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Abstract
Flood scaling issue is usually studied under stationary conditions. However, in recent dec-
ades, climate change and anthropogenic activities have changed hydrological processes, 
and stationary assumption has been questioned. To test the flood scaling invariance (sim-
ple scaling or multiscaling) and analyze the influence of environmental change on flood 
scaling parameter, in this study, eight mesoscale sub-watersheds in Daqinghe River basin 
were selected as the study area, and the trend and change point of annual maximum flood 
peak (AMFP) series were detected, respectively. All the AMFP series had downward trend, 
and the change point was around 1979. Therefore, the AMFP series are nonstationary. To 
analyze the flood scaling issue in the Daqinghe River basin, the AMFP series were recon-
structed under the environmental conditions before and after the change point, respectively. 
Then, flood quantiles were calculated using the reconstructed stationary series. We also 
used GAMLSS (Generalized Additive Model in Location, Scale and Shape) to calculate 
flood quantiles based on the observed nonstationary AMFP series. According to the flood 
quantiles calculated by the above methods, the relationship of the drainage areas of the 
sub-watersheds and the flood quantiles was fitted with power function. Flood quantiles 
of the reconstructed stationary and observed nonstationary series showed obvious flood 
multiscaling. The increase in rainfall depth causes the increase in flood scaling exponents 
with the increase in return period, and different change ratios of land use before and after 
change point resulted in the flood scaling exponents of reconstructed series before 1979 
were smaller than those after the change point at same return period.
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1 Introduction

Scaling is an important issue in ecology, meteorology, biology and hydrology. Flood scal-
ing can be expressed by a power law as QT = �TA

�T , where QT is the flood quantile of 
T-year return period flood, A is the drainage area, log(αT) is the intercept parameter and θT 
is the scaling exponent (Gupta et al. 1996; Medhi and Tripathi 2015). Since at-site flood 
frequency analysis is hindered for ungauged basins (Medhi and Tripathi 2015), flood scal-
ing is widely used in regional flood frequency analysis (RFFA) where observed data are 
deficient.

Flood quantiles were generally used in flood scaling by developing regression relation-
ships between flood quantiles and basin attributes (Han et  al. 2012; Furey et  al. 2016). 
Haddad et al. (2011) and Han et al. (2012) obtained regression relationships between flood 
quantiles and basin slope, drainage density and stream slope. In the regression equation, 
some other basin attributes were also included, such as basin width and rainfall duration 
(Galster et al. 2006; Ayalew et al. 2014; Van et al. 2000; Furey and Gupta 2005). For all of 
these basin attributes, drainage area is the most widely used to analyze flood scaling effect 
(Jothityangkoon and Sivapalan 2001; Ishak et al. 2011; Furey and Gupta 2007), which can 
be used to predict flood quantiles without observed data. On this basis, flood is seemed to 
exhibit simple scaling if the scaling exponent is constant. If the scaling exponent changes 
with return period, it is called multiscaling (Gupta and Dawdy 1995). Ogden and Dawdy 
(2003) analyzed peak discharge scaling in small watersheds in Goodwin Creek Experimen-
tal Watershed (GCEW) and found that the flood quantiles in all sub-basins exhibited sim-
ple scaling. Furey et al. (2016) developed a nested mixed-effects linear (NMEL) model to 
connect event-based scaling with quantile-based scaling in GCEW further and found that 
scaling slopes of event-to-event peak discharges were on average equivalent to the mean 
scaling slope of annual peak quantiles, which was also supportive of the result of Ogden 
and Dawdy (2003).

However, previous flood scaling studies were under stationary assumption which means 
the distribution of flood extreme value keeps invariable over time. In recent decades, cli-
mate variation and anthropogenic activities have changed regional flood mechanism and 
many river basins showed hydrological nonstationarity (Villarini et al. 2009, 2010, 2012; 
Li et al. 2014a, b, c; Xiong and Guo 2004; Cong and Xiong 2012; Gu et al. 2014), which 
makes the assumption of stationarity be questioned. Milly et  al. (2008) considered that 
stationarity was dead and could not be revived. So flood frequency analysis (FFA) under 
stationary hypothesis seems to be no longer effective and accurate enough. In this case, 
nonstationarity was considered in flood frequency analysis. Vogel et al. (2011) combined 
two-parameter lognormal model and exponential trend model to analyze the trend of 
annual maximum streamflows in USA and variation in flood quantile. Liu et  al. (2014) 
presented the nonstationary generalized extreme value (NSGEV) distribution and used it 
to investigate the risk of Niangziguan Springs discharge decreasing to zero by defining the 
GEV parameters as functions of time. Zeng et al. (2014) employed mixed distribution to 
fit the nonstationary flood series in North China. All of the above studies showed that non-
stationary flood frequency analysis was more accurate and flexible. In addition, GAMLSS 
(Generalized Additive Model in Location, Scale and Shape), which was proposed by Rigby 
and Stasinopoulos (2005), was used for nonstationary flood frequency analysis in many 
researches due to its high degree of flexibility. Villarini et al. (2009) applied GAMLSS to 
annual maximum peak discharge records for Little Sugar Creek by modeling the param-
eters of the selected parametric distribution as a smooth function of time via cubic splines. 
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Villarini et al. (2012) studied the relation between NAO (North Atlantic Oscillation) and 
annual maximum daily discharge with Gumbel distribution in GAMLSS. López and Fran-
cés (2013) and Gu et al. (2014) used GAMLSS to address the modeling of nonstationary 
time series with the parameters of the selected distributions as a function of time only and 
climate indices and reservoir index, respectively. However, few studies analyzed design 
flood quantiles and return period under nonstationarity. There are two common methods to 
calculate the return periods of hydrological extreme value event, i.e., expected waiting time 
(EWT) proposed by Wigley (1988, 2009) and expected number of exceedances (ENE) pro-
posed by Parey et al. (2007). In order to make FFA under nonstationarity, Salas and Obey-
sekera (2014) extended EWT to nonstationary condition and applied it to analyze hydro-
logical series with upward or downward trend, finding that the result was more reliable. 
Cooley (2013) also extended both EWT and ENE to hydrological extreme series. Du et al. 
(2015) used ENE to calculate flood return periods and risk under nonstationarity.

Flood scaling under nonstationarity must be carried out due to climate change or land 
surface change. In Daqinghe River basin, a mass of hydraulic structures were built after 
1980s, and the land surface also changed a lot during this period (Gong et al. 2012; Li and 
Tan 2015; Deng et  al. 2016). Changing land surface and land use may influence runoff 
process. Li (2011) found land use change in Zijingguan sub-watershed in Daqinghe River 
basin leads to the decrease in runoff. Fu (2010) also presented transformation of land use 
had effect on flood peak and flood volume. Therefore, Daqinghe River basin was selected 
as study region to analyze nonstationary flood scaling in order to identify if flood scaling 
was applicative under changing environment.

The aims of this paper are to (1) identify the trend and change points of AMFP series of 
the eight sub-watersheds in Daqinghe River basin; (2) make flood frequency analysis based 
on the reconstructed stationary series and observed nonstationary series, respectively; (3) 
analyze flood scaling and the effect of changing environment on scaling exponent; (4) find 
the possible influence factor of scaling exponent. The novelty of this paper is to analyze 
flood scaling under stationary and nonstationary conditions by using reconstructed flood 
data and observed nonstationary flood data, respectively, and compare the changes in scal-
ing exponent.

2  Study area

Daqinghe River basin, which is located in the middle of Haihe River Basin, lies between 
113°39′ and 117°34′E longitude and 38°10′–40°102′N latitude. The drainage area of 
Daqinghe River basin is 43,060  km2, in which mountains and plains account for 43.3% 
and 56.7%, respectively. The basin is in a temperate continental semiarid monsoon climate. 
The annual mean temperature is 12.5 °C, and the average annual temperature in mountain 
and plain is 7.6  °C and 13.1  °C, respectively. The average annual precipitation is about 
500–600 mm, about 80% of which is in the flood season.

In recent decades, many hydraulic structures have been built in Daqinghe River 
basin, which has changed the natural conditions of the river flow. For example, Wang-
kuai reservoir in Daqinghe River basin was built in June 1958 and completed in Sep-
tember 1960. It has a control drainage area of 3770 km2 and total storage capacity of 
1.389 billion  m3. In this drainage area, more than 6000 check dams were built, which 
were used for soil and water conservation. Xidayang reservoir was built in January 1958 
and completed in January 1960, which has a control drainage area of 4420 km2, and the 
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total storage capacity is 1.137 billion  m3. Hengshanling reservoir, Longmen reservoir 
and Angezhuang reservoir have total storage capacity of 0.303 billion  m3, 0.24 billion 
 m3 and 0.127 billion  m3, respectively.

3  Data and methods

3.1  Data

In this study, eight mesoscale sub-watersheds of Daqinghe River basin, including Wang-
kuai reservoir (WK), Angezhuang reservoir (AGZ), Hengshanling reservoir (HSL), 
Xidayang reservoir (XDY), Longmen reservoir (LM), Fuping station (FP), Zhangfang 
station (ZF) and Zijingguan station (ZJG), are selected as the study area to analyze 
flood scaling under nonstationarity (Fig. 1). Fuping station is located in the upstream of 
Wangkuai reservoir, and Zijingguan station is located in the upstream of Zhangfang sta-
tion. Other sub-watersheds are all non-nested. Hourly rainfall and corresponding flood 
data which occurred in the flood season (June to September) are used for flood scal-
ing analysis in this study. The drainage area and data length of the sub-watersheds are 
listed in Table 1, and the AMFP series are shown in Fig. 2. Moreover, the land use in 
Daqinghe River basin in different periods (Fig. 3) was selected to analyze the influence 
of environmental change on flood scaling.   

Fig. 1  Daqinghe River basin and location of study sub-watersheds
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3.2  Detection of nonstationarity in AMFP series

Nonstationarity in hydrological series caused by climate change and anthropogenic 
activities has made traditional stationary assumption be questioned which is the basis of 
flood frequency analysis. For analyzing flood scaling in Daqinghe River basin, the trend 
and change point of AMFP series of the eight sub-watersheds should be tested to iden-
tify the nonstationarity. In this paper, two widely used nonparametric trend test methods, 
Mann–Kendall test (Mann 1945; Kendall 1975) and Spearman test (Spearman 1904), were 
used to detect the trend of the AMFP series. And the test statistics of the two methods are 
UK and T, respectively. Nonparametric Pettitt test (Pettitt 1979) was applied to check the 
change point of the series. All of these nonparametric tests were selected with a signifi-
cance level � = 0.05.

3.3  Flood frequency analysis under nonstationarity

Due to nonstationarity in AMFP series, they need to be reconstructed to conduct flood fre-
quency analysis. Traditionally, flood series are always reconstructed based on the past or 
current environmental conditions according to the change point in the series. However, 
it can only reflect the past or current condition and cannot predict future flood frequency. 

Table 1  Drainage area and 
data length of the eight sub-
watersheds

Station Drainage area  (km2) Data length (year)

AGZ 476 1961–2005
FP 2210 1958–2002
HSL 440 1959–2000
LM 470 1961–2002
WK 3770 1955–2008
XDY 4420 1956–2005
ZF 4810 1961–2001
ZJG 1760 1956–2001

Fig. 2  AMFP series of eight sub-watersheds in Daqinghe River basin
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Time-varying moment model, which presents the nonstationarity of flood series by setting 
distribution parameter varying over covariates like time, can effectively reflect the trend of 
time series and estimate future flood frequency (López and Francés 2013). So flood frequency 
analysis is conducted based on both reconstructed series and nonstationary AMFP series, and 
we compared the results of two methods.

3.3.1  Reconstructed AMFP series based on rainfall–runoff relation

Due to the trend and change points in AMFP series, the time series need reconstruction 
based on relationship between precipitation and runoff to get stationary AMFP series 
(Deng et al. 2016). The procedure is: (1) selecting enough flood events and corresponding 
precipitation events; (2) calculating average rainfall depth P, antecedent rainfall depth Pa 
and total runoff depth R; (3) establishing rainfall–runoff relationship before and after the 
change point, respectively (Fig. 4); (4) reconstructing AMFP series based on the relation-
ship between P + Pa and R before and after the change point.

In this paper, antecedent rainfall depth Pa can be calculated by:

where Pa,t+1 and Pa,t are antecedent rainfall depth at time t + 1 and t. Ka is dissipation coef-
ficient of soil moisture. We considered the soil moisture at the first day of flood season 
every year, which is Pa,1, was 0. Then, we can calculate P + Pa according to observed rain-
fall data at time t.

The magnitude to revise runoff depth after the change point based on rainfall–runoff 
relationship before the change point can be calculated by:

(1)Pa,t+1 = Ka(Pa,t + Pt)

(2)�1 = (R1 − R2)∕R1

Fig. 3  Land use in Daqinghe River basin in 1970, 1980 and 2000
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where R1 and R2 refer to the runoff depth corresponding to the same precipitation event 
before and after the change point. Similarly, the magnitude to revise runoff depth before the 
change point based on rainfall–runoff relationship after the change point is calculated by:

Then annual maximum flood volume can be revised based on the two magnitudes, and 
AMFP series can be reconstructed according to the linear relationship between annual maxi-
mum flood volume and AMFP.

3.3.2  GAMLSS

GAMLSS was chosen as a fitting tool to analyze flood frequency based on observed nonsta-
tionary AMFP series. GAMLSS was proposed by Rigby and Stasinopoulos (2005), which can 
regress the relationship between explanatory variables and response variables with its series of 
distribution family of continuous or discrete distributions with highly skewness and kurtosis. 
Herein, we provide a brief introduction to the main theory of GAMLSS model. The GAMLSS 
model assumes that independent observations yt for t = 1,2,…,n follow a probability (density) 
function f (yt|�t) where �t = (�t1, �t2,… , �tp) is a vector of p parameters at time t. In most sit-
uations, distribution with less than or equal to p = 4 parameters is applied because it is accurate 
and flexible enough to model series. While the first two parameters �i and �i are also known 
as location and scale parameters, let y = (y1, y2,… , yn)

T be the n-length vector of response 
variable and �k = (�1k, �2k,… , �nk)

T be the vector of kth parameter where k = 1, 2,… , p . Let 
gk(⋅) be monotonic link functions relating �k and explanatory variables Xk through semi-para-
metric additive models given by:

(3)�2 = (R1 − R2)∕R2

(4)gk(�k) = �k = Xk�k +

Jk∑
j=1

Zjk�jk

Fig. 4  Rainfall–runoff relationship before and after the change point. Red line and blue line refer to rain-
fall–runoff relationship before and after the change point, respectively. R1 and R2 refer to the runoff depth 
corresponding to the same precipitation P + Pa before and after the change point
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where �k and θk are n-length vectors, �k = (�1k, �2k,… , �Ikk)
T is a regression parameter of 

length Ik , Xk is an explanatory matrix of order n × Ik , Zjk is a fixed design matrix of order 
n × qjk and �jk is a qjk–dimensional random variable following normal distribution.

When considering function relating parameters and time t, the explanatory matrix Xk can 
be also given by:

In GAMLSS, the likelihood function of regression parameter � is given by:

For choosing the best-fit model and penalizing model overfitting, global deviation (GD) 
and Generalized Akaike Information Criterion (GAIC) can be used, and GAIC includes 
Akaike Information Criterion (AIC; Akaike 1974) and Schwarz Bayesian Criterion (SBC; 
Schwarz 1978). Moreover, the quality of fitting is examined by computing the visual inves-
tigation of the residual QQ plot and worm plot. For a detailed discussion, readers can con-
sult Rigby and Stasinopoulos (2005).

3.3.3  Return period under nonstationarity

There are two interpretations of return period in traditional flood frequency analysis. The 
first is expected waiting time (EWT) proposed by Wigley (1988, 2009) which assumes that 
X is the year of the first occurrence of an extreme event that exceeds the given flood quan-
tile zp. The second is the expected number of exceedances (ENE) proposed by Parey et al. 
(2007) whose assumption is that the expected number of exceedances in T-years is 1. In 
traditional stationary hydrological frequency analysis, the distribution of extreme events 
doesn’t change over time. So the return period of both interpretations can be easily received 
by T = 1/p where p means exceedance probability. As for nonstationary condition, due to p 
changing over time, we cannot calculate return period T as easily as stationary condition. 
In this case, Salas and Obeysekera (2014) extended EWT to nonstationary condition and 
applied it to analyze hydrological series with upward or downward trend, finding that the 
result was more reliable. Meanwhile, Cooley (2013) applied EWT and ENE to nonstation-
ary hydrological extreme series and investigated flood quantiles corresponding to the given 
return period under nonstationarity. Because the nonstationarity in flood series cannot sus-
tain over time, Shi et al. (2016) presented the trend duration concept and simplify the EWT 
definition under nonstationarity to calculate nonstationary return period. In this paper, 
EWT definition was applied for flood frequency analysis based on GAMLSS.

3.4  Flood scaling

According to the results of flood frequency analysis based on both reconstructed stationary 
AMFP series and nonstationary AMFP series, the flood scaling effect can be analyzed by:

(5)Xk =

⎡
⎢⎢⎢⎣

1 t … tIk−1

1 t … tIk−1

… … … tIk−1

1 t … tIk−1

⎤
⎥⎥⎥⎦
n×Ik

(6)L(�1, �2) =

n∏
t=1

f (yt|�1, �2)

(7)QT = �TA
�T
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Take the logarithm on both sides of the equation, and it becomes:

where QT is the flood quantiles at return period T, A is the drainage area, θT and αT are the 
flood scaling exponent and scaling intercept, respectively, which can be calculated by lin-
ear regression of log QT and log A. By analyzing the scaling exponents at different return 
periods of both reconstructed stationary AMFP series and nonstationary AMFP series, it 
can be seen if the flood in Daqinghe River basin exhibits simple scaling or multiscaling. 
Comparing the variation in scaling exponents of reconstructed AMFP series under the 
environmental conditions before and after change point, we can analyze the influence of 
environmental variation on flood scaling.

4  Results and discussion

4.1  Trend and change point of AMFP series

Mann–Kendall and Spearman test were used to examine the trend of the AMFP series with 
significance level � = 0.05 and the critical values Uα/2 = 1.96 and tα = 1.676, respectively. 
Then, the nonparametric Pettitt and Brown–Forsythe tests were applied for the detection of 
change points of the AMFP series. The results of trend test and change point test are listed 
in Tables 2 and 3 and Fig. 5, respectively.

It can be seen that all of the AMFP series show downward trend, four of which show 
significant downward trend. Because continuous heavy rainstorm occurred in whole 
Daqinghe River basin in 1963 and 1996, which therefore caused catastrophic floods 
in these two years, 1963 and 1996 were neglected in change point analysis. Accord-
ing to Fig. 4 and Table 3, it is displayed that no significant change point was detected 

(8)logQT = �T logA + log �T

Table 2  Results of trend test by 
nonparametric Mann–Kendall 
and Spearman test

Sub-watershed UK T Significant trend 
of both methods

AGZ − 0.420 − 0.457 No
FP − 2.818 − 3.033 Yes
HSL − 1.138 − 1.340 No
LM − 1.250 − 1.109 No
WK − 3.310 − 3.404 Yes
XDY − 1.968 − 1.951 Yes
ZF − 1.142 − 1.070 No
ZJG − 3.989 − 4.361 Yes

Table 3  Results of change points 
test by nonparametric Pettitt 
and Brown–Forsythe tests (“—” 
means that no significant change 
point was identified)

Sub-watershed Change points Sub-watershed Change points

AGZ – WK 1979
FP 1979 XDY 1979, 1990
HSL 1971, 1979 ZF 1979
LM 1979, 1991 ZJG 1979
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in Angezhuang. HSL exhibited change points at 1971 and 1979, while Longmen and 
XDY exhibited change points at 1979 and around 1990. Other sub-watersheds present 
a statistically significant change point in 1979. Considering the situation of Daqinghe 
River basin, there were a mass of hydraulic structures built around 1980s, and the land 
use and land cover also changed during this period (Li and Feng 2010; Li et al. 2014b; 
Chen and Li 2011). So the change point of the AMFP series for Daqinghe River basin is 
initially regarded as 1979. For confirming the most possibly change point, eight AMFP 
series were separated before and after 1979 and diagnosed trend, respectively. Accord-
ing to Table 4, separated AMFP series showed no significant trend. It meant that 1979 
was reasonable to be regarded as change point, which also agrees with the previous 
research (Gong et al. 2012; Li and Tan 2015; Deng et al. 2016). Therefore, the AMFP 
series are no longer stationary in the study area.

Fig. 5  Change point analysis by nonparametric Pettitt test. X-axis refers to year, and y-axis refers to fre-
quency P

Table 4  Trend analysis of 
separated AMFP series before 
and after 1979

UK and T are statistic value of Mann–Kendall and Spearman test, 
respectively

Sub-watershed AMFP series before 
1979

AMFP series after 
1979

UK T UK T

AGZ − 0.54 − 0.24 0.20 0.20
FP − 0.14 − 0.35 0.39 0.28
HSL − 0.06 − 0.21 1.45 1.33
LM − 0.25 − 0.35 − 1.03 − 0.79
WK 0.00 − 0.30 − 1.77 − 1.64
XDY − 0.55 − 0.20 − 0.51 − 0.77
ZF − 0.11 − 0.05 1.10 1.10
ZJG − 1.68 − 1.58 − 0.53 − 0.69
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4.2  Flood frequency analysis based on reconstructed AMFP series

Flood frequency analysis based on the reconstructed stationary AMFP series under the 
environmental conditions before and after the change point (1979) was conducted, respec-
tively, and the flood quantiles at given return periods of the two AMFP series are shown 
in Fig. 6. Most flood quantiles for reconstructed series under the environmental conditions 
after 1979 are lower than those before 1979 (Table 5). The reason is that the AMFP series 
decrease obviously after the change point (1979) as a result of change in land use, land 
cover and construction of hydraulic structures. Therefore, for the same rainfall P + Pa, 
there will be less runoff R after 1979 than before 1979.

4.3  Flood frequency analysis based on observed nonstationary AMFP series

Based on the observed AMFP series, GAMLSS was employed for nonstationary flood 
frequency analysis by simulating the distributions of the AMFP series. In GAMLSS, five 
common two-parameter distributions, which included log normal distribution (LOGNO), 
gamma distribution (GA), Gumbel (GU), Weibull (WEI) and normal (NO), were selected 
as candidates to choose the best-fit distributions of the AMFP series. In this paper, time 

Fig. 6  Flood quantiles at given return periods based on reconstructed series under the environmental condi-
tions (a) before 1979 and (b) after 1979

Table 5  Change of flood quantiles at given return periods based on reconstructed series under the environ-
mental conditions after 1979 relative to that before 1979

Sub-watershed Change of flood quantiles at given return periods (%)

500 200 100 50 20 10

ZF − 18.74 − 16.92 − 14.77 − 11.35 − 2.50 11.82
XDY − 3.53 − 4.34 − 5.25 − 6.52 − 9.25 − 12.59
WK − 5.95 − 5.76 − 5.59 − 5.38 − 5.04 − 4.86
FP − 16.30 − 15.84 − 15.33 − 14.62 − 13.08 − 11.17
ZJG − 11.54 − 12.22 − 13.03 − 14.32 − 17.66 − 23.37
AGZ − 14.59 − 12.55 − 10.35 − 7.15 − 0.08 9.03
LM − 12.54 − 13.48 − 14.47 − 15.86 − 18.83 − 22.75
HSL − 12.50 − 12.49 − 12.50 − 12.50 − 12.51 − 12.55
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t was selected to be the only covariate to analyze flood frequency under nonstationarity 
based on the observed AMFP series, and only the link function between t and distribution 
parameters was considered. In GAMLSS, we set μ and σ constant and time varying, which 
means we fit four model for every series (constant μ and σ, time-varying μ and constant σ, 
constant μ and time-varying σ, time-varying μ and σ). The fitting model with the smallest 
AIC (Akaike 1974) and SBC (Schwarz 1978) was considered as the best-fit model which is 
displayed in Table 6.

The best-fit distribution of Longmen was GA, and the best-fit distribution of Xiday-
ang was WEI, while LOGNO fitted other six sub-watersheds best. For a satisfactory fit 
of model, all the observations in worm plot should fall inside the two elliptic curves. 
For QQ plots, the observations should lie next to the 1:1 line. According to the QQ 
plots and worm plots of residuals of eight best-fit models (Figs.  7, 8), the results of 
GAMLSS model were credible. Because distribution parameter μ reflects mean value 
and σ reflects variance, σ of all the best-fit models was constant and μ was various 
which can reflect trend of AMFP series. The parameters of the best-fit distributions 
of Angezhuang and Hengshanling were constant. So two sub-watersheds showed no 

Table 6  Summary of the best-fit models of the AMFP series

Sub-watershed Best-fit distribution Relationship between t and distribution 
parameters

GD AIC SBC

AGZ LOGNO � = 4.8469� = 1.5818 605.19 609.19 612.81
FP LOGNO � = 90.64439 − 0.04314t � = 1.1693 612.91 618.91 624.33
HSL LOGNO � = 5.1221� = 1.1612 562.00 566.00 569.48
LM GA � = 28820.41 − 14.396t � = 1.634 483.42 489.42 494.63
WK LOGNO � = 78.756827 − 0.036484t� = 1.0463 856.14 862.14 868.11
XDY WEI � = 45885.272 − 22.78t� = 0.86486 759.39 765.39 771.13
ZJG LOGNO � = 109.24113 − 0.0527t� = 1.0104 588.47 594.47 599.95
ZF LOGNO � = 61.63475 − 0.02853t� = 1.3969 563.78 569.78 574.92

Fig. 7  QQ plot of the residuals of eight best-fit models with GAMLSS model
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significant nonstationarity in flood frequency analysis according to GAMLSS model, 
which also agreed with the result of above trend analysis. However, the location param-
eters μ of the other six AMFP series which relate to the mean all showed a negative 
correlation with time t, and scale parameters remain constant. The results of GAMLSS 
proved that flood in Daqinghe River basin displayed a decreasing trend. For comparison 
with the flood quantiles based on reconstructed series, 1956 was deemed to be the first 
year of flood frequency analysis based on observed nonstationary AMFP. The results of 
flood quantiles at given return periods based on observed nonstationary AMFP series 
are listed in Fig. 9.

It could be seen that the flood quantiles at given return period are much smaller than 
the results which are based on reconstructed AMFP series shown in Tables  4 and 5, 
which also means that the AMFP series have decreasing trend. For the six sub-water-
sheds which showed nonstationarity, the flood quantiles at larger return periods are 
much smaller than the results based on reconstructed series. However, the flood quan-
tiles show little variability at small return period, i.e., 20 and 10.

Fig. 8  Worm plot of the residuals of eight best-fit models with GAMLSS model

Fig. 9  Flood quantiles at given 
return periods based on observed 
nonstationary AMFP series
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4.4  Flood scaling

Flood scaling is the relation between flood peak and basin area in similar hydrological 
regions. In this study, the identification of similarity of the eight selected sub-watersheds 
was not done, because Feng et al. (2013) classified these areas into the same hydrological 
response units. And Wei et al. (2014) pointed out that these eight sub-watersheds were still 
in the same hydrological response unit after land surface change.

In this paper, drainage area A was selected as the basin attribute to analyze flood scal-
ing effect by establishing the correlation between drainage areas A and flood quantiles of 
T-year return period flood QT. According to the results of flood frequency analysis based 
on reconstructed series and observed nonstationary series, the regression relationship in 
the eight sub-watersheds can be obtained. Figures  10 and 11 show the flood scaling of 

Fig. 10  Flood scaling based on stationary reconstructed series under the environmental conditions before 
1979 at return periods of (a) 500, (b) 200, (c) 100, (d) 50, (e) 20, (f) 10 years, respectively
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stationary reconstructed series under the environmental conditions before and after 1979, 
respectively.

Due to no significant trend in Angezhuang and Hengshanling sub-watersheds in trend 
analysis and nonstationary flood frequency analysis by GAMLSS model, and the param-
eters of probability distribution functions are constant, so the flood quantiles corresponding 
to given return periods remain unchanged. Therefore, Angezhuang and Hengshanling were 
neglected in nonstationary flood scaling effect analysis. Figure 12 displays flood scaling 
based on observed nonstationary AMFP series.

The results of flood scaling exponents based on stationary reconstructed and observed 
nonstationary AMFP series are listed in Table  7. For stationary AMFP series, recon-
structed series under the environmental conditions before and after 1979 have significant 
flood scaling effect. For reconstructed series under the environmental conditions before 

Fig. 11  Flood scaling based on stationary reconstructed series after 1979 at return periods of (a) 500, (b) 
200, (c) 100, (d) 50, (e) 20, (f) 10 years, respectively
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Fig. 12  Flood scaling based on observed nonstationary series at return periods of (a) 500, (b) 200, (c) 100, 
(d) 50, (e) 20, (f) 10 years, respectively

Table 7  Summary of flood scaling exponents based on stationary and nonstationary AMFP series

Return period Scaling exponents

Reconstructed series under the 
environmental conditions before 
1979

Reconstructed series under the 
environmental conditions after 
1979

Observed 
nonstationary 
series

500 0.5585 0.5712 0.7670
200 0.5475 0.5607 0.7142
100 0.5349 0.5490 0.6857
50 0.5158 0.5314 0.6583
20 0.4698 0.4903 0.6105
10 0.3999 0.4299 0.5603
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1979, flood scaling exponent θT ranges from the minimum 0.3999 to the maximum 0.5585, 
and for reconstructed series under the environmental conditions after 1979, θT ranges from 
0.4299 to 0.5712. For both series, flood scaling exponent θT decreases slightly with the 
decrease in return period T. Besides, the flood scaling exponents of reconstructed series 
under the environmental conditions before 1979 are slightly smaller than those after 1979 
at the same return period.

As for flood scaling based on observed nonstationary AMFP series, the result is very 
different. The scaling exponents are much larger than that of stationary reconstructed 
AMFP series. The maximum flood scaling exponent is 0.7670, and the minimum is 0.5603. 
Moreover, scaling exponents based on observed nonstationary AMFP series have a signifi-
cant decreasing trend with the decrease in return period which also shows similar proper-
ties comparing with the result from the reconstructed series.

All of the flood scaling exponents, θT, increase with the increase in return period T. The 
possible reason is that more rainfall, which causes larger flood peak, will make the whole 
basin closer to saturation. And the relation between the flood peak and drainage area is 
close to linearity. Therefore, the flood scaling exponents increase and become close to 1. 
Eight rainfall–flood events were selected to analyze the relation between scaling exponent 
and rainfall which are shown in Table 8 and Fig. 13. It is found that scaling exponent θ dis-
played positive correlation with rainfall. And the Pearson correlation coefficient between θ 
and maximum 1-h rainfall is 0.724 which means they show strong correlation. So it is rea-
sonable to consider that the increase in scaling exponent with return periods can be attrib-
uted to the increasing rainfall. 

Table 8  Maximum 1-h, 3-h 
rainfall and scaling exponents of 
rainfall–flood events

Maximum 1-h rainfall 
(mm)

Maximum 3-h rainfall 
(mm)

Scaling exponent θ

7.07 15.45 1.0223
9.91 25.76 0.9799
6.02 14.00 0.9902
7.92 20.97 0.7701
5.27 13.85 0.8551
6.25 16.58 0.6545
3.92 6.28 0.7572
12.29 28.14 1.2613

Fig. 13  Relation between scaling exponents and rainfall of selected events
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Also we can see that the flood scaling exponents of reconstructed series under the envi-
ronmental conditions before 1979 are slightly smaller than those after 1979 at the same 
return period. And the change of flood quantiles varies between different sub-watersheds 
(Table  9 and Fig.  14). Change ratio of flood quantiles of XDY and WK is 5.78% and 
5.55%, respectively, while FP and LM reach 15.03% and 15.04% whose drainage areas 
are smaller than XDY and WK. Because the drainage area decreases from ZF to HSL, it is 
found that the change ratio and change on unit area exhibit upward trend with the decrease 
in drainage area. So the changing environment seemed to influence flood more on smaller 
sub-watersheds than larger ones. For confirming this, the land use of eight sub-watersheds 
before and after environmental changing (1970 and 1980) was analyzed. The area of grass 
and forest, which is considered to have significant influences on flood (Li 2011; Fu 2010), 
is shown in Table 10. The area of forest and grass of ZF and ZJG changed much more than 

Table 9  Change ratio of flood quantiles based on reconstructed series under the environmental conditions 
after 1979 than that before 1979

Sub-watershed Change ratio of flood quantiles (%) Mean 
change ratio 
(%)500 200 100 50 20 10

ZF − 18.74 − 16.92 − 14.77 − 11.35 − 2.50 11.82 − 12.86
XDY − 3.53 − 4.34 − 5.25 − 6.52 − 9.25 − 12.59 − 5.78
WK − 5.95 − 5.76 − 5.59 − 5.38 − 5.04 − 4.86 − 5.55
FP − 16.30 − 15.84 − 15.33 − 14.62 − 13.08 − 11.17 − 15.03
ZJG − 11.54 − 12.22 − 13.03 − 14.32 − 17.66 − 23.37 − 13.75
AGZ − 14.59 − 12.55 − 10.35 − 7.15 − 0.08 9.03 − 8.94
LM − 12.54 − 13.48 − 14.47 − 15.86 − 18.83 − 22.75 − 15.04
HSL − 12.50 − 12.49 − 12.50 − 12.50 − 12.51 − 12.55 − 12.50

Fig. 14  Change of flood quantiles under the environmental conditions after 1979 relative to that before 
1979 of eight sub-watersheds
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other sub-watersheds. However, Fu (2010) found that the land use changing in ZJG, espe-
cially changing between forest and grass, influenced little on flood peak. So the changing in 
flood of ZJG and ZF, which is located in the downstream of ZJG, is considered not affected 
by land use changing. The land use changing of other sub-watersheds between 1970 and 
1980 is shown in Fig. 15.

It can be seen that all the sub-watersheds show the increase in forest area and the 
decrease in grass area from 1970 to 1980. And it has been found in previous research that 
the increasing forest area and the decreasing grass area may cause the decrease in runoff 
(Gong et al. 2012). Moreover, the change ratio of forest and grass increases as the drainage 
area decreases, which causes the decrease in flood in smaller sub-watersheds more than 
that in larger ones. Therefore, the flood quantile scatters become “slant” and scaling expo-
nent θ increases after 1979.

5  Conclusions

In this paper, flood data of eight sub-watersheds of Daqinghe River basin were applied to 
analyze flood scaling effect under nonstationarity, and the following conclusions can be 
obtained:

Table 10  Grass and forest area of eight sub-watersheds in 1970 and 1980

Sub-watershed Forest area  (km2) Change ratio (%) Grass area  (km2) Change ratio (%)

1970 1980 1970 1980

ZF 2505 3113 12.63 1656 1030 − 13.02
XDY 647 855 4.72 2537 2513 − 0.53
WK 884 1061 4.68 2482 2453 − 0.79
FP 614 761 6.64 1404 1359 − 2.01
ZJG 535 753 12.35 828 634 − 11.04
AGZ 145 166 4.36 265 263 − 0.47
LM 109 141 6.65 259 244 − 3.10
HSL 195 238 9.83 177 157 − 4.55

Fig. 15  Change ratio of area of forest and grass from 1970 to 1980 of six sub-watersheds
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(1) Nonparametric Mann–Kendall and Spearman tests were used to examine the presence 
of trends of the AMFP series, and it was found that the AMFP series of all the sub-
watersheds had downward trend. Moreover, the nonparametric Pettitt and Brown–For-
sythe tests were applied to detect the change points of the AMFP series, and the change 
points were all in the year of 1979.

(2) The AMFP series were reconstructed under the environmental condition before and 
after the change point (1979) based on the relationship between rainfall P + Pa and 
runoff R to achieve stationary series. On the basis of the flood quantiles calculated by 
reconstructed flood peak series, flood scaling between flood peak and catchment area 
was analyzed, and the scaling exponent decreased with the decrease in return period.

(3) Flood frequency analysis used the observed nonstationary series directly by GAMLSS 
to calculate flood quantiles. The flood scaling exponent showed the decreasing trend 
with the decrease in return period, and it is much larger than that obtained from recon-
structed stationary series. Due to downward trend and change point in AMFP series, 
flood scaling results by observed nonstationary series and reconstructed series under 
the environmental condition before change point (1979) were not applicative for FFA. 
Reconstructed series under the environmental condition after 1979 may be more suit-
able to FFA for designing hydraulic structures and flood risk analysis.

(4) Significant flood scaling effect could be found under both stationarity and nonstationar-
ity. In this paper, the scaling exponents of flood quantiles of reconstructed AMFP series 
in Daqinghe River basin were around 0.5. Since the results of scaling analysis should 
provide significant information for design flood calculation in ungauged basins, we 
highly recommend the power law under the current environmental conditions, which is 
the result obtained by the reconstructed stationary flood series under the environmental 
condition after the change point.

Although we analyzed the relations between land use change and scaling exponent, the 
physical mechanism of quantile-based flood scaling remains unclear. Event-based flood 
scaling needs to be analyzed in future research. Through establishing a distributed hydro-
logical model in this study area, the event-based flood processes could be simulated, and 
how the scaling exponent is influenced by rainfall characteristics, land use change and 
soil moisture could be addressed by flood modeling in the future work. Then a function 
between scaling exponent and the driven factors can be built, and it could be used to pro-
vide significant information in other ungauged basins for design flood calculation.
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