimating burn probabilities for an entire landscape 
given the uncertainty of ignition locations (Ager et al. 2007; Braun et al. 2010). Fundamen-
tally, burn probability modeling attempts to capture spatial variability in fire likelihood and 
spread potential stemming from variation in possible ignition locations, weather patterns, 
topography, and fuel conditions (Parisien et al. 2010, 2013; Parks et al. 2012; Salis et al. 
2015; Riley and Thompson, 2017).

The minimum travel time (MTT) algorithm is used to conduct fire behavior modeling 
for estimating fire size, spread direction, fire intensity, and burn probabilities (Finney 2002, 
2006). Further, MTT produces burn probabilities by simulating thousands of potential 
fires that could burn throughout an area, which is an estimate of the likelihood of a pixel 
burning given a single random ignition under given burn conditions. Several studies have 
employed FlamMap MTT for quantitative wildland fire risk assessment based on a histori-
cal ignition probability grid (Ager et al. 2007, 2010; Kalabokidis et al. 2014; Salis et al. 
2013, 2019; Alcasena et  al. 2015, 2017). However, fire behavior modeling systems such 
as FARSITE and FlamMap have only been calibrated to simulate the spread of few fires in 
Iran (Jahdi et al. 2014, 2015, 2016).

Exposure analyses are a necessary step in risk assessments and typically reveal much 
of the same spatial patterns without the complexity of predicting fire effects on specific 
human and ecological values (Fairbrother and Turnley 2005; Ager et  al. 2014). In this 
paper, we assess wildfire exposure to support risk-informed incident decision-making at 
the landscape scale, fuel level, municipality level, and for a set of fire weather scenarios 
in Ardabil Province, northwestern Iran. We used a fire simulation modeling approach to 
assess key wildfire risk causative factors such as burn probability (BP), conditional flame 
length (CFL), and fire size (FS) in the study area. For that purpose, we used the MTT 
algorithm and historic fire ignition distributions to model wildfire spread and behavior. The 
study area mainly experiences fires in pasture and rangelands that impinge upon the sparse 
forest resources. Although fire frequency, burned area, severity, and vulnerability to wild-
fires in Ardabil are lower than other Iranian zones, assessing wildfire risk is a primary goal 
for fire managers and policy-makers, taking into account the severe events that recently 
affected neighboring areas (e.g., western Guilan in Hyrcanian region). Furthermore, the 
likely climate change effects could ultimately lead to disrupted fire activity across Ardabil 
in future years. The results of this study can be used for fuel management planning and 
management to reduce the risks posed by wildfires and can be replicated in other countries 
of the region.

2 � Materials and methods

2.1 � Study area

Ardabil Province is located in northwestern Iran and has an area of about 18,000  km2, 
which is about 1% of the total area of Iran (Fig. 1). The population of Ardabil was esti-
mated at about 1,300,000 (2016 census). The study area is limited by the republic of Azer-
baijan to the north, Eastern Azerbaijan Province to the west, Zanjan Province to the south, 
and both Guilan Province and republic of Azerbaijan to the east. Ardabil is the capital 
of Ardabil Province and is placed in the southwest of the Caspian Sea and between the 
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two mountains of Sabalan and Baghro. Parsabad is the biggest city of the province and is 
situated in northern Ardabil Province. Khalkhal, Meshgin Shahr, and BileSavar are other 
important cities of the province.

Generally, topography in Ardabil has two main types of plain lands and mountainous 
farmlands. Elevation values are high, particularly in the southwestern regions of the prov-
ince. Sabalan Mountain, with a height of 4811 meters, is the third highest peak in Iran. 
High plains in the north of the province include Moghan plain and mountainous areas with 
more than 2000 meters high (mainly Sabalan and Talesh Mountains) form the province’s 
natural landscapes. Because of these features, different ecological and economic effects 
are observed in this province. Northern province in a plain land unit and the semi-steppe 
vegetative region are associated with vast semi-steppe rangelands, pastures, and dryland 
agriculture. Southern province in a mountainous land unit and the semi-steppe vegetative 
region is also covered with shrublands and forestland.

The study area is a complex mosaic of natural and seminatural ecosystems and urban 
areas (mainly located in hill tops) (Fig. 1b). Natural areas include small forests of Quercus 
spp. (Quercus macranthera Fisch. & C.A.Mey. ex Hohen., Carpinus orientalis Mill., 
Prunus avium L., and Fraxinus excelsior L.), conifer–broadleaf-mixed forests (Juniperus 
excels M. Bieb., Pistacia atlantica Desf var. kurdica Zohary., Amygdalus scoparia Spach, 
and Crataegus microphylla), and relatively limited deciduous broadleaf forests (Corylus 
avellana L., Fagus orientalis Lipsky, Quercus castaneifolia C.A.Mey., and Carpinus bet-
ulus L.). Seminatural areas are mainly represented by shrublands, perennial grasses, and 
agricultural (cultivated lands covering cereal crops, orchards, and tilled lands) areas.

The climate of Ardabil Province largely depends on four factors: altitude, latitude, 
water resources, and air masses. The study area shows large variations in terms of climate 

Fig. 1   Maps of the study area (Ardabil Province, northwestern Iran, about 18,000 km2), with municipality 
boundaries and elevation as derived by the 30-m DTM (a); main vegetation types as derived by the Ardabil 
Land Use Map of 2016 (b); and historical fire ignition locations (June to September; 2005–2018) used for 
the FlamMap simulations (c)
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(Table 1). The annual mean precipitation in the study area is about 230 mm. Rainfall events 
are limited in the summer period (33 mm from June to September). Snow events are com-
mon during winter. The annual mean temperature is 7.5 °C, while from June to September 
is 18 °C. The temperature fluctuations in the study area are large: from − 30 °C in January 
to + 35 °C in June and July.

2.2 � Historic wildfire activity

We used the historic fire activity database to determine the duration of the wildfire season 
and replicate the same ignition locations for wildfires that occurred in Ardabil (Ardabil 
Natural Resources Department and FRWO, Iran, 2018). We focused on wildfire data from 
2005 to 2018 (Fig. 1c). In the last 14 years, on average Ardabil experienced about 97 fires 
and 640 ha of area burned per year (Fig. 2a). Historically, most fire ignitions have been 
associated with dry weather conditions and were mostly concentrated from June to Sep-
tember (Fig. 2b). The most of area burned is concentrated in summer, when fuel moisture 
is lowest, and strong northeast winds are most frequent. The fire events are mainly pasture 
fires, although these fires can sometimes spread to forest areas. Surface fires are the most 
common fire type in the study area. The minimum and maximum fire sizes were 0.01 ha 
and 128 ha, respectively. About 80% of the historical fires in our dataset are less than 10 ha 
in size: These events affect only about 17% of the total area burned. Fires with burned 
areas lower than 100 ha account for 72% of the whole burned areas, although they include 
19% of the fire number. About 1% of the total number of fires are larger than 100 ha and 
burnt about 11% of the total area burned. About 95% of the fires have anthropogenic ori-
gin. Most fire ignitions relate to human factors such as low distance to transport networks 

Table 1   Annual and monthly (from June to September, timeframe 2005–2018) average values of mean tem-
peratures (T, °C), maximum temperatures (TM, °C), minimum temperatures (Tm, °C), and cumulative pre-
cipitation (PP, mm), as well as standard deviation, from three weather stations (Ardabil Airport–BileSavar–
Khalkhal) located in the Ardabil Province (Fig. 1a)

Weather station (Eleva-
tion (m a.s.l.))

Month T TM Tm PP

Ardabil Airport (1320) Jun 17.22 ± 1.31 32.78 ± 2.56 3.01 ± 1.40 13.48 ± 11.44
Jul 18.93 ± 0.98 32.61 ± 2.91 5.83 ± 1.30 3.71 ± 3.62
Aug 18.92 ± 1.72 34.05 ± .81 4.57 ± 1.24 4.50 ± 3.38
Sep 15.32 ± 1.09 32.42 ± 2.23 1.46 ± 2.05 12.91 ± 13.03
Annual Av 9.25 ± 7.80 25.07 ± 7.98 -6.20 ± 10.11 289.29 ± 80.54

BileSavar (100) Jun 27.13 ± 1.35 36.73 ± 1.78 13.88 ± 1.71 21.05 ± 21.80
Jul 29.29 ± 1.04 38.55 ± 1.41 17.23 ± 1.10 5.13 ± 7.60
Aug 29.01 ± 1.70 38.99 ± 1.70 17.15 ± 1.38 7.03 ± 11.67
Sep 23.88 ± 1.16 34.49 ± 1.49 12.62 ± 1.85 34.08 ± 37.41
Annual Av 16.59 ± 9.15 28.53 ± 8.01 5.41 ± 8.49 331.36 ± 58.62

Khalkhal (1800) Jun 17.75 ± 1.26 31.38 ± 2.48 4.08 ± 1.73 17.75 ± 18.51
Jul 20.28 ± 1.19 33.90 ± 2.23 8.80 ± 2.24 9.01 ± 10.56
Aug 20.11 ± 1.34 33.95 ± 1.51 6.28 ± 2.23 8.16 ± 8.17
Sep 16.21 ± 0.99 30.72 ± 1.37 1.72 ± 1.67 10.79 ± 12.86
Annual Av 9.01 ± 8.52 22.37 ± 9.25 -5.25 ± 9.93 369.82 ± 86.48
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and urban or recreation areas, the socioeconomic context of the region, factors such as the 
unemployment rate or variables linked to agricultural activity (farming and land cleaning). 
Other causes include negligence and arsons related to ecotourism and economic interests. 
An ignition probability grid (IP) was built from historical ignition locations using inverse 
distance weighting (ArcMap Spatial Analyst) with a search distance of 5000 m, consider-
ing all fire ignition coordinates for the study period (Fig. 1c).

2.3 � Input data for wildfire simulations

FlamMap uses inputs related to the landscape, historical weather, and historical fire occur-
rence to simulate wildfire events. Topography (i.e., elevation, slope, aspect) and fuel 

Fig. 2   Fire number (FN) and burned areas (BA) from 2005 to 2018 (a), and monthly distribution of FN and 
BA (b) in Ardabil (June to September; 2005–2018). Data from the Ardabil Natural Resources Department 
and FRWO, Iran, 2018
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model (i.e., surface and canopy fuel maps) input data were assembled in a 100-m reso-
lution landscape file (.LCP), as required by FlamMap (Finney 2006), using ArcFuels 10 
(Ager et al. 2011). Topography data were extracted in this study from the digital elevation 
model (DEM; 30-m resolution). Surface fuels are described by fuel models that character-
ize dead and live fuel load (by size class), surface-area-to-volume ratio for live and dead 
fuels, fuelbed depth, moisture of extinction, and heat content. Each fuel model contains 
information about the fuel bed characteristics and is therefore different per vegetation 
type (Oswald et  al. 2017). Fuel models are difficult to calibrate and are rarely validated 
with observed fires (Arca et al. 2007; Ager et al. 2011; Salis et al. 2016). Fuel models are 
extracted from field measurements, selected using photography guides, or obtained from 
other data sources (Anderson 1982; Scott and Burgan 2005; Arca et  al. 2009). Canopy 
fuels are described by percentage of cover, crown bulk density, crown base height, and 
average height. In the study area, surface and canopy fuels were obtained from the national 
land cover dataset (FRWO 2016) by characterizing 14 vegetation types (Fig. 1b) and then 
assigning a standard fuel model (Table 2, Anderson 1982; Scott and Burgan 2005). The 
fuel model and canopy cover (percent) maps, along with elevation (m), slope (degrees), 
and aspect (azimuth), were prepared at a 100-m spatial resolution.

Wildfire spread and behavior depends on conditions that vary on short-time scales such 
as fire weather and fuel moisture, as well as on fuels, topography, ignition patterns, and 
suppression response (Calkin et al. 2011; Parisien et al. 2012). We created six fire weather 
scenarios that were defined by wind speed, wind direction, and frequency (Table 3). These 
scenarios were based on the most frequent wind directions and average wind speeds 
observed during the last 14 wildfire seasons (June to September) in the study area. These 
parameters for the fire modeling were derived from a set of weather stations of the Arda-
bil Province (Fig. 1a; Table 1), and from the Ardabil Natural Resources Department and 
FRWO, Iran, 2018. Wind patterns observed in the weather stations for the years 2005–2018 
are plotted in Fig. 3. The most common wind directions associated with fires in the study 
area are from east and northeast, with peaks of average wind speed of about 35 km h−1. 
The information on live fuel moisture contents (FMC) was derived from other studies with 
similar vegetation types and condition (Dimitrakopoulos 2002; Arca et al. 2007; Sağlam 
et  al. 2008; Jahdi et  al. 2015, 2016). The dead fuel moisture contents were determined 
by the methods of Rothermel (1983), where the dead fuel moisture content was estimated 
from weather, topography, vegetation condition data, and fire date (Table  2; Jahdi et  al. 
2015).

2.4 � Wildfire simulation modeling

Modeling approaches were developed to predict and evaluate the simulation accuracy in 
wildfire spread and behavior. Wildfire simulations were performed by using the minimum 
travel time (MTT) fire spread algorithm as implemented into FlamMap (Finney 2002). The 
MTT algorithm replicates fire growth by Huygens’ principle where the growth and behav-
ior of the fire edge are a vector or wavefront (Richards 1990; Finney 2002). FlamMap MTT 
was calibrated with the aim of accurately predicting fires and also validated under differ-
ent fire environments in USA, Canada, southern Europe, and elsewhere (Ager et al. 2012; 
Massada et al. 2009; Thompson et al. 2011; Salis et al. 2013, 2015). The algorithm was 
initially calibrated in the study area by replicating two recent fire perimeters (Khalkhal-
Khorosh Rostam fire and Meshgin Shahr-Yeylagh Ghasre Dagh fire, respectively, in the 
southern and western parts of Ardabil; Table 4). To assess the accuracy of the simulations, 
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the Sørensen coefficient (SC; Legendre and Legendre 1998), the Cohen’s kappa coefficient 
(KC; Congalton 1991), and the Overall Accuracy (OA; Congalton and Green 1999) statis-
tics were calculated. The coefficient values range from 0 to 1, with the former value cor-
responding to a completely failed simulation and the latter indicating a perfect agreement 
between the fire growth simulations and the reference burnt area perimeter. Wind direction 
and wind speed were kept constant for the simulations. Consistent with previous findings 
(Jahdi et al. 2015, 2016), we found a good agreement between actual and simulated fire 
perimeters (Table 4 and Fig. 4). The simulation statistics of Khalkhal-Khorosh Rostam fire 
were slightly better compared to the Meshgin Shahr-Yeylagh Ghasre Dagh fire for all indi-
ces, even if the difference in terms of accuracy was small. In both fires, the simulation 
overprediction was noticeable on the flanks (N and NW). The overprediction was espe-
cially high in flanking and backing fire spread areas because the fire suppression activities 
were not considered during simulations. 

We simulated 60,000 fires taking into consideration the historical ignition density of 
the study area for the period 2005–2018. We simulated the fires based on six different 
wind scenarios and relative percentage of occurrence, as described in Table 3. However, 
changes in fire management, fuel distribution, and composition in the area, either past 
or future, have not been factored into our estimates of fire exposure. The simulations 
were conducted considering constant fuel moisture, wind speed, and wind direction. All 

Table 3   Parameters of the fire weather scenarios used for wildfire simulations

Input data Description

Wind scenarios Scenario number Sc1 Sc2 Sc3 Sc4 Sc5 Sc6
Wind direction (°) 40 70 100 130 160 190
Wind speed (km h−1) 13 21 21 30 13 16
Frequency (%) 18 26 30 9 11 6

Fire ignitions per scenarios 10,000 ignition points considering the historical ignition density grid

Fig. 3   Wind rose and average wind speed for the Ardabil weather station (June to September, 2005–2018). 
The axes report the frequency of each wind direction in historical fire events
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fire spread simulations were run at 100-m resolution and simulated a fire spread dura-
tion of 5 h, which is the common average duration of large historical fires in the study 
area. Spot probability was set to 0.01 for all the simulations. Fire suppression operations 
as well as barriers to fire spread were not considered.

The outputs of FlamMap MTT are a burn probability grid, the fire perimeter shape-
files, the flame length probabilities (text file and binary grid), and the fire size list (text 
file with coordinates and area burned by each fire). Burn probability (BP) for a given 
pixel is an estimate of the likelihood that the pixel will burn given an ignition within the 
study area, while considering burn conditions similar to the historical fires (Ager et al. 
2012). BP is defined as (1):

where F is the number of times a pixel burns and n is the number of simulated fires (10,000 
for every fire weather scenario). Modeled fires burned every pixel at least 10 times and the 
99% of the burnable area.

(1)BP = F∕n

Table 4   Main information of the Khalkhal-Khorosh Rostam and the Meshgin Shahr-Yeylagh Ghasre Dagh 
wildfires, used to calibrate FlamMap in the study area. The simulation accuracy results are also reported

Khalkhal-Khorosh Rostam Meshgin Shahr-Yeylagh 
Ghasre Dagh

Fire description
 Latitude 37° 21′ 38° 17′
 Longitude 48° 23′ 47° 33′
 Elevation (m a.s.l.) 1180 2500
 Fire start date (and hour) July 13, 2016 (12.00) August 16, 2015 (09.00)
 Fire end date (and hour) July 13, 2016 (20.00) August 16, 2015 (19.00)

Weather conditions during the fire events
 Temperature (°C)
  Max 29 35
  Min 19 21

 Relative humidity (%)
  Max 77 55
  Min 29 19

 Wind speed (km h−1)
  Max 22 22
  Av 7 4
  Average wind direction S SW
  Precipitation (mm) 0 0

 Simulation accuracy
  Observed fire size (ha) 83.5 90.00
  Simulate fire size (ha) 149.1 128.80
  SC 0.68 0.60
  OA 0.95 0.91
  KC 0.66 0.55
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The fireline intensity (FI—kW m−1) for a given fuel type and moisture condition can be 
calculated from the fire spread rate normal to the front (Byram 1959; Catchpole et al. 1982), 
and then, it is converted to flame length (FL—m) based on Byram’s (1959) Eq. (2):

Each pixel has a frequency distribution of flame length generated from multiple fires burn-
ing a pixel, which is divided into 20 classes of 0.5-m interval.

2.5 � Wildfire exposure analysis

We generated a set of wildfire exposure maps (estimated summary statistics from the output 
data and the different fire activity metrics) and analyzed them at the landscape scale, fuel level, 
municipality level, and for each fire weather scenario. We used BP and FL distribution to cal-
culate conditional flame length (CFL; Eq. 3), which is the probability weighted flame length 
given a fire occurs and is a measure of wildfire hazard (Ager et al. 2010):

where FL
i
 is the flame length midpoint of the ith class.

Text files containing the size (FS, ha) and ignition coordinates were used to analyze spatial 
variation in the size of simulated fires.

The six sets of fire simulation outputs (BP, CFL, and FS) were then weighted according to 
Table 3 to produce a final map for the study area.

A fire potential index (FPI) was generated based on FS and historical ignition locations as:

(2)FL = 0.0775(FI)0.46

(3)CFL =

20
∑

i=1

(

BP
i

BP

)

(

FL
i

)

(4)FPI = FS × IP

Fig. 4   Comparison between simulated and observed perimeters of the Khalkhal-Khorosh Rostam fire (a) 
and of the Meshgin Shahr-Ghasre Dagh fire (b), in Ardabil Province with Ardabil Land Use Map of 2016 
(c)
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where FS is the average fire size for all fires that originated from a given pixel and IP is 
the historical ignition probability determined from the smoothed map of ignitions. The FPI 
combines historical ignition probability with simulation outputs on fire size to measure the 
expected annual area burned for a given pixel. Locations that are characterized by high FPI 
are likely to have an ignition (e.g., arson) and generate a large fire.

Wildfire transmission among land designations was measured by a source–sink ratio 
(SSR) of wildfire calculated as the ratio of fire size (FS) generated by an ignition to burn 
probability:

The SSR ratio measures the pixel wildfire contribution to the surrounding landscape (in 
terms of the fire size it produces) relative to the frequency with which it is burned by fires 
that originated elsewhere or was ignited on the pixel (expressed by the burn probability). In 
relative terms, pixels that have a high burn probability but do not generate large fires from 
an ignition are wildfire sinks, and those that generate large fires when an ignition occurs 
and have low burn probability are wildfire sources (Ager et al. 2012).

3 � Results and discussion

3.1 � Wildfire exposure at landscape scale

Modeling outputs revealed complex exposure patterns in terms of BP, CFL, and FS across 
the study area (Fig. 5). The BP results provided a quantitative wildfire likelihood estimate 

(5)SSR = log
(

FS

BP

)

Fig. 5   Burn probability (a), conditional flame length (b), and fire size (c) maps of the study area
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based on modeling outputs from thousands of fires while accounting for historic ignition 
patterns and the dominant weather scenarios occurring during wildfire season (Finney 
et al. 2011; Haas et al. 2015), rather than focusing on a limited number of fire events that 
do not capture all the existing variability in terms of fire weather conditions and ignition 
locations. Therefore, BP modeling outputs represented a major progress in wildfire behav-
ior modeling compared to previous studies conducted in the study area and the neighboring 
regions (Adab et  al. 2013; Jahdi et  al. 2015, 2016), where wildfire likelihood was esti-
mated with relatively few predetermined ignition locations (Aghajani et  al. 2014; Abdi 
et al. 2018). Wildfires can spread for very long distances and ignition locations will likely 
result in a bad predictor of the burned areas for extreme fire events (Miller and Ager 2013). 
As a result, the BP map revealed which were the areas with a highest exposure in case of a 
fire ignites under the most frequent fire weather scenarios (Table 4). The BP ranged from 
0.0003 to 0.013, and the highest BP values located in the southern and northern portions 
of the province. This can be related to the wildland fuels continuity and the dry climate 
conditions. The results confirmed the findings of previous studies conducted in the Zagros 
ecoregion of Iran, evidencing that wildfires are a recurring phenomenon in this area dur-
ing the dry season that typically extends from July to August (Jaafari et al. 2019). In the 
northern part, many of these wildfires are caused by agricultural activities, where the fire is 
culturally used by local farmers and shepherds to remove post-harvesting remains in cereal 
crops and clear the grazing areas. The result is consistent with observations in northern 
Iran where the highest fire likelihood is related to land cover types associated with agri-
cultural activities, thus indicating a strong influence of human activities in fire occurrence 
in the region (Adab et al. 2018). This burn pattern was also found in other Mediterranean 
cultural landscapes, where the highest BP values were obtained for cereal crops and herba-
ceous pastures (Alcasena et al. 2015, 2017; Salis et al. 2018). The highest BP values were 
associated with the frequent northeast and east wind directions (Sc2 and Sc3). The low BP 
areas of the landscape correspond to areas with low spread rates, large non-burnable areas, 
and a low historical ignition probability (Fig. 5), as we saw in the central area of the prov-
ince. On the other hand, the few forest fuels such as broadleaved forests showed low BP 
values mostly due to reduced biomass loads in the understory. The low BP values in forest 
lands of central Ardabil are explained by the intensive management activities including 
extensive livestock grazing in rangelands and forest thinning for firewood (Naghipour et al. 
2015; Faraji et al. 2019). Dormant-season grazing has been suggested as a rangeland fuel 
treatment, but its effects on fire characteristics are generally unknown (Davies et al. 2015).

The highest fire intensity values (CFL > 1  m) located in small areas of the northern 
part are mostly covered by shrubby fuels, as well as central-southern part of the study area 
covered by cereal crops and wooded pastures characterized by high fuel load and height. 
These results agree with observed wildfire behavior during the largest fire events originat-
ing in dryland croplands in the study area (Ardabil Natural Resources Department, Iran, 
2018). Agricultural waste field combustion is one important type of anthropogenic biomass 
burning, especially in the developing countries, in which simultaneous combustion over 
extended areas can usually facilitate agricultural fire (agri-fire), and then, related emissions 
cause serious local or regional air pollution during harvesting seasons (Zha et al. 2013), 
while most of the central-east parts of the study area (i.e., Ardabil municipality) has mod-
erate values (0.15–1 m) and the rest of the area has low values (up to 0.15 m). Low CFL 
values predominate in the eastern and northern parts of the province. Broadleaf (Corylus 
avellana L., Fagus orientalis Lipsky, Quercus castaneifolia C.A.Mey., and Carpinus betu-
lus L.) forests showed the lowest values (< 0.1 m) (Fig. 5) due to the low fuel load in these 
fuel types.
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FS tends to be much greater in the northern Ardabil because dense grassland and pas-
tures facilitate fire spread. The simulated FS ranged from 1 to 1700 ha. Despite the north-
ern part of the study area presented the largest fires over 800 ha (Fig. 5), the areas with 
the most common occurrence of large fires (400–800 ha) located in the central and south-
ern parts. Large wildfires in these provincial areas have historically been observed. For 
example, a wildfire burnt over 200 hectares in rangelands of Khoresh Rostam division in 
Khalkhal municipality, southern Ardabil on July 13, 2016. Many land use systems in these 
areas including herbaceous and shrubby pastures are vulnerable to wildfires, and flame 
length values above 3 m would cause substantial losses (Alcasena et al. 2016). By contrast, 
the fires were smaller in the eastern part (< 100 ha). These areas were generally character-
ized by fragmented cultural landscapes with a composition of burnable and non-burnable 
fuels where intensive human management activities preserved the typical land use land 
cover mosaic existing in many Mediterranean areas (Fernandes et al. 2012; Mallinis et al. 
2016). The discontinuity of fuels in the landscape can produce substantial changes in fire 
spread rates (Lloret et  al. 2002; Ager et  al. 2017). For instance, orchards and fruit trees 
played a key role in reducing fire spread since managed agricultural lands represent an 
effective barrier to restrict the surface fire spread.

A major zone with the highest values of FPI was identified in the southern part of the 
study area. This area was located in the provincial territory with the highest historical igni-
tion point densities and the biggest fire size. High FPI values were also shown by the areas 
covered by fast-burning fuels, such as broad herbaceous pastures and cereal crops. The 
eastern part of the study area presented the lowest FPI values because of the low histori-
cal fire ignition densities and the small fire size (Fig. 6). These results may have direct and 
significant implications to target ignition prevention activities on the areas where the fires 

Fig. 6   Fire potential index (a) and Source sink ratio (b) maps of the study area
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escaping from the initial attack may cause substantial losses in communities. Currently, 
ongoing wildfire management efforts in the study area include maintenance of tracks fire-
breaks, water points, and monitoring for early detection. Maintain firebreaks by reducing 
fuel loading are the main program that will reduce the intensity of a fire and therefore 
allow for more effectively combating and to also serve as a line from which a back burn 
can be started. Despite high fuel accumulations in some areas like plantations and prevail-
ing drought conditions, there are no fuel management and prescribed burning programs 
underway. Quantitative risk assessment from this study can help local wildfire managers to 
prioritize preventive planning and investments in reducing ignitions.

According to SSR map (Fig. 6), the sink areas (low SSR) were mostly concentrated in 
the eastern part of the study area, which are covered by broadleaf forests (mainly Fagus 
and Quercus forests). On the contrary, wildfire sources (high SSR) were identified in the 
southern and northern parts of the area, predominantly covered by cereal crops and grazed 
pastures. Spatial variation in the source–sink ratio was pronounced and strongly affected 
by the continuity and arrangement of fuels. Pixels with small SSR values generated small 
fires relative to the probability of being burned by a fire originating elsewhere (Ager et al. 
2012). The estimation of potential transmission of fire risk according to the SSR may sug-
gest possible firefighting strategies, places that need vegetation management, areas that 
require more patrols and surveillance, and areas with increased fire intensity.

3.2 � Wildfire exposure at fuels level

We analyzed the average values of the simulation outputs to characterize the fire exposure 
profiles among different vegetation types, municipalities, and weather scenarios. Scatter-
plots of average values for the outputs were also generated to illustrate the selected features 
with different fire risks (Figs.  7, 8, 9). The results showed significant differences in the 
modeled fire exposure factors in terms of both magnitude and spatial patterns. Broadleaf 
forests, conifer–broadleaf mix, and shrubby pastures presented the lowest values of BP 
and CFL (< 0.0001 and < 0.06 m, respectively). This can be explained by the presence of 
non-burnable fuels near the forests and the fragmented landscapes, especially in the east 
part of the province. A similar pattern in terms of fire severity was observed in deciduous 

Fig. 7   Scatterplots of average conditional flame length vs. average burn probability (a) and average fire size 
vs. average burn probability (b) for each vegetation type of the study area
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broadleaf forests and shrublands in fire-prone Eurasian boreal forests (Fang et al. 2018). 
The result is also consistent with observations in North America boreal forests where 
deciduous forests are found to be fire break and reduce landscape flammability owing to 
higher foliage moisture and less surface fuels (Rupp et  al. 2002; Johnstone et  al. 2011). 
Quercus spp. forest, herbaceous pastures, and Astragalus–Grass were identified to have 
very low hazard (BP < 0.0005 and CFL < 0.4 m). In these areas, intensive grazing reduces 
fire hazard through the reduction in surface fuel load. Diamond et al. (2009) and Weber 
et al. (2011) showed that livestock grazing in Idaho reduced grass biomass and cover, and 
ultimately fuel load, which resulted in reductions in fire intensity. In addition, in several 
regions it has been successfully used to assist grazing management and replace the clan-
destine use of fire by shepherds in high fire danger periods (Coughlan 2014). Gardens and 
orchards and tilled areas, which are often located in managed areas and have low fuel load, 
exhibited limited fire exposure, with BP smaller than 0.0005 and CFL less than 0.1 m on 

Fig. 8   Scatterplots of average conditional flame length vs. average burn probability (a) and average fire size 
vs. average burn probability (b) for each municipality in the study area

Fig. 9   Scatterplots of average conditional flame length vs. average burn probability (a) and average fire size 
vs. average burn probability (b) for each wind scenario in the study area
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average. The result is consistent with the previous findings in a Mediterranean fire-prone 
area, where vineyards and orchards with the low presence of woods and shrubs in the sur-
roundings, presented the average lowest values of CFL (Salis et al. 2013; Alcasena et al. 
2015). Wooded pastures were characterized by a high CFL value (0.54 m), but presented 
low values of BP (0.0007) due to the low ignition probability on these areas. Simulation 
outputs for mountainous meadows and grazed pastures showed fairly high mean values of 
BP and low values of CFL. High BPs and CFLs were observed on cereal crops. The high-
est overall wildfire exposure was experienced by cereal crops and mountainous meadows 
areas with high fuel accumulation (BP > 0.001 and CFL > 0.6 m). These areas are overall 
characterized by a large number of fire events.

FS exhibited a strong spatial variability among and within the fuels. On average, FS 
exhibited a peak in mountainous meadows and grazed pastures (513 ha). FS was higher 
than 200 ha in cereal crops and wooded pastures. Orchards, tilled areas, gardens, herba-
ceous pastures, and Astragalus–grass presented average FS values between 100 and 200 ha. 
Shrubby pastures, broadleaf forest, conifer–broadleaf mix, and Quercus spp. forest showed 
lower values (FS < 100 ha).

3.3 � Wildfire exposure at municipality level

For the creation of the other scatterplots, wildfire exposure was analyzed for the diverse 
municipalities of Ardabil Province (Fig. 8). The fire simulation outputs showed low values 
of fire exposure factors in the municipalities of Namin, Nir, Sarein, and Ardabil, compared 
with the other municipalities (BP < 0.001 and CFL < 0.5 m). Namin presented the small-
est fire hazard, with BP and CFL values less than 0.0003 and 0.2 m, respectively. Mesh-
gin Shahr and Germi exhibited low CFL (< 0.3 and < 0.2 m, respectively), with the same 
value of BP (0.0007). Khalkhal, Parsabad, and BileSavar have high fire hazard (BP > 0.001 
and CFL > 0.2 m). In general, Khalkhal, Parsabad, Bilesavar, and Kowsar showed higher 
BP and a wide range of CFL values. Kowsar revealed the highest CFL (> 0.5 m) and BP 
greater than 0.0015. High wildfire exposure values in the municipalities are associated with 
a large amount of pastures, grasslands, and agriculture areas in Parsabad and BileSavar 
(northern part), and the high steepness and large presence of shrublands in Khalkhal and 
Kowsar (southern part).

In terms of FS, the results showed that some municipalities seemed to support large 
fire events (Table 4). The maximum average values were observed in BileSavar, Khalkhal, 
and Nir (> 300 ha). FS for Sarein, Kowsar, Meshgin Shahr, Namin, Parsabad, and Ardabil 
ranged from 100 to 300 ha. Germi had the lowest average FS among the municipalities 
(89 ha).

3.4 � Effects of wind scenarios on wildfire exposure

Scatterplots showing the dispersal of BP-, CFL-, and FS-simulated values among the six 
wind scenarios illustrate a large range of variability (Fig. 9). The simulation results showed 
the variation in the values depending on the wind scenarios considered. Among the six 
scenarios, average BP and CFL varied from 0.00037 to 0.002 and from 0.2 to 0.55  m, 
respectively. The highest average BP and CFL among all wind scenarios were observed for 
southeast wind direction scenario (Sc4) (BP > 0.001 and CFL > 0.5 m). Dominant winds 
(Sc2 and Sc3) showed moderate high intensities (BP ~ 0.001 and CFL ~ 0.3  m). Sc1 and 



928	 Natural Hazards (2020) 101:911–932

1 3

Sc5 presented the lowest fire hazard (BP < 0.01 and CFL < 2 m). The simulation results in 
Sc6 presented relatively mild BP and CFL values (BP < 0.0004 and CFL < 0.2 m).

Average FS values ranged from 99 to 504 ha among the wind scenarios. On average, 
scenarios 1 and 5 showed the lowest FS (99 and 100 ha). The highest FS were observed in 
scenario 4 (504 ha).

4 � Conclusions

Wildfires pose significant threat to people and property in northwestern Iran. Landscape-
scale wildfire simulation modeling can be useful for analyzing potential wildfire risk and 
effects, evaluating historical changes and future trends in wildfire exposure, prioritizing 
management activities, as well as addressing and informing conservation, restoration, 
and risk management planning. The use of wildfire simulations in fire exposure assess-
ment allows the mapping of burn probability and associated fire intensities in relation to 
key drivers including weather, fuel, topography, and spatial ignition patterns. The applica-
tion of remote sensing methods can support mapping and characterization of some input 
data (i.e., fuel models and moisture) needed for wildfire spread modeling and thus further 
increase the potential of wildfire simulators for an integrated wildfire management strategy 
(Vilar et al. 2015; Kanga and Singh 2015).

We used MTT module in FlamMap v. 5 (Finney 2006) to simulate 60,000 fires con-
sidering historical weather scenarios. Simulation outputs highlighted that wildfire season 
dominant winds significantly affect fire likelihood. The statistical analysis also revealed 
significant differences among vegetation types and municipalities in terms of BP, CFL, and 
FS. Scatterplots of average patch values for simulation outputs helped in locating which 
of the studied features are in greater fire risk. Patterns of fuel types, together with wind 
direction and speed, were the main drivers of fire risk. The analysis will help the munici-
palities increase awareness and promotion of the social responsibility against wildfires risk, 
or plan to mitigate fire risk; and what municipalities are doing to build resilience in their 
communities.

Most of the budget in forestry is dedicated to fire suppression activities in fire manage-
ment. Although fire suppression organization has been improved, the frequency of occur-
rence of high-intensity fires has been increasing recently. Climate change scenarios also 
indicate that wildfires are likely to further increase in number, size, and frequency. Socio-
economic changes especially due to land use changes in the study area can foster the occur-
rence of the wildfire events. We implemented a fine-scale wildfire exposure analysis based 
on a fire modeling approach. Wildfire risk and exposure modeling can aid fire risk reduc-
tion management activities by identifying areas with high potential for forest fires and high 
risks to fire hazard, and those most vulnerable under extreme weather conditions.

The study demonstrates how the modeling approach can replicate historical wildfire 
exposure, and this approach can be replicated in other regions. We present the first applica-
tion of fire spread modeling approach based on burn probability to analyze fire hazard and 
exposure at different levels in Iran and even at regional scale. The analysis outputs can have 
numerous applications in the study area, particularly to address the requirements of land-
scape managers to prioritize mitigation treatments and fire ignition prevention monitoring. 
However, further studies of fire risk methods in the field are necessary in order to validate 
and calibrate the outcomes of FlamMap MTT, especially in the vegetation conditions of 
the study area.
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