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Abstract
Among different input data, source-to-site distance plays a major role in the results of 
ground motion models (GMMs). In order to determine the source-to-site distance, geomet-
ric characteristics of the seismic source need to be specified. This can be challenging when 
the seismic source is not known thoroughly. Empirical relationships themselves which are 
used to determine the geometric characteristics of seismic sources contain large degree 
of uncertainty. In this paper, a simple algorithm based on Monte Carlo (MC) simulation 
method which quantifies the uncertainties in distance metric and geometric characteristics 
of seismic sources is proposed. The jointly effects of magnitude and distance are consid-
ered in the proposed algorithm for uncertainties modeling. Also, this algorithm has been 
used to quantified errors resulted from inputting inaccurate source-to-site distance metrics 
in the GMMs. NGA-West2 global GMMs and event-specific isotropic and non-isotropic 
GMMs are used in the analysis. The results demonstrate that the uncertainty in the meas-
urement of different source-to-site distance definitions depends on the magnitude and on 
the location of site with respect to the seismic source. It is also observed that the distance 
measurement uncertainty has a direct effect on the outcomes of GMMs. GMMs’ coefficient 
of variation maps demonstrate that the amount of uncertainty is higher around the fault; 
for large magnitudes, outcome variation of GMMs reaches as high as 40% of the average 
predictions. The coefficient of variation in GMM results decreases with the increase in dis-
tance metrics considered where at a distance beyond 30 km, the coefficient of variation of 
GMM estimates drops from 40 to 10%.

Keywords  Uncertainty · Ground motion model · Monte Carlo simulation · Fault geometric 
characteristic

1  Introduction

Uncertainty, in different forms, is an inevitable part of engineering analysis. Uncertain-
ties are responsible for seismic risk evaluation of structural systems and installations. The 
uncertainties are categorized as either aleatory or epistemic. Aleatory uncertainty, which 
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is not reducible, is defined randomly or as a natural congenital variable. Epistemic uncer-
tainty stems from a lack of knowledge or incomplete information and, unlike aleatory 
uncertainty, is reducible. In fact, epistemic uncertainty can be reduced by increasing data 
and information. With all this, distinguishing between aleatory and epistemic uncertainty 
is not a straightforward task and from a scientific point of view, uncertainty type identifica-
tion is the main capability of the analyst in reducing of uncertainties (Der Kiureghian and 
Ditlevsen 2009). Epistemic uncertainties associated with probability seismic hazard analy-
sis (PSHA) can be classified into two categories: (i) earthquake rupture prediction and (ii) 
ground motion characteristics (Bradley 2009).

In the first category where uncertainties are related to earthquake prediction, estimating 
the occurrence frequency of earthquake for a fault/faults of a region and its magnitude is 
very difficult and dependent on assumptions (Murray and Segall 2002). In conventional 
PSHA, earthquake occurrence is considered randomly with respect to time. Assuming ran-
dom occurrence, the probability of an earthquake in the specified time intervals is con-
stant and does not change over time which is inconsistent with elastic rebound theory 
(Reid 1911). The uncertainty of recurrence model can be categorized into the uncertainty 
in magnitude and time of occurrence (Kramer 1996). In determining the magnitude of 
an earthquake, Gutenberg and Richter (1944) obtained a linear relationship between the 
magnitude and total number of earthquakes in any given region and the time period of 
at least that magnitude, which is known as Gutenberg–Richter law. Then this relationship 
was transformed into the modified Gutenberg–Richter law by controlling the magnitude of 
earthquakes to specific values (McGuire and Arabasz 1990). Many studies have been car-
ried out in this subject area to reduce the uncertainties. The main focus of these studies was 
frequently on determination of maximum magnitudes, b-value prediction and illustration of 
seismicity of the study area (Smit and Kijko 2016; Kijko et al. 2016; Beirlant et al. 2018). 
In the case of time uncertainty, several recursive models have been proposed by research-
ers. For this case, Markov’s recurrence model presented by Knopoff (1971) using Markov 
chain can be instanced. In addition, Patwardhan et  al. (1980) introduced the pseudo-
Markov model. Most of time-dependent recurrence models are based on the renewal pro-
cess. In these models, the recurrence interval of an earthquake can have different distribu-
tions and the probability of an earthquake within a given interval depends on the elapsed 
time since the last event. Hagiwara (1974), Utsu (1984) and Nishenko and Buland (1987) 
utilized Weibull, Gamma and log-normal distributions in recursive models, respectively.

The second category of uncertainty is related to modeling ground motion uncertainty. 
For a specific earthquake, ground motion amplitude is described by GMMs, which is a 
function of earthquake magnitude, source-to-site distance, site conditions and occasionally 
some other parameters (Bommer et  al. 2010; Wang 2011; Tsang et  al. 2011; Yaghmaei-
Sabegh 2012; Stewart et  al. 2015; Douglas 2017). GMMs are obtained using statistical 
regression on data recorded at the stations. Despite the expansion of the global seismic net-
work, there is no adequate data on near field and large magnitude earthquakes which neces-
sitate the presentation of new models according to updated data (Beven et al. 2018). Due to 
the assumptions and simplifications in mathematical modeling, GMMs contain epistemic 
uncertainty. The uncertainty can be observed in the model’s inaccurate form, selection of 
particular data, error in input data, and statistical error in the estimation of constants (Foul-
ser-Piggott 2014). Youngs (2006) and Stafford et  al. (2009) showed that the uncertainty 
caused by the inaccurate form and the selection of particular data can be calculated by the 
logic tree. Using the logic tree, several predictions of seismic intensity measurements are 
made through a set of GMMs, for a given scenario. It is also shown that although the use of 
a set of GMMs could estimate epistemic uncertainties (Yuongs 2006; Stafford et al. 2009), 
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yet part of the variables remain as epistemic uncertainty (Foulser-Piggott 2014). Foulser-
Piggott (2014) provides a quantitative approach for modeling of the input data uncertainty 
in the median prediction of GMMs by adopting the MC approach for the three variables: 
moment magnitude ( Mw ), shear wave velocity at a depth of 30 meters ( VS30

 ), and the closest 
distance to fault rupture plane ( Rrup).

Source-to-site distance measurement is difficult in areas with low seismicity or where 
the dimensions and geometry of the faults are unclear. In these regions such as Australia, 
Peninsular Malaysia, and the island of Sri Lanka, using predefined areal source zones is 
still the standard of practice. The number of the historical earthquake and seismicity data 
are sparse; therefore, the amount of information available is not enough to have individ-
ual faults to be modeled as precisely in a PSHA (Lam et  al. 2016; Abrahamson 2006). 
Therefore, in this paper, a method has been developed to quantify the distance uncertainties 
where the geometry of the faults is unknown. A simple algorithm based on the MC simula-
tion method which quantifies the uncertainties in distance metric ( Repi , Rrup , and Rjb ) and 
geometric characteristics of seismic sources is proposed and errors in results of the GMMs 
from these uncertainties have been calculated. Briefly, this paper main focus is the distance 
metrics uncertainty measurement and its quantification. Various factors engender source-
to-site distance measurement uncertainty, which include the following:

1.	 The difference in fault rupture geometry.
2.	 When using a GMM, depending on the size of the project site, a question may arise 

about the selection of a point from which the distance to the source ought to be meas-
ured. This is more common in large-scale projects located at a close distance to a fault. 
For instance, the Oakland bridge project in San Francisco is several kilometers long. 
Hence, the earthquake waves along the course of this project will have different char-
acteristics at the beginning and the end of the bridge (Moss 2009).

3.	 Different definitions for distance measurement are used in GMMs. Among the most 
common definitions, the closest horizontal distance to the vertical projection of fault 
rupture ( Rjb ), the closest distance to fault rupture plane ( Rrup ), the closest distance to the 
epicenter ( Repi ), and the distance to the hypocenter ( Rhypo ) can be mentioned (Abraham-
son and Shedlock 1997). There is also no agreement on the most appropriate definition 
of distance measurement, which indicates uncertainty about the comparative accuracy 
of these definitions (Moss 2009).

MC simulation method as a powerful uncertainty modeling tool is a computational algo-
rithm that, by the random selection of input parameters, solves the problem and stores the 
results. Ultimately, using the stored outcomes, the overall result is reported by the method. 
Production of random numbers, based on the probability distribution assigned for integrat-
ing various uncertainties, is one of the main tasks of the MC method (Yazdani et al. 2012). 
The main advantages of the MC method are its ability to control the uncertainty of the 
parameters involved in the PSHA model and to clearly identify the effects of each param-
eter in the final result (Musson 1999). Also, this method has a simple concept and has been 
used by several researchers to evaluate PSHA results (Yazdani et al. 2017; Pavel and Vac-
areanu 2017; Assatourians and Atkinson 2013).

In the following, a simple MC-based simulation method is presented to evaluate the 
distance measurement uncertainties in Sect. 2. To quantify the uncertainties of the defined 
input data and the assumptions made, including fault geometry and the considered sites, 
we propounded an example in Sect. 3 of the paper and the GMMs that used in this paper 
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are introduced in this section. Section 4 consists of two subsections; the outcomes of three 
sites and the standard deviation maps are presented in the first and second subsections, 
respectively. Simulation results of the sites are presented for small, medium and large mag-
nitude earthquake. In Sect.  5, we utilized the simulated data of Sect.  4 and investigated 
their impacts upon the GMMs. Section 5 consists of two subsections; the output results 
of different GMMs are obtained for each point and subsequently, their distributions are 
depicted for the three sites. Finally, Sect. 6 summarizes the outcomes of the paper.

2 � Source‑to‑site distance simulation algorithm

The geometric of fault is an important factor for determining the source-to-site distance 
that is usually not known. The uncertainty of the fault position and the determination of 
the input parameters of the GMM are adopted as the epistemic uncertainty which influ-
ences the results of PSHA analysis. Among the effective geometrical factors which influ-
ence measuring the source-to-site distance with respect to the definition of distance, the 
following factors can be mentioned:

1.	 Start point of rupture on the fault plane (hypocenter location).
2.	 Length and width of fault rupture.
3.	 Rupture depth.

In the proposed algorithm, uncertainty of the various definitions of source-to-site distance 
is simulated. The detail of the algorithm used in this paper is shown in Fig. 1. The proposed 

Fig. 1   Source-to-site distance simulation process
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algorithm is very simple and consists of several parallel loops which are considered the 
uncertainties of the mentioned factors to determine of distance metric.

In the first loop, uncertainty length and width of fault are considered. These two param-
eters are related to the moment magnitude scale by the Wells and Coppersmith (1994) 
model (see Eqs. 1, 2). Therefore, several numbers of the length and width are generated 
in this loop. The generated length and width have a log-normal distribution with standard 
deviations 0.16 and 0.26, respectively ( �log10 L = 0.16, �log10 W

= 0.26.

where L and W are length and width of the rupture fault, respectively, and Mw is moment 
magnitude.

In the second loop, uncertainty quantification of the fault dip ( � is considered. In this 
path, the uncertainty of fault dip results proposed by Kilb and Hardebeck (2006), Hayes 
and Wald (2009) and Foulser-Piggott (2014) was used, and dip variation was considered 
10°. In this loop, the random desired number of fault dip angle with the same probability is 
generated. For instance, if the fault dip is 70°, the angles which are generated in this loop 
are between 60° and 80° (i.e., 70° ± 10°) with the same probability.

One of the effective factors in the estimation of source-to-site distance Repi and Rhyp is 
the hypocenter position on the fault plane. In order to determine Rhyp , the realization of 
hypocenter proposed by Mai et al. (2005) is utilized. Mai et al. (2005) represented that the 
relative position of hypocenter along the fault width ( hyp Z ) has a normal distribution with 
mean of 0.5 and standard deviation of 0.23, and the relative position of hypocenter along 
the fault length ( hyp X ) follows a Weibull distribution with a scale parameter of 0.626 and 
shape parameter of 3.921. Regarding the length and width of the fault, the desired number 
of hypocenter position with the aforementioned distribution is generated. In addition to 
the above realizations, the depth of hypocenter ( Zhyp ) should be determined. The depth of 
hypocenter according to Eq. (3), which is presented by Scherbaum et al. (2004), is a func-
tion of the moment magnitude and its standard deviation is equal to 4 km. The minimum 
and maximum values of hypocenter depth ( Zhyp ) are considered 4 and 16 km, respectively 
(Scherbaum et al. 2004).

With regarding standard deviation, the upper and lower limit, the desired number of Zhyp is 
generated with the same probability.

In order to identify the realizations mentioned in the previous loop, we can also calcu-
late the other parameters of the fault, including depth-to-top of rupture ( Ztor ). Based on the 
modified Kaklamanos et al., (2011) relation, Ztor can be calculated through Eq. (4):

After realizations of the fault geometry, we can calculate different definitions of source-to-
site distance metrics.

In sum, the simulation algorithm for each moment magnitude can be carried out in the 
following steps

1.	 Loop 1: n number of length and width which is generated by Eqs.  1 and 2 
( wn×1 and Ln×1).

2.	 Loop 2: n number of the dip angle with uniform probability is generated ( �n×1).

(1)log10 W = −1.01 + 0.32Mw

(2)log10 L = −2.44 + 0.59Mw

(3)Zhyp = 5.63 + 0.68Mw

(4)Ztor = max((Zhyp − hypZ.W. sin(�)), 0)
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3.	 Loop 3: n number of hypZ and hypX regarding the probability distribution of each 
hypocenter is generated ( hypXn×1 and hypZn×1).

4.	 Loop 4: n number of Zhyp and Ztor regarding existing distribution is generated ( Zn×1 , Ztorn×1).

By the combination of four parallel loops, n number of the fault geometry is simulated. 
The process of simulation is shown in Fig. 1.

3 � Example set up

To quantify the epistemic uncertainty of GMM due to the uncertainty of source-to-site dis-
tance, a strike-slip fault with the length of 60 km is considered according to Fig. 2. It is 
assumed that the selected sites in this example have been located on the bedrock; hence 
not soil response is relevant. The results of the MC simulation will be presented in two 
parts. In the first part, the simulation results of distance determinations are presented and 
discussed and in the second part, simulated data in the first part is used as GMM input to 
determine the uncertainties in the GMM outputs.

Nine GMMs have been used in this paper: the four NGA08 GMMs, Abrahamson and 
Silva (2008), Boore and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and 
Youngs (2008), in which they are abbreviated as AS08, BA08, CB08, and CY08, respec-
tively. Moreover, three GMMs: Danciu and Tselentis (2007), Nowroozi (2005), Ambra-
seys et al. (2005), which are based on epicenter distance and abbreviated as DT07, N05, 
ADSS05 in this paper, are used. Finally, two event-based GMMs named isotropic (Iso) 
and non-isotropic (Non-iso) are used in the analysis. The main characteristics of Iso and 
Non-iso GMMs are that: (i) They are a random function that means they have an event-
specific parameter. The GMMs are fitted to a given event based on corresponding records. 
(ii) The level of ground motion is not the same in all directions in the non-isotropic GMM. 

Fig. 2   Strike slip fault and sites 
configuration
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The general form of these GMMs that are used to nonlinear regression as follows (Raschke 
2013):

where PGA is peak ground motion acceleration, h is hypocenter depth, and r is the hori-
zontal distance between the site and the epicenter. �0 , �1 , �2 are the constant coefficients 
obtained from a nonlinear regression. To consider the non-isotropic conditions, R is calcu-
lated utilizing Eq. 6 (Raschke 2013):

The radius function dunit (φ) determines the unit-isoline with an azimuth � of local polar 
coordinates. There are many types of unit-isoline that can be applied in the non-isotropic 
GMM which include area π equal to the unit circle of angle function. Different unit-iso-
lines can be combined by the sum d2

unit
(�) =

∑

aid
2
i,unit

(�) with weighting 0 ≤ ai ≤ 1 and 
∑

ai = 1 . Circle with eccentricity has been considered herein as the unit-isoline in the non-
isotropic GMM which is shown in Fig. 3. If the circle with eccentricity is used, parameters 
of eccentricity ( ac and bc ), along with �0 , �1 , and �2 , should be estimated. The main charac-
teristics of the GMMs are listed in Table 1. The selected events to represent small, medium, 
and large earthquakes are Big Bear 02, California 2001 (Mw = 4.56), Sierra Madre, Califor-
nia 1991 (Mw = 5.61) and Loma Prieta, California 1989 (Mw = 6.93). For the three selected 
events, isotropic and non-isotropic GMMs parameters are presented in Tables  2 and 3, 
respectively, which obtained from the nonlinear regression.

4 � Simulated results

Using the proposed algorithm, 100,000 realizations for the fault geometry are generated. 
According to the fault geometry, the desired distance metrics will be calculated as well. 
Fault rupture could occur in all parts of the fault; however, to reduce the simulated vari-
ables only one position of the fault rupture is considered so that the center of the fault 

(5)Ln(PGA) = �0 − �1 ln(R) − �2R and R2 = r2 + h2

(6)R =

√

r2
/

d2
unit

(�) + h2

Fig. 3   Eccentric circle unit-isoline (Reconstructed from Raschke 2013)
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rupture length corresponds to the fault center. In fact, it is symmetric with regard to the 
fault center. The maximum rupture length due to limitations of the fault length is 60 km.

4.1 � Simulation results for site S1, S2, and S3

Using the simulated algorithm, the different source-to-sites distance metric distributions 
( Repi , Rjb , Rrup ) are calculated for three S1, S2, and S3 sites. To quantify and compare the 
variation of distance distribution, the coefficient of variation is used in accordance with 
Eq. (7) (Everitt 1998).

In this regard, Cv is the coefficient of variation, � and � are the standard deviation and 
the mean of the simulated data, respectively.

Figure 4 illustrates the values of Cv for each magnitude in the semi-logarithmic scale 
for the three sites, S1, S2 and S3. The Cv values for Repi , Rjb , and Rrup depend on the magni-
tude and the site position with respect to the fault. Cv coefficient of all distance measures 
will increase by increasing magnitude and for a given magnitude, distance increasing will 
reduce Cv.

For small and medium magnitude levels, Cv coefficient of the three distances metrics is 
closed to each other in all of the sites. The trend of changes is the same in these sites, Rjb 
and Rrup included the least and the largest Cv , respectively.

The Cv coefficient has a different trend in the large magnitude, and it is also sensitive to 
measure distance. For the S1 site, Cv coefficient of different source-to-site distance metrics 
is very close to each other, and by increasing the distance (i.e., in the S2 and S3 sites), the Cv 
coefficient takes large values for the Repi distance measures. The mean values estimated for 
Rjb and Rrup in the S1 site ( � in Eq. 7) are lower than the mean value of Repi , and due to this, 
their Cv coefficients are greater than Repi so that by increasing the distances, the mean value 

(7)Cv =
�

�

Table 2   Parameters of isotropic GMM Reconstructed from Raschke (2013)

Earthquake θ2 θ1 θ0 h Residual variance

Big Bear-02, California 2001 0 1 − 0.28 9.1 0.222
Sierra Madre, California 1991 0 1 1.747 12 0.088
Loma Prieta, California 1989 0 1 2.17 17.48 0.257

Table 3   Parameters of non-isotropic GMM Reconstructed from Raschke (2013)

Earthquake θ2 θ1 θ0 h ac bc Residual variance

Big Bear-02, California 2001 0 1 − 0.11 9.1 − 0.43 − 0.24 0.217
Sierra Madre, California 1991 0 1 1.59 12 − 0.30 0.42 0.077
Loma Prieta, California 1989 0 1 2.16 17.48 0.13 − 0.05 0.253
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of these three distance metrics approaches each other, and the Cv coefficient of the Repi is 
larger than others.

As mentioned before, by increasing magnitude, Cv would be increased either; how-
ever, the rate of increasing is not the same for all distance definitions. The increas-
ing rate of Repi is higher than that of other definitions with increased magnitude. By 

Fig. 4   Cv of different source-to-
site distance metrics ( Rjb , Rrup , 
Repi ) at site S1 , S2 and S3
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increasing magnitude, the length and width of the fault rupture and the points that can 
be the epicenter will increase; due to this process, the variation coefficient of the rupture 
increases as well.

The increasing process of the Cv for Rrup in large magnitude in contrary to Repi will 
reduce and the reason for this is reaching the rupture level to ground’s surface in large 
magnitude. In this case, most Ztor values in the simulation algorithm are equal to zero and 
thus the Cv of Rrup is lower than other distance definitions. The increasing process of Rjb is 
also constant and Cv increases with increasing magnitude.

Figure 5 shows the distribution of simulated data for Rjb , Rrup , and Repi considering dif-
ferent magnitudes at site S3. In this case, Rjb and Repi are bounded to the minimum and max-
imum of simulated data, respectively. The range of simulated data depends on the number 
of parameters involved in the definition of distance type. In the proposed algorithm, Rjb 
depends only on the length, width and dip angle of the fault; however, in addition to the 
mentioned parameters for Rjb , the epicenter location on the fault plane will additionally 
affect the measure of Repi . Uncertainties in the length, width, dip and epicenter location on 
the fault plane are considered for Repi . Also, length, width, dip and the Ztor are the param-
eters that are considered in the calculation of Rrup . By increasing magnitude, the length and 
width of the rupture will increase and the uncertainty associated with the geometry of the 
fault increases and the extent of variation in all three types of distances increases.

4.2 � Distance uncertainty map

The proposed algorithm is accomplished for all sites around the fault. The standard devia-
tion values associated with three distance metrics ( Repi , Rrup , and Rjb ) at the Mw6.93 event 
are illustrated in Fig. 6. For this case, the standard deviation trend depends on the distance 
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Fig. 5   Distance simulation distribution ( Rjb,Rrup , Repi ) in different magnitude at site S3
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definitions ( Repi , Rjb,Rjb ) and the main assumption of this example as well. (The rupture has 
symmetric evolution with respect to fault plane.) Therefore, the standard deviation of simu-
lated data is the lowest for all distance definitions in the middle of the fault.

The maximum variation of the standard deviation is related to Repi ; by changing the 
angle to the fault center, the standard deviation values are changed and the highest standard 
deviation is about 9 km, which is along the fault strike.

Fig. 6   The standard deviations contour of different source-to-site distance metrics for the Mw6.93 event
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The variation of the standard deviation of two distances ( Rrup and Rjb ) is similar to 
another, and its lowest amount occurs in the middle of the fault. Because in the defined sce-
nario, fault rupture is located in the middle of the fault and due to Eq. 2, the mean length 
of the rupture with the magnitude scale of 6.93 is about 45 km; thus, in the middle of fault 
region, the amount of Rjb is constant. The small standard deviation difference in the hang-
ing wall and footwall is due to the 10° of measurement error on the fault dip that is consid-
ered randomly in the simulated algorithm. Because the dip variation has no effect on the 
footwall part, the standard deviation of Rjb is equal to zero. The maximum standard devia-
tion for Rjb is calculated on the top and bottom of the fault strike. Because rupture level has 
reached the ground surface, contour variation in Rrup is similar to Rjb.

5 � Distance uncertainty effect on GMMs output

5.1 � GMMs simulation results for site S
1
 , S

2
 and S

3

In this section, simulated data in the previous section are used as input in GMMs. Accord-
ing to Eq.  (7), the Cv for all GMMs is calculated for different magnitudes. Figure  7 
shows the PGA distribution of the GMMs at the site S3 . According to Table 4, Non-iso, 
Iso, ADSS05, N05, and DT07, which are dependent on Repi have the same behavior and 
also the suffering of their changes is the same. Maximum and minimum of Cv are DT07 
( Cv = 0.1266 ) and non-isotropic ( Cv = 0.0796 ) GMMs at site S3 , respectively. As shown 
in Fig. 7, the PGA distribution for AS08 and CY08 is different when compared with other 
GMMs. According to sensitivity analysis for the input values of the NGA08 GMMs, Ztor 
uncertainty has a more effect on the outputs of these GMMs.1 By considering a constant 
value for Ztor , the behavior of these GMMs is similar to each other. Figure 8 shows that 
after eliminating the Ztor uncertainty in the simulation process, the distribution of these two 
GMMs (AS08 and CY08) is similar to other GMMs and Cv coefficient of these GMMs is 
reduced.

Figure 9 shows the Cv of the NGA08 GMMs for two cases: one with Ztor uncertainty and 
other without Ztor uncertainty. For the first case, Cv of AS08 and CY08 is large for all sizes 
and converges to another GMMs’ Cv with an increase in magnitude. This trend depends 
on the variation of Ztor that is large for small magnitude and small in large magnitude. As 
shown in Fig. 9b when Ztor uncertainty is excluding, results decrease in Cv for small and 
medium magnitude. In both cases, Cv of PGA increases with increasing the magnitude size 
and decreases with increasing distance from the rupture, for all GMMs.

5.2 � GMMs uncertainty map

Simulated data in Sect.  4.2 are used as input for all sites around the fault. The median 
and standard deviation of all GMMs output are computed for all sites, and Cv is calculated 
using Eq. (7). Figure 10 illustrates the Cv of PGA for the Mw6.93. As shown in Fig. 10, 
Cv takes large values in the near-fault region and decreases by distance increasing. The Cv 
is large along strike in comparison with perpendicular direction to the fault. Due to the 
assumption behind this example (rupture is located in the middle of the fault), Repi has 

1  Sensitivity analysis not reported here for sake of brevity.
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301Natural Hazards (2019) 99:287–306	

1 3

smaller variation in this region which results small variation for PGA. The Cv of Iso and 
Non-iso GMMs are close to each other and three GMMs of N05, DT07 and ADSS05 are 
showing similar results. Maximum and minimum of Cv are N05 ( Cv = 0.4 ) and Non-iso 
( Cv = 0.2 ) GMMs, respectively.

The Cv of NGA08 models have a different trend when compared to the other GMMs and 
have an asymmetrical pattern with unequal values for hanging wall and footwall. BA08 
which depends on Rjb has a small Cv and in the perpendicular direction to rupture, Rjb has a 
small variation which results small variation in Cv . Similar to other GMMs Cv has the larg-
est value along strike and decrease with an increasing distance. This GMM has the largest 
Cv of 0.32.

Table 4   Considered different 
distance definition in GMMs

GMM Rrup Rjb Rx Ztor Repi

DT07 – – – – ✓
N05 – – – – ✓
ADSS05 – – – – ✓
AS08 ✓ ✓ ✓ ✓ –
BA08 – ✓ – – –
CB08 ✓ ✓ ✓ ✓ –
CY08 ✓ ✓ ✓ ✓ –
Iso – – – – ✓
Non-iso – – – – ✓
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Fig. 8   GMMs outputs distribution (PGA) at site S3 for the Mw6.93 without considering Ztor uncertainty



302	 Natural Hazards (2019) 99:287–306

1 3

CB08 GMM which depends on Rrup , Rjb , Ztor , and fault wide has a different trend within 
comparison to BA08 GMM. In this GMM Rrup has the largest contribution to the variation 
in the results and in regions with smaller Rrup variation, the Cv is also small. Cv does not 
have a symmetrical trend with respect to the strike direction due to the hanging wall and 
footwall effect. In this GMM, the maximum Cv equal to 0.32 in along the strike.

AS08 and CY08 GMMs are similar to CB08 GMM and the considerable variation in 
the results are coming variety of Rrup and Ztor . These GMMs have different trends with 
respect to other GMMs as Cv is greater at large distances with respect to the other GMMs. 
In these GMMs the maximum Cv equal to 0.32 similar to other NGA08 GMMs.
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6 � Conclusions

In this paper, we investigated the uncertainty of source-to-site distance and its effects on 
the outputs of GMMs. A simple framework was also proposed based on MC simulation 
method. The results of the analysis demonstrated that the two factors of magnitude and 
distance to the fault affect the values of Cv . It was observed that in general, the value of 
this coefficient increases with the increase in magnitude and decreases with the increase 
in distance to the fault. Significant differences were observed in the standard deviations of 
different distance definitions in different directions. The highest standard deviation of all 

Fig. 10   The Cv contour of GMMs for the Mw6.93 event
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distance definitions was along and near the fault line, whereas the least standard deviations 
belonged to the direction perpendicular to fault rupture.

In GMMs that are only a function of Repi , the distribution of the outputs of GMMs 
closely resembled that of the Repi . In the NGA08 GMMs whose inputs are more than one 
variable, the output distributions of the GMMs were not the same as inputs distribution. 
The BA08 model which is a function of Rjb had the lowest and the AS08 and CY08 GMMs 
had the highest Cv . The GMMs’ Cv maps indicated that the variations ( � in Eq. 7) in the 
vicinity of the fault fluctuate between 20 and 40 percent of the average value of the GMM 
output, which can have a significant impact on the determination of risk level in the region. 
The Cv of the GMMs decreased with the increase in distance to the fault, where the amount 
of decrease depended on the rupture location with respect to the fault. On average, the vari-
ations were less than 10% at distances farther than 30 km.

We showed the utilization of empirical relationships to determine the dimension of 
rupture have uncertainty. Employing the simulation algorithm proposed in this paper, this 
uncertainty was quantified. It was also depicted that, depending on the GMMs, the uncer-
tainty can alter the results up to 40%. This amount of discrepancy can theoretically reach 
zero with the increase in precise information on the dimensions of fault rupture. However, 
with the available information, the outputs of the GMMs may increase up to 40%, which 
can have a significant impact on the seismic hazard determination of the region. This paper 
explains that distance uncertainty is one of the parameters that can have a great impact 
on the final results of PSHA and in the design of the important structures such as power 
plants, bridge, schools, etc.; this uncertainty can have a significant impact on engineering 
decisions to ensure the safety of the structure and its economic viability.
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