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Abstract
This study investigated the variation of extreme precipitation on a catchment under climate 
change. Extreme value analysis using generalized extreme value distribution was used to 
characterize the extreme precipitation. Reliability ensemble average of annual maximum 
precipitation projections of five global climate model–regional climate model (GCM–
RCM) combinations was used to analyse the precipitation extremes under the representa-
tive concentration pathways, RCPs 4.5 and 8.5. In order to tackle the nonstationarity pre-
sent in the bias-corrected ensemble-averaged annual maximum precipitation series under 
RCPs 4.5 and 8.5, it was split in such a way that the resulting blocks were stationary. Here 
the analysis was performed for three blocks 2010–2039, 2040–2069 and 2070–2099, each 
of which were individually stationary. Uncertainty analysis was done to estimate the ranges 
of extreme precipitation corresponding to return periods of 10, 25 and 50 years. Results of 
the study indicate that the extreme precipitation corresponding to these return periods in 
the three time blocks under the RCPs 4.5 and 8.5 exhibit an increasing trend. Extreme pre-
cipitation for these return periods are obtained as higher for the RCP scenarios compared 
to that obtained using observations. Also the extreme precipitation under RCP8.5 is higher 
compared to that under RCP4.5 scenario.

Keywords Climate change · Extreme precipitation · GEV · Return period · RCP4.5 · 
RCP8.5

1 Introduction

If the value of a meteorological variable is extremely high or low, the resulting weather 
becomes extreme. Analysis of extreme events is important since it can cause significant 
impacts to different regimes of the society. This study focuses on extreme precipitation 
and its probable variability due to climate change in a river basin. It has been proved 
that greenhouse gas emissions are the dominant cause of global warming and its adverse 
effects have been detected all over the climate system. Natural and human systems are 
sensitive to the impacts of climate change. Existing risks could be amplified, and also 
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new risks could be created as a result of climate change (IPCC 2014). A changing cli-
mate results in unprecedented extreme weather and climate events with changes occur-
ring to its frequency, intensity, spatial extent, duration and timing (IPCC SREX 2012). 
Climate change impact studies often assess the changes that may happen to the long-
term average values of climate variables. In recent times, there is a growing interest to 
assess changes in the frequency, severity and magnitude of the extreme events.

A substantial increase has been reported in heavy precipitation events in many parts 
of the world even when there is a reduction in the annual total precipitation (IPCC 
2013). Similar observations were reported by Wang et al. (2008) in their investigation 
on the changes in extreme precipitation in the Dongjiang river basin in Southern China, 
where significant changes were seen in extreme precipitation on a monthly basis in con-
trast to a little change in the annual precipitation. An increasing trend of extreme pre-
cipitation has been reported from the studies conducted on USA, UK during winter, 
Australia, South Africa and India (Easterling et  al. 2000; Frei and Schär 2001; Gos-
wami et al. 2006), whereas a significant decrease in extreme rainfall events is found in 
Western Australia, South-East Asia, parts of Central Pacific, northern and eastern New 
Zealand, etc. (Haylock and Nicholls 2000; Griffiths et  al. 2003; Salinger and Griffiths 
2001). Some studies reported that extreme precipitation would more probably inten-
sify in dry regions compared to wet regions of the world under the influence of climate 
change (Donat et al. 2016).

As far as India is concerned, an increasing trend in the extreme rainfall is seen over 
peninsular, east, north east India and a decreasing trend is seen over major parts of central 
and north India (Rakhecha and Soman 1994, Guhathakurta et al. 2011). The present study 
is conducted in the Chaliyar river basin which is located in peninsular India. Few studies 
have been conducted in this river basin to assess the variability and trends of meteorologi-
cal variables. The spatial and temporal variability of rainfall at various stations in the river 
basin on monthly, seasonal and annual scales was studied by Ansari and Chauhan (2017) 
using parametric (simple regression) and non-parametric (Mann–Kendall test and Sen’s 
estimator of slope method) trend tests. These tests identified both increases and decreases 
of precipitation at various stations considered in the study. Chithra and Thampi (2017) ana-
lysed downscaled future projections of precipitation at two stations in the Chaliyar river 
basin and found that there would be an increase in precipitation during the south-west 
monsoon season under the climate change scenarios SRES A1B, A2 and B1. Extreme pre-
cipitation events and their properties are not yet investigated for the river basin. Knowledge 
of the variation of extreme rainfall would be beneficial since this river basin is a virgin 
basin and there is a scope to construct many hydraulic structures in the river in future. It 
would be helpful towards effective planning and management of the watershed as well as in 
decision-making regarding the selection of design storm for the design of various hydraulic 
structures proposed in the river basin.

Extreme events can be analysed using descriptive indices and statistical modelling (Data 
2009; Monier and Gao 2015). A set of 27 core indices developed by the expert team on cli-
mate change detection and indices (ETCCDI) are commonly used to monitor the extremes 
which are occurring several times within a year. Most of the ETCCDI indices are based 
on calculating the number of days exceeding a particular percentile threshold (Data 2009; 
Zhang et al. 2011; Keggenhoff et al. 2014),whereas statistical modelling of the extremes 
using extreme value theory (EVT) can be used to evaluate the intensity and frequency 
of extreme events which are rare. The peak-over-threshold (POT) method and the block 
maxima method are often used for this purpose. In POT, extremes follow a generalized 
Pareto distribution (GPD), and in the block maxima method extremes follow a generalized 
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extreme value (GEV) distribution (Stedinger 1993). In the present study, statistical model-
ling of extreme precipitation using the block maxima approach is followed.

Conventionally, hydraulic structures are designed without considering the effect of cli-
mate change on the extreme rainfall. Knowledge about the return level and return period 
under climate change is extremely important for the design of infrastructure and to miti-
gate the risks associated with extreme climatic events (Madsen and Rosbjerg 1998; Cheng 
and Agha Kouchak 2014). This is crucial for responsible decision-making even when there 
are some predictive uncertainties (Halmstad et al. 2013; Notaro et  al. 2015; Mirhosseini 
et al. 2013). In the present study, extreme rainfall events in river basin for the future cli-
mate change scenarios were analysed by applying EVT to the projections of global cli-
mate model–regional climate model (GCM–RCM) combinations (the driving GCM and 
the RCM used for downscaling the GCM). This will help in the selection of design values 
considering the effects of climate change.

2  Materials and methods

2.1  Study area

The Chaliyar is the fourth longest river in Kerala with a length of 169  km. The origin 
of this river is at the Elambalari hills at an altitude of 2067  m above MSL. The river 
basin spreads over two states, Kerala and Tamil Nadu. The total area of the river basin is 
2933 km2. Its topography comprises of highland, midland, low land and coastal plains. The 
predominant land use in this river basin is agriculture (60.04%) and forests (38.74%), the 
rest being urban areas, pastures, waste lands and rocky areas. The major soil type is loam 
(42.74%), followed by clay (28.66%), clay loam (24.18%) and sandy loam (4.42%). The 
climate is tropical humid with hot summer and high monsoon rainfall. March and April 
are the hottest months, and December and January are the coolest months. Average annual 
precipitation is 3012.61 mm, and the maximum and minimum temperatures are 34 °C and 
24  °C, respectively (Raneesh and Thampi 2013). Digital elevation model (DEM) of the 
river basin, locations (Table 1) of the gauging stations viz, Kottamparamba, Manjeri and 
Nilambur and locations of grids of the downscaling RCMs over the river basin are pre-
sented in Fig. 1.

2.2  Data

Rainfall data were obtained for three stations in the Chaliyar river basin, namely Kottam-
paramba, Manjeri and Nilambur. Daily rainfall data at the Kottamparamba (1979–2004) 
raingauge station was obtained from the Centre for Water Resources Development and 

Table 1  Location of precipitation 
gauging stations

Station Latitude Longitude Elevation 
w.r.t. the MSL 
(m)

Kottamparamba 11°17′ 75°52′ 60.000
Manjeri 11°07′ 76°08′ 107.000
Nilambur 11°17′ 76°14′ 91.000
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Management (CWRDM), Kunnamangalam, Kerala, whereas the data for Nilambur and 
Manjeri (1974–2004) were collected from the Indian Meteorological Department (IMD).To 
assess the variation of extreme precipitation at these three stations due to climate change, 
daily rainfall projections (interpolated using the inverse distance weighting method) of five 
GCM–RCM combinations under representative concentration pathways, RCPs 4.5 and 8.5, 
obtained from the website of CORDEX South Asia were used. Details of the GCM–RCM 
combinations used in this study are presented in Table 2. The resolution of the projections 
of the GCM–RCM combinations is 0.5o × 0.5o.

2.3  Methodology

The methodology used in this study is presented in Fig. 2. Initially, the annual maximum 
precipitations from observed daily data (1979–2004 for Kottamparamba, 1974–2004 
for Manjeri and Nilambur) and annual maximum precipitation projections from the 
GCM–RCM combinations (2010–2099) were extracted. Reliability ensemble averag-
ing (REA) technique was employed to obtain an ensemble-averaged projection of the 
GCM–RCM combinations; it was thereafter subjected to bias correction for eliminating 
systematic errors in the projections. Probabilistic approaches for defining risk, reliabil-
ity and return periods assume that the time series of extreme events should be stationary 
with a probability distribution having fixed moments and parameters (Read and Vogel 
2015). So to check the nature of the time series, stationarity test was performed on it. To 
tackle the issue of nonstationarity in the annual maximum time series, it was split into 
time blocks which were individually stationary. Statistical tests were conducted to identify 
a suitable distribution which fits the observed series of annual maximum precipitation, and 

Fig. 1  DEM of Chaliyar river basin with the location of precipitation gauging stations and the grids of the 
downscaling RCMs
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the selected distribution was used for the calculation of extreme precipitation for different 
return periods in the future too. Extreme precipitation for a return period was estimated 
along with a confidence interval for each of the stationary blocks and their variations were 
analysed. The confidence intervals were obtained from the uncertainty quantification using 
the bootstrap approach.

2.3.1  Reliability ensemble averaging

The performances of different climate models may vary for the same region even under 
a same forcing scenario. So to reduce the uncertainties arising from multiple models, the 
combined result provided by an ensemble of simulations is the best (Giorgi and Mearns 
2003; Das and Umamahesh 2017). Reliability ensemble averaging is one of the widely 
used ensemble averaging techniques suitable for this purpose. It is a method of calculating 
the weighted average of climate model simulations based on reliability criteria. Reliability 
of a model is defined as a measure of its ability to emulate present day climate as well as 
the convergence of its simulations with the other models in the ensemble under a particular 
forcing scenario (Giorgi and Mearns 2002). In the present study, reliability factors for dif-
ferent models (GCM–RCM combinations) under the RCP scenarios were calculated based 
on a methodology followed by Riano (2013). Reliability factor ( Ri ) (Eq. 1) for a particu-
lar model i is the product of reliability model bias factor ( RB,i ) (Eq. 2) and the reliability 
model convergence factor ( RD,i ) (Eq. 3).

(1)Ri = RB,i ×RD,i

Fig. 2  Overall methodology
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where Po,j is the observed maximum precipitation for jth year, Pi,j is the historical maxi-
mum precipitation for ith model and jth year, t is the time, N is the number of models, 
g
i,j is the maximum precipitation projection under a scenario for jth year and ith model, 
xj is the REA weighted average of projections of the models (Eq. 4) and wi (Eq. 5) is the 
weight of each model in the ensemble. The calculation of RB,i is direct since all the terms 
in Eq. 2 are known. But RD,i requires xj which is dependent on Ri . So the estimation of RD,i 
involves iterative calculation. This can be initiated by assuming an initial value for Ri (say 
Ri = RB,i ). The final value of Ri can be obtained using RB,i and the converged solution of 
RD,i.

Higher values of RB,i and RD,i indicate less reliable projections since the calculations of 
these factors are based on mean square errors. RB,i and RD,i can be normalized to obtain a 
score system where the highest value could represent the most reliable model.

2.3.2  Bias correction

Ensemble projection obtained based on the REA weights should be checked for bias before 
being used for further analyses. Bias is a systematic deviation of the model results from the 
expected value due to systematic model errors. Biases are commonly detected by comparing 
the model output with observations which are truly unbiased. Different bias correction tech-
niques have been developed by various investigators to adjust the systematic errors in climate 
model simulations (Teutschbein and Seibert 2013). Methods vary in their accuracy by cor-
recting just the mean of the series in the linear scaling approach to more improved statistics in 
the advanced distribution mapping (Switanek et al. 2017). Mehr and Kahya (2016) developed 
a methodology to correct the bias in extreme series. In this method, mean of the maximum 
series of the climate model for a reference period is matched with mean of the maximum 
series of observations. This method proved to be very helpful since it avoids correction on the 
whole daily data series. In the present study, to correct the biases of ensemble-averaged annual 
maximum rainfall series this method was adopted. The corrected ensemble-averaged annual 
maximum precipitation (AMPBC) (Eq. 6) for the reference and future periods was obtained 
by multiplying a scaling factor to the ensemble-averaged annual maximum precipitation 
(AMP) series for the respective periods. Scaling factor is the ratio of the long-term mean of 

(2)where RB,i =
1

t

t∑
j=1

(
Po,j −Pi,j

)2

(3)RD,i =
1

t

t∑
j=1

(
g
i,j − xj

)2

(4)xj =

∑N

i=1

�
Ri

g
i,j

�
∑N

i=1 Ri

(5)wi =
Ri∑N

i Ri
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the observed annual maximum precipitation ( AMPobs ) to the corresponding annual maximum 
precipitation of the GCM–RCM ensembles over the reference period ( AMPref ). The overbar 
symbol in Eq. 6 represents the long-term annual mean.

2.3.3  Test for stationarity

Stationarity of the data is a common assumption in many time series analyses. Stationarity 
is a property by which statistical properties such as the mean, variance and autocorrelation 
do not change with time. The concept of stationarity is an important aspect especially when 
the time series is used for forecasting. Also, the complexity of a model that can be used 
for an analysis can be reduced with this assumption (Adhikari and Agrawal 2013). A num-
ber of recent studies advocate that the hydroclimatic extremes exhibit nonstationarity under 
anthropogenic climate change (Milly Paul Christopher et  al. 2008; Das and Umamahesh 
2017). So testing the stationarity of the annual maximum series helps to identify whether 
there is any likelihood of changes in the pattern of extreme precipitation in the river basin 
over time. Also it will help to identify the analyses that are suitable with either of the sta-
tionary or nonstationary assumptions. Present study uses Kwiatkowski, Phillips, Schmidt 
and Shin (KPSS) test to check the stationarity of the annual maximum series.

2.3.3.1 Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test It is used to test the null hypothesis 
that a univariate time series is stationary against the alternative hypothesis that it is nonstation-
ary (Shin and Schmidt 1992). In this test, the time series ( Xt, t = 1, 2,… n ) is decomposed into 
the sum of a random walk Rt , deterministic trend �t and a stationary error �t.This test depends 
on the linear regression model given by Eq. 7.

where the random walk,Rt = Rt−1 +Ut , Ut is an identically distributed process with zero 
mean and variance �2

u
 and �t is a stationary error.

If a linear regression model with � = 0 is used, the test checks whether the series is station-
ary about a fixed level or not (level stationarity). If the regression model with � term is used, 
the test checks whether the data series is stationary about a deterministic trend or not (trend 
stationarity).

The KPSS test statistic (K) is given by Eq. 8

where St is the partial sum process of the residuals ( et ). et can be obtained from the regres-
sion of X on an intercept for level stationarity test and the regression of X on an intercept 
and a time trend for trend stationarity test. s2 is the consistent estimator of long run vari-
ance and is dependent on lag length. Selection of lag length is an important aspect in the 
KPSS test. The criterion given by Schwert (2002) and Kwiatkowski et al. (1992) for select-
ing the lag length (l) is given by Eq. 9.

(6)AMPBC = AMP ×
AMPobs

AMPref

(7)Xt = Rt + �t + �t

(8)K =

∑n

t=1
S2
t

n2s2

(9)l = int

[
p ×

(
n

100

)0.25
]
, p = 4, 12
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where n is the length of the data series.
In the present study, KPSS-level stationarity test was performed on the observed annual 

maximum series and the bias-corrected ensemble-averaged annual maximum series under 
the RCPs 4.5 and 8.5 at 10% significance level for two lag lengths given by Eq. 9.

2.3.4  Statistical tests to identify the most suitable distribution

Annual maximum precipitation extracted from the observed daily data was fitted to fre-
quency distributions widely used for the analysis of extreme values (WMO 1989) such as 
the log-normal (LNII and LNIII), log-Pearson type III and generalized extreme value dis-
tribution (GEV). Goodness of fit of the observed data with these distributions was checked 
using the Kolmogorov–Smirnov (KS) and Anderson–Darling (AD) test. The goodness-of-fit 
test measures the compatibility of random sample with a theoretical probability distribution.

2.3.4.1 Kolmogorov–Smirnov Test This test can be used to decide whether the sample fol-
lows a specified distribution or not.

The Kolmogorov–Smirnov statistic (D) (Eq. 10) is defined as the largest vertical dif-
ference between the theoretical cumulative distribution function ( F(xi) ) and the empirical 
cumulative distribution function ( Fn(x) ) (Eq. 11) (Massey 1951; Chakravarti et al. 1967).

where xi is the random sample, i = 1, 2… n

2.3.4.2 Anderson–Darling test This test compares the fit of an observed cumulative distri-
bution function to an expected cumulative distribution function (Stephens 1974; Scholz and 
Stephens 1987). This test gives more weight to the tails than the Kolmogorov–Smirnov test. 
The Anderson–Darling statistic ( A2 ) (Eq. 12) is defined as:

where xi is the random sample and i = 1, 2… n
When log-normal (LNII and LN III), log-Pearson type III and generalized extreme value 

(GEV) distribution were tested for goodness of fit in the observed data, GEV was ranked 
the first at Manjeri and Nilambur stations, whereas log-Pearson type III was the first at Kot-
tamparamba station (Table 3). Since GEV was the best fit distribution for two out of the 
three stations, GEV was selected as the most suitable distribution for the river basin.

2.3.5  Generalized extreme value distribution

Generalized extreme value (GEV) distribution can be used for the maximum series of 
data when the extreme value distribution to which the data converges is not known (Jen-
kinson 1955, 1969). GEV distribution is widely used in most of the studies to obtain 

(10)D = max(F(xi) −
i − 1

n
,
i

n
− F(xi))

(11)Fn(x) =
1

n
.[Number of observations ≤ x]

(12)A
2 = −n −

1

n

n∑
i

(2i − 1).[lnF(xi) + ln(1 − F(xn−i+1))]
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the extreme precipitation for a particular return period (Ragulina and Reitan 2017; Yin 
et al. 2016; Shang et al. 2011). The cumulative distribution function (cdf) of the GEV 
distribution is given by Eq. 13.

where F(x) denotes the cumulative distribution function (cdf), α denotes scale parameter, 
� denotes the location parameter and k is the shape parameter. Depending on the value of 
k, GEV takes a specific type of extreme value (EV) distribution (when k = 0, type I (EVI) 
or Gumbel distribution; when k < 0, type II (EVII) or Frechet distribution and when k > 0, 
type III (EVIII) or Weibull distribution).

The return level xT of a given GEV-distributed random variable associated with a 
given return period T is given by Eq. 14 (Das and Umamahesh 2017; Cheng and Agha 
Kouchak 2014).

Parameters of the distribution were estimated using the maximum likelihood method 
(MLE) in the present study. MLE is one of the widely used methods of parameter esti-
mation having many optimal properties such as efficiency, sufficiency, consistency and 
parameterization invariance (Myung 2003).

2.3.6  Uncertainty in the return levels

Uncertainty of an estimate is the range of values within which the true value is expected 
to lie (Ramsey and Thompson 2007). Uncertainty creeps in the output from many 
sources such as the sample chosen for the analysis, model errors, errors in projection, 
etc. Present study quantifies the uncertainty in a return level from the sample chosen for 
its estimation. Bootstrapping developed by Efron (1979) can be used to estimate uncer-
tainty that arises from the sample taken for future forecasts. The basic concept behind 
bootstrapping is resampling of the original sample. The properties of the true estimate 
can be derived from the properties of bootstrapped samples. Zucchuni and Adamson 

(13)F(x) =

⎧
⎪⎨⎪⎩

exp

�
−

�
1 + k

�
x−�

�

��− 1

k

�
, k ≠ 0

exp
�
−exp

�
−

�
x−�

�

���
, k = 0

(14)xT =

⎧
⎪⎨⎪⎩

� +
�

k

��
− log

�
1 −

1

T

��−k
− 1

�
, k ≠ 0

� + �

�
− log

�
− log

�
1 −

1

T

���
, k = 0

Table 3  Ranks of distributions in 
KS and AD tests

Sl. no. Probability distribution Kottam-
paramba

Manjeri Nilambur

AD KS AD KS AD KS

1 GEV 2 2 1 1 1 1
2 Log-Pearson type III 1 1 2 2 2 2
3 Log-normal II 4 4 4 4 4 4
4 Log-normal III 3 3 3 3 3 3
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(1989) used the bootstrap method to find the confidence intervals of the design storms. 
Hu et al. (2013) used a method based on bootstrapping to estimate the sampling uncer-
tainty in hydrological frequency problem.

Bootstrapping algorithm used in the present study is as follows:

1. Original sample is resampled with replacement to N samples (1000).
2. Each sample is fitted to a generalized extreme value distribution, and parameters of each 

sample are estimated using the method of maximum likelihood.
3. Based on the N parameter vectors, N estimations of extreme precipitation quantile are 

obtained.
4. This is used to derive the range or distribution of the extreme precipitation quantile.

After doing the KPSS test on the annual maximum series of observations and future 
projections, the annual maximum series which were not stationary were found out. Then 
the annual maximum series were divided such that the individual blocks were station-
ary. Bootstrapping algorithm discussed above was applied on each of the stationary 
time blocks, and cumulative distribution functions as well as confidence intervals of the 
return levels were obtained.

3  Results and discussion

3.1  Reliability of the future projections

In the present study, the variation of extreme rainfall for return periods 10, 25 and 
50  years under climate change scenarios RCP4.5 and RCP8.5 was assessed. Annual 
maximum precipitations from five GCM–RCM combinations, viz. ACCESS-CCAM, 
CNRM-CCAM, CCSM-CCAM, MPI-CCAM and MPI-REMO2009, were extracted. 
Using the REA technique described in Sect. 2.3.1, weights were assigned to each of the 
GCM–RCM combinations. The assigned weight indicates the degree of reliability of the 
projections of a particular GCM–RCM combination.

Table  4 shows the normalized weight of GCM–RCM combinations for the histori-
cal and the future RCP scenarios. Higher the weight of GCM–RCM combination, bet-
ter is the reliability of its projection in the given scenario. Ensemble average of annual 
maximum precipitation projections can be obtained using these weights. All subsequent 
analyses are based on the ensemble-averaged projections.

3.2  Statistics of bias‑corrected annual maximum precipitation

The scaling factor used for bias correction at Kottamparamba was obtained from the 
ratio between the long-term mean of the observed annual maximum data (1979–2004) 
and the long-term mean of the ensemble-averaged annual maximum precipitation 
from the GCM–RCM combinations during the control run (1979–2004). The scaling 
factors for Manjeri and Nilambur were obtained in the same manner using the data 
from 1974 to 2004. The scaling factor thus obtained can be multiplied to the historic 
(1979–2004/1974–2004) and future (2010–2099) ensemble-averaged annual maximum 
series to get the corrected series for the respective time period.
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To check the efficiency of the bias correction method used, the corrected ensemble-
averaged annual maximum series during the historic period was compared with the 
observations. Figure 3 shows the cdfs of the ensemble-averaged annual maximum pre-
cipitation series of each station before and after bias correction for the historic period. 
Compared to the uncorrected series (raw), the cdfs of the bias-corrected series match 
closely with the cdfs of the observed series at all the stations considered in the study.

Table  5 presents a comparison of some of the important statistics such as mean, 
median, 25th percentile and 75th percentile of the observed as well as the bias-corrected 
annual maximum precipitation (historic) series. The bias correction methodology fol-
lowed was very efficient and resulted in a reasonably good match between the mean of 
the corrected series and that of the observations. Other statistics also showed a good 
match at all the three stations.

3.3  Nature of annual maximum precipitation

In order to understand the behaviour of the extremes with time, stationarity test (KPSS-
level test) was performed on the observed annual maximum series and the corrected 
ensemble-averaged annual maximum series under RCP scenarios; its results are pre-
sented in Table  6. If the test statistic is greater than the critical value at a particular 
significance level and the p value (probability of obtaining a test statistic) is less than 
the significance level, the null hypothesis of stationarity is rejected. From Table 6, it can 
be inferred that the observed annual maximum series at the three stations are station-
ary. However, the annual maximum series of RCPs 4.5 and 8.5 rejected the stationarity 
hypothesis. So the annual maximum series of RCP scenarios were split into three time 
blocks 2010–2039, 2040–2069 and 2070–2099 which were individually stationary. Sta-
tionarity of the individual time blocks can be inferred from the results of the KPSS test 
on each time block presented in Table 7.

Table 4  REA weights of the GCM–RCM combinations used

Station GCM–RCM combinations Historical RCP4.5 RCP8.5

Kottamparamba ACCESS-CCAM 0.27 0.31 0.324
CCSM-CCAM 0 0 0
CNRM-CCAM 0.359 0.301 0.441
MPI-CCAM 0.371 0.389 0.235
MPI-REMO2009 0 0 0

Manjeri ACCESS-CCAM 0 0 0
CCSM-CCAM 0.155 0.121 0
CNRM-CCAM 0.373 0 0.932
MPI-CCAM 0.472 0.074 0.067
MPI-REMO2009 0 0.805 0.001

Nilambur ACCESS-CCAM 0.314 0.12 0.618
CCSM-CCAM 0 0 0
CNRM-CCAM 0.296 0.188 0.206
MPI-CCAM 0.39 0 0
MPI-REMO2009 0 0.692 0.176
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Fig. 3  cdfs of annual maximum 
precipitation series before and 
after bias correction at a Kottam-
paramba (1979–2004), b Manjeri 
(1974–2004) and c Nilambur 
(1974–2004)

Table 5  Comparison of statistics of bias-corrected ensemble-averaged precipitation with that of the 
observed precipitation

Statistics Kottamparamba 
(1979–2004)
Scaling factor: 1.43

Manjeri 
(1974–2004)
Scaling factor: 1.09

Nilambur 
(1974–2004)
Scaling factor: 1.2

Observed Bias-corrected Observed Bias-corrected Observed Bias-corrected

Mean (mm) 155 155 133 133 130 130
Median (mm) 145 150 127 136 128 126
25th percentile (mm) 119 121 108 106 96 105
75th percentile (mm) 168 173 163 165 163 157
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3.4  Uncertainty ranges of extreme precipitation return levels

Uncertainty analysis using the bootstrapping algorithm discussed in Sect. 2.3.6 was per-
formed on the three time blocks. The empirical frequency distribution curve of extreme 
precipitation of a particular return period corresponding to each block was obtained 
from it. Figures 4, 5 and 6 present the empirical frequency distribution curves for return 
periods 10, 25 and 50 years, at the three stations (Kottamparamba, Manjeri and Nilam-
bur) considered in the study. It can be seen that cdfs of the extreme precipitation for 
all the return periods for the second time block (2040–2069) is shifted to the right of 
the first time block. Also, the cdfs  of extreme precipitation for all return periods for 
the third time block (2070–2099) is shifted to the right of the second time block. This 
indicates that the extreme precipitation for all return periods shows an increasing nature 
for all the three time blocks, i.e. extreme precipitation for the time block 2040–2069 is 
higher than the extreme precipitation for the time block 2010–2039 and the extreme pre-
cipitation for 2070–2099 is higher than that for the time block 2040–2069.  

It is important to consider the impacts of climate change into account, while designing 
a hydraulic structure. Conventional practice of design uses a small percentage in addition 
to the original design value to account for the climate change impact without studying its 
real effects in the study area. Extreme precipitation for some specified return periods is 
often used as the design value while designing the hydraulic structures. To account for the 
changes that may happen to the extreme precipitation under climate change, projections of 
climate models can be used. The expected value of the extreme precipitation for different 
return periods, determined both with the observations and with the future climate change 

Table 6  Results of the KPSS test for the observed and the corrected ensemble-averaged annual maximum 
precipitation series under RCP scenarios

Station Annual maximum series Lags Test statistic Critical value 
for � = 10%

p value

Kottamparamba Observed (1979–2004) 2 0.13 0.355 > 0.1
8 0.251 0.355 > 0.1

RCP4.5 (2010–2099) 3 0.541 0.350 0.038
11 0.45 0.350 0.055

RCP8.5 (2010–2099) 3 0.449 0.350 0.056
11 0.384 0.350 0.085

Manjeri Observed (1974–2004) 2 0.073 0.354 > 0.1
8 0.115 0.354 > 0.1

RCP4.5 (2010–2099) 3 0.444 0.350 0.058
11 0.37 0.350 0.091

RCP8.5 (2010–2099) 3 0.369 0.350 0.092
11 0.373 0.350 0.089

Nilambur Observed (1974–2004) 2 0.197 0.354 > 0.1
8 0.178 0.354 > 0.1

RCP4.5 (2010–2099) 3 0.512 0.350 0.043
11 0.397 0.350 0.079

RCP8.5 (2010–2099) 3 0.6 0.350 0.030
11 0.466 0.350 0.049
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scenarios, and the 90% confidence interval are presented in Tables 8 and 9. These confi-
dence intervals (CI) were derived from the empirical frequency curves. Expectation of the 
extreme precipitation ( E(xT ) ) corresponding to a particular return period can be taken as 
the design value.

Table 7  Results of the KPSS test for the various time blocks under RCP scenarios

Station Annual maxi-
mum series

Lags Test statistic Critical value 
for � = 10%

p value

Kottamparamba RCP4.5 (2010–2039) 2 0.146 0.354 > 0.1
8 0.14 0.354 > 0.1

(2040–2069) 2 0.203 0.354 > 0.1
8 0.327 0.354 > 0.1

(2070–2099) 2 0.09 0.354 > 0.1
8 0.114 0.354 > 0.1

RCP8.5 (2010–2039) 2 0.269 0.354 > 0.1
8 0.349 0.354 > 0.1

(2040–2069) 2 0.181 0.354 > 0.1
8 0.205 0.354 > 0.1

(2070–2099) 2 0.332 0.354 > 0.1
8 0.333 0.354 > 0.1

Manjeri RCP4.5 (2010–2039) 2 0.146 0.354 > 0.1
8 0.138 0.354 > 0.1

(2040–2069) 2 0.17 0.354 > 0.1
8 0.291 0.354 > 0.1

(2070–2099) 2 0.09 0.354 > 0.1
8 0.125 0.354 > 0.1

RCP8.5 (2010–2039) 2 0.106 0.354 > 0.1
8 0.243 0.354 > 0.1

(2040–2069) 2 0.334 0.354 > 0.1
8 0.313 0.354 > 0.1

(2070–2099) 2 0.107 0.354 > 0.1
8 0.141 0.354 > 0.1

Nilambur RCP4.5 (2010–2039) 2 0.302 0.354 > 0.1
8 0.312 0.354 > 0.1

(2040–2069) 2 0.332 0.354 > 0.1
8 0.342 0.354 > 0.1

(2070–2099) 2 0.105 0.354 > 0.1
8 0.161 0.354 > 0.1

RCP8.5 (2010–2039) 2 0.067 0.354 > 0.1
8 0.149 0.354 > 0.1

(2040–2069) 2 0.11 0.354 > 0.1
8 0.204 0.354 > 0.1

(2070–2099) 2 0.137 0.354 > 0.1
8 0.211 0.354 > 0.1
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4  Conclusions

The present study analysed the variation of extreme precipitation in the Chaliyar river 
basin under climate change. Extreme precipitation under an intermediate emission 
scenario, RCP4.5, and the highest emission scenario, RCP8.5, were estimated from 
the ensemble-averaged projections of five GCM–RCM combinations. The extreme 
precipitations for return periods 10, 25 and 50 years were estimated for three future 
time blocks 2010–2039, 2040–2069 and 2070–2099. Results indicate that extreme 
precipitation for any return period is higher for the block 2040–2069 compared to 
that for the block 2010–2039; also, the extreme precipitation for 2070–2099 is higher 
compared to that for 2040–2069. This increase in extreme precipitation over time is 
an indication of nonstationarity of extremes in the river basin under climate change. 

Fig. 4  Empirical frequency distribution of extreme precipitation at Kottamparamba corresponding to 
RCP4.5 and RCP8.5 for a T = 10 years, b T = 25 years and c T = 50 years
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When compared to the extreme precipitation estimated from the observations, its val-
ues for the future time periods under both the RCP scenarios are significantly higher. 
Also the extremes projected under RCP8.5 are higher compared to that under RCP4.5. 
The projected increase in extreme precipitation could affect the engineering design 
of hydraulic infrastructures. A serious discussion on revising and updating the design 
criteria must be initiated and appropriate revisions should be implemented so that 
the likely variations in extreme rainfall due to climate change are taken into account 
in the design process. Also the results of the study would be beneficial for effective 
management of the watershed.

Fig. 5  Empirical frequency distribution of extreme precipitation at Manjeri corresponding to RCP4.5 and 
RCP8.5 for a T = 10 years, b T = 25 years and c T = 50 years
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Fig. 6  Empirical frequency distribution of extreme precipitation at Nilambur corresponding to RCP4.5 and 
RCP8.5 for a T = 10 years, b T = 25 years and c T = 50 years

Table 8  Extreme precipitation 
and 90% confidence intervals for 
different return periods for the 
observed period

Station Return 
period 
(years)

E ( x
T
 ) (mm) CI (mm)

Kottamparamba (1979–2004) 10 215 (187,247)
25 268 (216,327)
50 316 (236,412)

Manjeri (1974–2004) 10 178 (160,195)
25 211 (180,244)
50 240 (195,290)

Nilambur (1974–2004) 10 186 (176,196)
25 210 (197,226)
50 226 (208,252)
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