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Abstract
This study investigated the characteristics of rainfall-triggered landslides during the 
Typhoon Bilis in the Dongjiang Reservoir Watershed, China. The comparative shallow land-
slide susceptibility mappings (LSMs) were produced by the ensemble data-driven statistical 
models in a GIS environment. At first, the landslide inventory for the study area was pre-
pared from the high-resolution QuickBird images, and China–Brazil Earth Resources Satel-
lite images, and field survey. Other necessary data for landslide susceptibility analysis such 
as the amount of rainfall, geology, and topography were also collected from the respective 
agencies. Twelve predisposing factors were then prepared using this available dataset. To 
reduce the subjectivity of models and caution in the selection of predisposing factors, and 
to avoid the spatial autocorrelation redundancy, certainty factor approach was attempted to 
optimize these twelve set of parameters. For validating the accuracy of the model, the origi-
nal landslide data were randomly divided into two parts: 70% (1545 landslides) for train-
ing the model and the remaining 30% (662 landslides) for validation. The verified results 
showed that using the optimized predisposing factors has a higher performance than using 
all the original twelve factors. The results of ensemble models also showed that LSM maps 
prepared using binary logistic regression (accuracy is 0.848) model are more accurate than 
those prepared using bivariate statistical analysis (accuracy is 0.837) model. Additionally, 
our analysis concludes that the short duration and high-intensity rainfall, drainage density, 
lithology, and curvature are the major influencing factors for landslide occurrences in this 
case study area. This research provides an improved understanding of the mechanism of 
landslides caused by the typhoons for the adjoining watersheds nearby the reservoir. The 
preliminary understandings and approach could also be applied in similar geological and 
rainfall-triggered case study sites in the other parts of the world for risk mitigation.

Keywords  Shallow landslide · Certainty factor · Binary logistic regression · Torrential 
rainfall · Typhoon Bilis

1  Introduction

Very severe cyclonic storm Bilis struck the southeast coast of mainland China on July 14, 
2006. The torrential rainfall accompanied by the typhoon triggered widespread floods, 
landslides, and debris flows, which significantly damaged the village of Zixing, in the 
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Hunan province as shown in Fig. 1 (Xu et al. 2011). More than two thousand debris flows 
and shallow landslides were induced by this heavy rainfall event. This catastrophic event 
damaged over 31,000 houses and led to over 345 fatalities, and about 89 people missing 
cases were reported in Hunan province. The unprecedented flood was estimated to have a 
100-year return period. In all, this typhoon was responsible for 654 deaths and 208 missing 
and over USD 2.5 billion in damage to southeastern China (Xinhua, July 17, 2006).

In the wake of increasing landslide activities and associated hazards following the 
changes in the global climatic system, it is necessary to investigate the landslide character-
istics and assess the landslide-prone area to mitigate damages associated with them.

Landslides are typical of mountainous terrains and are hazardous for people’s life and 
habitat. Over the last few decades, it has been observed that the frequency of landslide 
occurrence is increasing worldwide (Petley 2012; Dou et  al. 2015a, c; Zhu et  al. 2017). 
Many mass movements have been induced by the rainfall accompanied by the typhoons 
that caused substantial loss of life and damage around the worldwide (Jebur et al. 2014; 
Wang et al. 2015; Dou et al. 2017). For instance, super Typhoon Haiyan in the year 2013 
devastated the Leyte region in the Philippines with damage amounting to more than USD 2 
billion (Rabonza et al. 2016). Heavy rainfall struck during the Typhoon Wipha on October 
16, 2013, in the Izu Oshima Island in Japan, located about 100 km south of the Tokyo trig-
gered many landslides, caused at the least 35 deaths and nearly 50 people missing (Min-
istry of Land Infrastructure and Transport and Japan-MLIT, 2013). According to MLIT, 
the torrential rainfall hit on August 2014 in Hiroshima city triggered 166 slope failures, 
caused 74 deaths, and damaged 429 houses (MLIT 2014; Wang et al. 2015). During June 

Fig. 1   Trajectory of the Typhoon Bilis in 2006: a red rectangle represents a severely damaged location in 
the study area (created using ArcGIS 10.4 software—data source from Japan National Institute of Informat-
ics)
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15–17, 2013, the cloudburst in Uttarakhand state in India triggered numerous landslides 
and caused the death of 6074 people and widespread damages to cultural properties (Mar-
tha et al. 2014). United State Geological Survey reports that an average of 25–50 people is 
killed by landslides each year in the USA (USGS 2019). In Italy, more than 7500 square 
miles of land areas are identified as high-risk zones for landslides (Parsons and Lister 
2019). China, one of the largest countries with diverse topography, has no exemption to 
landslides. In fact, China has suffered from the most serious landslides in the past century 
that caused many human lives and economic destruction (Petley 2012). Historical records 
show that more than ninety thousand hazards associated with landslides have been recorded 
in several regions of China (Huang 2007). Southwestern part of the country is close to 
China Sea which is at high risk to landslides owing to the increased typhoon activities. Li 
et al. (2017) pointed out the number of rainfall-induced landslides in China has risen over 
to 90% of the total number of landslide events compared with last decades. Understanding 
these hazardous landslides and debris flows induced by heavy rainfall events has become 
an important and urgent issue in the view of emergency activities (Dou et al. 2015c; Wang 
et al. 2015).

Landslide spatial distribution in any region is influenced by physical rules that can 
be analyzed with the empirical, statistical, or deterministic approach (Reichenbach et  al. 
2018). Numerous models have been successfully applied for landslide susceptibility map-
ping worldwide (Youssef and Pradhan 2014; Chen et al. 2016; Camilo et al. 2017; Chen 
et  al. 2018; Dou et  al. 2018; Pham et  al. 2018). In the early days, landslide susceptibil-
ity mapping is carried out using qualitative approaches (knowledge-driven methods). The 
pioneering works on data-driven methods and physically based models are dated to the 
late 1970s and early 1980s (Neuland 1976; Carrara 1983). In comparison with knowledge-
driven methods, the latter one minimizes the subjectivity and attains reproducibility (Bui 
et al. 2011; Zêzere et al. 2017). The extensively used data-driven methods in susceptibility 
mapping are bivariate statistical analysis (BSA), binary logistic regression (BLR), artificial 
neural network (ANN), and support vector machines (Bui et al. 2012; Arnone et al. 2014; 
Dou et al. 2015b; Arnone et al. 2016; Pham et al. 2019). All of these techniques rely on a 
few assumptions (Rabonza et al. 2016; Dou et al. 2019a, b). One of the basic assumptions 
is “past is the key to future.” Therefore, bivariate statistical methods estimate landslide 
probabilities based on relationship analysis between historical landslide events and geo-
environmental conditions inferred from heuristic investigations. The accuracy of such sta-
tistical techniques depends on the completeness of landslide inventory used to prepare the 
model. Landslide inventories can be either points (centroids of the landslide area or rupture 
zone) or polygons (Dou et al. 2014; Pham et al. 2018). Nowadays with the high-resolution 
imageries, polygon type is the most preferred. For achieving the likelihood ratio, landslide 
density analysis over the studied portion has to be established.

As per the literature, BSA and BLR are considered to be the most frequently used meth-
ods for the assessment of the likelihood of landslide occurrence at regional scales (Sha-
habi et al. 2014). Reichenbach et al. (2018) reviewed eighteen different landslide suscep-
tibility models published over the last three decades and reported that logistic regression 
topped the chart accounting 18.5% of all the occurrences. The merit of BLR over other 
multivariate analysis methods is that it is independent of data distribution and can handle 
a variety of datasets such as continuous, categorical, and binary data (Bui et  al. 2011). 
However, the BLR model has little to no predictive value, if a set of irrelevant independ-
ent parameters are involved. Because of such constraints, predicting landslide susceptibility 
needs a distributed model that ascertains all the relevant independent aspects of the method 
used. Effective landslide susceptibility mapping, therefore, requires optimal predisposing 
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factors as input to the LSM models. In LSM studies, selecting landslide-predisposing fac-
tors and their classes are key points. However, most scholars arbitrarily and subjectively 
selected the predisposing factors including geological, anthropogenic, geomorphological, 
and hydrological factors. There is no standard law to select predisposing factors. Hence, 
we address this issue by presenting the certainty factor (CF) model that has been applied to 
landslide factors. CF is a method using rule-based expert systems to handle certain prob-
lem classes.

The understanding of landslide mechanism of the rainfall-triggered event over a reser-
voir watershed is useful for geological disasters and warning systems. Several researchers 
have studied the impacts of tropical cyclones from the hydrological process in reservoir 
watersheds (Xu et al. 2011; Zou et al. 2013); however, to our knowledge, few studies have 
paid attention to the characteristics of rainfall-triggered landslides by tropical typhoons and 
assessment of landslide susceptibility in this study region. This study, therefore, focused 
on addressing: (1) characteristics of the landslides triggered by the extremely heavy rain-
fall even for the Dongjiang Reservoir Watershed, Hunan province, China; (2) constructing 
the event-based landslide inventory map using multi-high-resolution satellite images; (3) 
optimization of the best predisposing landslide factors using the CF model; (4) comparison 
with the LSM maps implemented by ensemble models and validation of the models.

2 � Study area

The study area, Dongjiang Reservoir, which is situated in the southeast of Hunan Province, 
China, is an area vulnerable to heavy rainfall during the tropical cyclone seasons (Fig. 2). 
The elevation of the study area varies between 78 m a.s.l. and 1868 m a.s.l. with an aver-
age of 540 m. Three distinct geomorphological units represent the entire study reach: hills 
and valleys, hilly plains, and the Luoxiao Mountains near the eastern and southern bor-
ders. Geologically, the area is composed mostly of Paleozoic sedimentary and metamor-
phic rocks (sandstone, limestone, and slate) which were invaded by granitic rocks in places. 
The granitic rocks are severely weathered and thus are subjective to failure. The weathered 
soils are mostly composed of highly oxidized laterite, prone to erosion. Land use/cover in 
the study area is characterized by small-scale agro-industrial activities like a plantation, 
and paddy farming, and settlements. The case study area falls within the humid subtropical 
monsoon climate region. The mean annual precipitation is about 1932 mm (1953–2004), 
80% of which occurred during the rainy months of March to August, typically influenced 
by cyclones. Each year numerous cyclones hit the province and cause severe damage to 
life and property in the region. The most recent one is tropical cyclone Mangkhut, which 
killed 2 people on September 16, 2018. Months before Mangkhut landfall, another cyclone 
Typhoon Ewiniar has brought torrential downpours recording over 250 mm of rain in 24 h, 
June 8 to 9, 2018. Wang et  al. (2008) studied the extreme precipitation patterns in the 
Dongjiang River Basin using statistical parameters and noticed significant changes in sev-
eral annual extreme flood flow and monthly precipitation processes in the region.

The Dongjiang Reservoir is the biggest reservoir in the south of Hunan Province, which 
covers a water area of 160 km2 and has a capacity of 8.12 × 109 m3. Owing to the intense 
rainfall triggered by the Typhoon Bilis in 2006, thousands of sediment-related disasters, 
including numerous slope failures (shallow landslides) and debris flows occurred and were 
identified from the high-resolution 0.6 m QuickBird images, China–Brazil Earth Resources 
Satellite (CBERS) images (20 m), and field surveys (Fig. 3). The torrential rainfall event 
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associated with Typhoon Bilis caused 246 deaths, 95 missing, and more than 300 million 
US dollars of economic loss just in and around Zixing City. Damages for destroyed or bur-
ied buildings by debris flows were serious. Flash floods also inundated the short and steep 
rivers in the hilly areas.

3 � Data source

Rainfall data from the local records of 21 rain gauges in and around the Dongjiang Reser-
voir area were used to analyze the rainfall characteristics of the major rainstorm. Typhoon 
Bilis was a strong tropical storm with severe precipitation in a short duration, whose trail 
is shown in Fig. 1, and it landed on the coast of Fujian Province, China, on July 14 2006, 
with the maximum wind speed of 108 km/h. Then, it weakened into a tropical storm and 
moved westward and north-westward at the speed of 10–15 km/h until July 16 2006, when 
it disappeared in Hunan Province.

The rainfall observation data from the rain gauge networks around the reservoir on 
14–15th July are displayed in Fig. 4. The Longxi rain gauge shows the maximum rainfall 
with a total 36-h rainfall of 507 mm and total monthly rainfall of 826 mm. One of the rain 
gauge data from Xingning was plotted as shown in Fig. 5. In 48 h, the cumulative rainfall 
in Xingning is more than 400 mm. The incremental rainfall of Xingning at 15–18 UTC 
was approximately 180 mm. More than 1600 landslides occurred when the accumulative 

Fig. 2   Dongjiang Reservoir Watershed study area. a Location map of China. b Map of the study area with 
rain gauge distribution. c Distribution of shallow landslides on the elevation map derived from a 30-m 
DEM. d The lower map is the enlarged area of showing the landslide boundary
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rainfall reached 340 mm. Figure  6 shows the rainfall contour diagram of the Dongjiang 
Reservoir area in 36 h on July 14th–16th. The reservoir watershed area totally received a 
rainfall amount of around 6.6 × 108 m3, leading to a reservoir depth increase of 4.66 m. The 
reservoir was severely affected by the heavy rainfall in a short time.

The landslide inventory map is constructed through a combination of satellite image—
interpretation of before and after the event (0.6-m QuickBird and 20-m CBERS) as listed 
in Table  1 and fieldworks. In order to identify the landslides triggered during the Bilis 
event, we firstly interpreted and mapped the landslides visible in the pre-event satellite 
CBERS imageries in a GIS environment. Following this, post-event satellite imageries 
from CBERS have interpreted for mapping all the landslides in the study area that have 
triggered before and after the event. Finally, high-resolution QuickBird images of Decem-
ber 2007 are interpreted and mapped for accurately delineating the boundary of landslide 
polygons. Then using analysis (erase function) toolbox in ArcGIS, landslide polygons of 
Bilis event are extracted from the entire database, assuming that no further landslides have 
occurred past the Bilis event till October 2006. This assumption is based on the fact that 
no major typhoons are reported in the study area during this time period. In this way, we 
built the entire database of landslide inventory from 2000 to 2009 as well as event-based 
landslide Atlas. A total of 2207 landslide polygons are mapped for the Bilis event from 
the interpretation of satellite imageries as shown in Fig.  7. The polygon data were then 
converted to landslide points. As more than 50% of the landslides in the study area are 
less than 10,000 m2, the centroid technique was applied to deal with the transformation 
of landslide polygon to point. Although many studies have pointed out the lower accuracy 
in LSM while using point technique rather than landslide polygons (Simon et  al. 2013), 
several other studies favor usage of centroid points for fast, easy to use, and automated 

Fig. 3   Rainfall-induced landslides by the Typhoon Bilis. a Examples of shallow landslides (white arrows) 
and debris flow associated with boulder deposition; b seriously damaged houses; c rainfall-triggered debris 
flows caused substantial deposited materials, such as various sizes of boulder; d destroyed crops
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Fig. 4   Graphs showing rainfall around Dongjiang Reservoir in the month of July 2006 (top) and 36 h of 
rainfall between July 14 and 16, 2006 (bottom). The water level of the Dongjiang Reservoir increased to 
about 7.73 m during July 14–19, 2006

Fig. 5   Hourly and cumulative rainfall recorded by rain gauge in Xingning around the Dongjiang Reservoir
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LSM mapping (Bui et al. 2012; Chen et al. 2016; Pham et al. 2018). The landslides mostly 
located around the upper catchment of Dongjiang Reservoir corresponded with the zonal 
distribution. Field observations reveal the type of landslides as shallow landslides. The 
landslide density is approximately 8.2/km2. Topographic data for analyses such as slope, 
aspect, and curvature are derived from the 30 m ASTER GDEM (version 2). In this case 
study, based on the analysis of landslide inventory map and availability of data, a total 
of 12 landslide-predisposing factors were prepared, namely elevation, slope angle, slope 
aspect, curvature, plan curvature, profile curvature, drainage density, distance to drainage 
network, stream power index (SPI), compound topographic index (CTI), 36-h cumulative 
rainfall, and lithology.

Fig. 6   Rainfall contour diagram of the Dongjiang Reservoir area in 36 h on July 14–16, 2006. The reservoir 
area suffered from the total rainfall of around 6.6 × 108 m3, leading to a reservoir depth increase of 4.66 m
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4 � Methodology

4.1 � CF model for selecting predisposing factors

The certainty factor (CF) model is a rule-based expert system developed by Shortliffe 
and Buchanan (1975) for managing uncertainty in computational fields. When compar-
ing with other models, CF can provide probable favorability functions for incorporating 
heterogeneous data (Chung and Fabbri 1993). The CF weight can be computed by the 
subsequent functions:

Here Pa is the conditional likelihood of landslides in class a and Ps is the prior likeli-
hood of a total number of landslides in the case study area. The CF values vary between 
− 1 and 1, and it indicates a measure of belief in the outcome (Lucas 2001). A positive 
CF value measures decreasing uncertainty, whereas negative values indicate an increas-
ing uncertainty of landslide occurrence. If CF value is closed to 0, no information on 
the certainty is indicated. Once the CF values for classes of the predisposing factors are 

(1)CF =

⎧
⎪⎨⎪⎩

Pa−Ps

Pa(1−Ps)
ifPa ≥ Ps

Pa−Ps

Ps(1−Pa)
ifPa < Ps

Table 1   Collected pre- and post-
images in the study area

Serial number Date Path Satellite and sensor

1 2000-03-26 373-71 CBERS01-CCD
2 2003-12-26 373-71 CBERS02-CCD
3 2005-11-27 373-71 CBERS02-CCD
4 2005-12-23 373-71 CBERS02-CCD
5 2006-10-05 373-71 CBERS02-CCD
6 2006-10-31 373-71 CBERS02-CCD
7 2006-12-22 373-71 CBERS02-CCD
8 2007-10-27 1-70 CBERS02-CCD
9 2008-11-11 373-71 CBERS02B-CCD
10 2008-05-13 373-71 CBERS02B-CCD
11 2009-01-02 373-71 CBERS02B-CCD
12 2009-10-24 372-71-A-2 CBERS02B-HR
13 2009-10-24 373-71-A-4 CBERS02B-HR
14 2009-01-02 373-71-B-1 CBERS02B-HR
15 2009-01-02 373-71-B-2 CBERS02B-HR
16 2009-01-02 373-71-B-3 CBERS02B-HR
17 2009-01-02 373-71-B-4 CBERS02B-HR
18 2009-01-02 373-71-B-5 CBERS02B-HR
19 2008-01-04 373-71-C-4 CBERS02B-HR
20 2008-01-04 373-71-C-5 CBERS02B-HR
21 2007-12-18 Quick bird
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obtained, these factors are then integrated pairwise using the combination rule (Binaghi 
et al. 1998) as follows:

where CF1 is a value in class 1, and CF2 is a value in class 2.
The pairwise combination is performed until all the CF layers are brought together, and 

the predisposing factors are optimized by computing the Z values. If the Z values are posi-
tive, we favor those factors have high correlations with landslide occurrence. Based on the 
range of CF values, predisposing factor weights were acquired. The weights are assessed 
as the sum of the ratio relative to those predisposing factors that provide a measurement of 
certainty in predicting landslides (Binaghi et al. 1998). According to the computed results, 
CF weights are then classified into six classes as shown in Table 2 (Binaghi et al. 1998).

4.2 � Bivariate statistical analysis

Van Westen et al. (1997) proposed the bivariate statistical analysis (BSA) method, which is 
based on the assessment of the relationship of a landslide inventory map and predisposing fac-
tors. In the BSA method, the weight for each class of the landslide-predisposing factors was 

(2)Z =

⎧
⎪⎨⎪⎩

CF1 + CF2 − CF1CF2 CF1, CF2 ≥ 0

CF1 + CF2 + CF1CF2 CF1, CF2 < 0
CF1+CF2

1−min(�CF1�,�CF2�) CF1, CF2, opposite signs

Fig. 7   Examples of the construction of landslide inventory-based satellite images and field survey, land-
slides mainly occurred in the four types of land use: a near the roads, b in the plantation area, c near the 
reservoir, and d in the slope surface in the hilly area
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initially determined. Landslide susceptibility indexes were then computed by summing up the 
weights. The weight (Wi) of each class i is defined as the natural logarithm of the landslide 
density in the class over the landslide density in the predisposing factor map as listed (van 
Westen et al. 1997):

where Wi is the weight given to an ith class of a certain thematic layer (e.g., limestone in 
the thematic layer—lithology); Density_landslide is the landslide density within the entire 
thematic layer; Density_area is the landslide density of the whole factor study area for all 
classes; Ni,j is the number of landslide pixels in the class j of the predisposing factor i; Ai,j 
is the total area of the class j of the predisposing factor i; Nl is the total number of land-
slides; and AT is the pixels in the entire study area.

Finally, the LSM by BSA model was generated by the following equation:

4.3 � Binary logistic regression

Binary logistic regression (BLR) is one of the well-known multivariate analytical methods in 
the field of LSM assessment during the last decade (Chauhan et al. 2010; Dou et al. 2018). 
The BLR method is suitable for forecasting the presence or absence of a characteristic out-
come from a set of parameters (Devkota et al. 2013). Here, we do not use the ordinary least 
squares regression (OLS) because of three problems: (1) the error terms are heteroskedastic; 
(2) the error terms are not normally distributed; (3) the predicted probabilities can be larger 
than 1 or less than 0. In this study, the purpose of BLR is thus to simulate the relationships 
between a dependent variable and multiple independent parameters (Bui et  al. 2011). The 
advantage of BLR is that it does not compulsorily need normal distribution data. In addition, 
both continuous and discrete data can be used as an input for the BLR model.

The dependent parameter (Y) in the BLR method is a function of the possibility and can be 
calculated as follows (Lee and Pradhan 2006):

where Y  is the estimated likelihood of landslide occurrence and ranges [0 1]; z is the 
weighted linear combination of the independent parameters.

(3)Wi = ln

�
Density_landslide

Density_area

�
= ln

⎛⎜⎜⎝

Ni,j
�
Ai,j

Nl
�
AT

⎞⎟⎟⎠

(4)LSM
w
i
=
(
W1

)
+
(
W2

)
+
(
W3

)
+⋯

(
Wi

)

(5)Y =
1

1 + e−z

Table 2   Weight classification 
based on the range of CF values

Level Range Explanation

1 − 1.0 to − 0.09 Extremely low certainty
2 − 0.09 to 0.09 Uncertainty
3 0.09–0.2 Low certainty
4 0.2–0.5 Medium certainty
5 0.5–0.8 High certainty
6 0.8–1.0 Extremely high certainty
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To linearize the stated model as well as eliminate the 0/1 boundaries for the dependent 
parameter, the estimated Y  is transformed by the following equation:

This modification is referred to as the logit transformation. Theoretically, the logit 
transformation of binary data can confirm that the dependent parameter is continuous and 
the logit transformation is limitless. Additionally, it can ensure that the likelihood surface 
can be continuous under [0, 1]. By means of the logit transformations, the standard linear 
regression models can be written by the following equation:

where � is the intercept of the equation, �1,�2, … �n denotes the slope coefficients of the 
independent parameters. Landslide or non-landslide as the dependent determined the 
approximate equation that is meaningful at 0.01% error level.

5 � Results

5.1 � Characteristics of landslides triggered by the Typhoon Bilis

To investigate the landslide-predisposing factors contribution in the initiation of landslides, 
the landslides occurred in the case study area were interrelated with those factors contrib-
uting to landslide occurrence. These predisposing factors include elevation, slope angle, 
slope aspect, curvature, plan curvature, profile curvature, drainage density, distance to 
drainage network, SPI, CTI, cumulative rainfall, and lithology. Figure 8 shows the results 
of landslide frequency analysis that examines the relationships between landslide occur-
rence and the predisposing factors. The relationship of landslide frequency with elevation 
is shown in Fig. 8a. It can be seen that landslides (43.15%) mostly occurred at the inter-
mediate elevation (320–400 m) taken a proportion of 29.11% total area. At the following 
elevation class (400–500 m), landslide frequency is around 21%. The results suggest that 
landslides are frequently in the middle elevations; this is because the area ratios in the mid-
dle elevations are greater than those in the higher elevations.

Slope angle plays an important role in the occurrence of landslides. On a relatively flat 
slope (0°–5°), the force of gravity acts directly downward. Thus, the material remains on 
the flat slope and it will not move under the force of gravity, whereas on a steeper slope, the 
shear stress or tangential component of gravity increases, and the perpendicular component 
of gravity decreases (Dou et al. 2014). As observed in this study, the landslide frequency in 
the slope classes 10°–15°, 15°–20°, and 20°–25° is 22.14%, 20.44%, and 16.82%, respec-
tively, as shown in Fig. 8b. It could also be seen that gentle slope angles have a relatively 
lower frequency of landslide occurrence due to the lower shear stress at the slope angles 
0°–5° (Fig.  8b). The decrease in the frequency of landslides in steeper slope classes is 
attributed to the decrease in the percentage of an area ratio in that particular class.

Aspect that describes the orientation of slope is an important factor attributing the 
regions insolation, vegetative growth, soil moisture conditions and wind velocity (Aksoy 
and Ercanoglu 2012) and hence regarded as a highly important predisposing factor in 
LSM (Carrara 1983; Camilo et al. 2017). Also, when the hillsides suffer from the dense 

(6)Y � = ln
(

Y

1 − Y

)

(7)Y
�

= ln
(

Y

1 − Y

)
= �1∗x1 + �2∗x2 +⋯ + �n∗xn + �
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Fig. 8   Relationships between landslide frequency and the predisposing factors: a elevation; b slope angle; 
c slope aspect; d curvature; e plan curvature; f profile curvature; g drainage density; h distance to drainage 
network; i SPI; j CPI; k accumulative rainfall; l lithology
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precipitation to reach saturation, it influences the infiltration capacity of the slope con-
trolled by some parameters including the constitution of soil, permeability, and pore water 
pressure. With regard to the slope aspect, landslides mostly occurred among the east-, 
southeast-, south-, southwest-, and west-facing direction as shown in Fig. 8c. The results 
indicate that from east to west is greatly prone to landslide occurrence. The largest land-
slide frequency (22.59%) occurred along the southeastern slope direction, followed by 
south slope direction (20.84%). On north-facing slope direction, the landslide frequency 
is comparatively less. This is in agreement with many previous studies which states that 
north-facing slopes are favorable for the enhanced growth of vegetation (Olivero and 
Hix 1998; Ghimire et al. 2011; Måren et al. 2015). The higher solar radiation received in 
the south-facing slopes may dry out the vegetation cover faster and hence induces more 
landslides.

Figure 8d shows that landslides (37.37%) are mostly concentrated at the 0–2 class for 
the curvature, followed by the −1–0 class with a landslide frequency of 27.97%, while for 
the profile curvature, landslides mostly occurred at −2–0 class and −4–2 class (Fig. 8f). 
The curvature of the hillside in the horizontal plane is the plan curvature of that sur-
face. Based on the hillsides, the plan curvatures are subdivided into concave (hollows), 
convex (noses), and flat (planar) regions. As for the plan curvature as shown in Fig. 8e, 
the landslides generally occur in the concave slope because it strengthens the soil mois-
ture and causes the land sliding. However, in this study, the flat and convex slopes show 
higher landslide frequency than concave slopes. One reason is probably that hilly ridges in 
Dongjiang Watershed could be likely to collapse because of the impact of human activities 

Fig. 8   (continued)
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(building the reservoir) causing the higher ground acceleration. The other reason may be 
that the dropped intense rainfall flashed the surface of the hill slope; thus, the rainfall could 
not accumulate too much in short time.

Drainages undercut the hill slopes as the intensity of flow increases, thus resulting in 
increased landslide frequency with a higher drainage density. For example, drainage den-
sity and erosion rates in steep Japanese mountains are negatively correlated due to active 
landslides (Oguchi 1997). Several scholars have therefore studied the interrelationship of 
landslides and geomorphological characteristics of drainage networks (Hovius et al. 1998; 
Dou et al. 2015c). In this location, the Dongjiang River flows into the reservoir. It has been 
observed in our study area that the landslides mostly occurred at 1–1.4 m−1 and decreased 
further in proportion to the area ratio (Fig. 8g). For the distance to drainage network factor, 
the landslide highly occurred at 130–280 m followed by less than 130 m (Fig. 8h). With 
the increase in distance to the drainage network, the landslide frequently usually decreases 
because the topography change induced by erosion might influence the landslide initiation.

In the case of hydrological predisposing factors, SPI (the measures of the erosive power 
of overland flow) and CTI (soil wetness: topographic control on hydrological processes), 
landslides highly occurred at < − 6 and at < − 2 category, respectively, as shown in Fig. 8i, 
j. Rainfall increases the weight to the slope by seep into the bedrock beneath and replaces 
the pore space or fractures. This added weight force leads to an increase in stress and 
induces slope instability. Rainfall also induces a change in the angle of repose. In landslide 
studies, accumulated rainfall is considered as an important factor rather than simple rainfall 
statistics (Li et al. 2017). For the accumulative rainfall factor, landslides mostly occurred 
at the 320–345 mm, followed by 345–360 mm. The landslides also easily occurred at over 
375 mm because it takes a relatively small percentage of the total study area in terms of 
this class.

Lithology is considered, landslides (around 50%) mostly occurred at the biotite adam-
ellite type (one of the granite types), followed (about 20%) by the sandstone and slate 
type, and then by the limestone (about 16%). As mentioned previously in Sect. 2, the gra-
nitic rocks are highly weathered and are susceptible to failure. The sandstone type con-
tains enough pore space to accumulate more rainfall that can saturate rock and increase its 
weight. Water also enters into the bedrock below through the bedding plane and ultimately 
reduces the cohesion. Similarly, the slate rocks which contain clay minerals generally tend 
to have a low shear strength and will be the most likely place for failure to occur, espe-
cially if the layer dips in a down-slope direction. Limestone units may have caverns and be 
leached in the rock due to chemical weathering by groundwater.

5.2 � Predisposing factor selection for LSM maps

The results of the correlation analysis between the landslide occurrence and predisposing 
factors for the Dongjiang Reservoir area are shown in Table 3. The result of CF analysis 
shows that the Z value is positive for slope angle (0.25), curvature (0.82), plan curvature 
(0.21), drainage density (0.96), distance to drainage network (0.11), accumulative rainfall 
(0.97), and lithology (0.47) as shown in Fig.  9. The Z values are negative for the other 
factors. Hence, these seven factors are selected for producing LSM maps. This result also 
shows that the occurrence of landslides in the study area is mainly affected by some pre-
disposing factors. Even Z values between those factors are different; they all contribute to a 
certain extent in the landslide occurrence. We conducted the objective method of CF analy-
sis to avoid the “ghost effect” and get appropriate factors for modeling LSM maps.
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Table 3   Spatial relationship between the predisposing factors and landslide occurrence based on the CF and 
BSA methods

Factors Class Percentage 
of domain

Percentage 
of land-
slides

CF Z BSA

Elevation (m) < 320 16.63 21.57 0.56 0.26
320–400 29.11 43.15 0.80 0.39
400–500 23.59 21.18 − 0.22 − 0.11
500–600 11.95 7.25 − 0.61 − 0.99 − 0.50
600–700 7.88 3.62 − 0.74 − 0.78
700–900 8.51 2.83 − 0.83 − 1.10
> 900 2.33 0.40 − 0.92 − 1.77

Slope angle (°) 0–5 12.33 5.49 − 0.75 − 0.81
5–10 17.28 14.67 − 0.30 − 0.16
10–15 19.17 22.14 0.33 0.14
15–20 17.71 20.44 0.33 0.14
20–25 14.42 16.82 0.35 0.25 0.15
25–30 9.70 9.40 − 0.07 − 0.03
30–35 5.43 6.85 0.51 0.23
35–40 2.50 2.83 0.29 0.12
40–62 1.45 1.36 − 0.14 − 0.06

Slope aspect Flat 3.50 0.28 − 0.97 − 2.52
N 5.13 2.89 − 0.66 − 0.57
NE 10.89 6.51 − 0.62 − 0.51
E 12.82 16.93 0.60 0.28
SE 14.35 22.59 0.90 − 0.01 0.45
S 12.55 20.84 0.98 0.51
SW 12.41 16.70 0.63 0.30
W 11.75 7.81 − 0.55 − 0.41
NW 16.60 5.44 0.59 − 1.12

Curvature < − 3 1.75 1.87 0.16 0.07
−3–2 6.85 7.81 0.30 0.13
−2–1 14.50 14.61 0.02 0.01
−1–0 31.26 27.97 − 0.22 0.82 − 0.11
0–2 37.36 37.37 0.00 0.00
2–3 5.21 6.34 0.44 0.20
> 3 3.08 4.02 0.58 0.27

Plan curvature Concave 18.86 19.20 0.04 0.02
Flat 56.41 52.60 − 0.15 0.21 − 0.07
Convex 24.74 28.20 0.30 0.13

Profile curvature −4–2 47.95 46.72 − 0.06 − 0.03
−2–0 47.48 47.96 0.02 0.01
0–2 2.10 2.32 0.24 − 0.01 0.10
2–4 0.12 0.11 − 0.05 − 0.02
> 4 0.01 0.06 1.87 1.44
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5.3 � Mapping landslide susceptibility using BSA

The correlations between the landslide occurrence and predisposing factors using BSA are 
represented in Table  3. Two landslide susceptibility maps were generated: (1) using the 
seven selected factors (CF > 0) and (2) using all the original 12 factors (Fig. 10). Based on 
the natural breaks, the susceptibility level was divided into six classes, i.e., extremely low, 

Table 3   (continued)

Factors Class Percentage 
of domain

Percentage 
of land-
slides

CF Z BSA

Drainage density (m−1) < 0.8 12.27 1.81 − 0.93 − 1.91
0.8–1 21.19 12.34 − 0.64 − 0.54
1–1.2 20.51 34.43 0.99 0.52
1.2–1.3 18.85 23.27 0.47 0.96 0.21
1.3–1.4 19.11 16.08 − 0.32 − 0.17
1.4–1.7 8.07 12.06 0.81 0.40

Distance to drainage network (m) < 130 28.45 26.27 − 0.17 − 0.08
130–280 26.47 29.16 0.23 0.10
280–450 21.85 20.39 − 0.15 0.11 − 0.07
450–650 16.56 17.21 0.09 0.04
> 650 6.68 6.96 0.10 0.04

SPI < − 6 34.34 37.54 0.21 0.09
− 6 to 2 9.14 3.96 − 0.76 − 0.84
− 2 to 0 25.51 29.11 0.30 0.13
0–2 22.02 21.35 − 0.07 − 0.79 − 0.03
2–4 6.16 5.83 − 0.12 − 0.05
> 4 2.84 2.21 − 0.41 − 0.25

CTI < − 2 34.41 37.54 0.21 0.09
−2–3 34.75 36.69 0.13 0.05
3–7 17.76 18.35 0.08 − 0.89 0.03
7–11 10.54 6.57 − 0.60 − 0.47
> 11 2.54 0.85 − 0.83 − 1.10

Accumulative rainfall (mm) < 300 13.58 3.06 − 0.89 − 1.49
300–320 16.32 5.21 − 0.84 − 1.14
320–345 24.76 41.62 1.00 0.52
345–360 21.92 33.35 0.84 0.97 0.42
360–375 18.17 9.97 − 0.67 − 0.60
375–390 5.25 7.36 0.70 0.34

Lithology Shaly limestone 32.87 15.91 − 0.72 − 0.73
Biotite adamellite 32.18 49.72 0.87 0.47 0.44
Siltstone, shale 9.08 11.16 0.46 0.21
Dolomites 4.34 3.40 − 0.41 − 0.25
Sandstone, slate 

and siliceous 
rocks

21.53 19.82 − 0.17 − 0.08
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low, moderate, high, very high, and extremely high. Visual interpretation reveals that there 
are much more red color areas (very high susceptible class) in Fig. 10b, whereas there are 
more dark blue areas (very low susceptible class) in Fig. 10a. Quantification of the same 
as shown in Fig. 11 and Table 4 reveals that 90.84% of the total landslides occurred in the 
52.56% of the area which are classified as high, very high, and extremely high susceptibili-
ties when the original factors were used, while 51.73% of the total landslides occurred in 
the 92.03% of the area which are classified as high, very high, and extremely high suscepti-
bilities if the optimized seven factors were used (Fig. 12 and Table 5).

5.4 � Mapping landslide susceptibility using BLR

The forward stepwise BLR approach was used to incorporate the predictor variables using 
the SPSS 20 software. The training dataset (1545 of total landslides) represented by points 
was assigned the value of 1. The same number of non-landslide points was randomly sam-
pled from the landslide-free area and assigned the value of 0. The result based on all origi-
nal factors is shown in Table 6. According to this table obtained by logistic regression, all 
the predisposing factors have a P value less than 0.05, indicating a statistical correlation 
between factors and the susceptibility of landslides at the 90% confidence level (Bui et al. 
2011). Based on the equation, the occurrence of landslide probability (P) can be computed 
as mentioned before.

Fig. 9   Calculation of CF values in the Dongjiang Reservoir Watershed
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Lastly, the regression coefficients of the predictors, GIS, and the natural break criterion 
were used to generate the landslide susceptibility maps (Fig. 13). In the maps, there are 
places where differences are subtle but also areas with obvious dissimilarities. There are 

Fig. 10   LSM maps produced by the BSA method: a selected seven factors and b original 12 factors. Maps 
show the spatial probability of landslide occurrence in six classes. The upstream of the reservoir is located 
at the lower left corner of the map
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more red colors in the map when using all factors, which segregate at the very high and 
extremely high ends of the color ramp than the seven-factor counterpart. The map from the 
seven factors is less heterogeneous. Figure 14 and Table 7 show that 95.51% of the total 
landslides occurred in the 66.73% of the area which are classified as high, very high, and 
extremely high susceptibilities if the all the original factors were used, while if the optimal 
seven factors were used 96.1% of the total landslides occurred in the 64.09% of the area 
which are classified as high, very high, and extremely high susceptibilities (Fig.  15 and 
Table 8).

5.5 � Accuracy estimation

For the verification, the total landslides were randomly divided into two groups, 
training data and validation data. The evaluation of the prediction skills of suscep-
tibility models was made using receiver operating characteristics (ROC) curves and 

Fig. 11   Susceptibility class distribution within the study area and the occurrence of landslides according to 
the classification scheme for LSM using the BSA method with the original 12 factors

Table 4   Result of statistical 
analysis concerning landslide 
susceptibility from the BSA 
method with the original 12 
factors

Class Area of each 
class in pixels

Percentage 
of domain

No. of 
land-
slides

Percentage 
of landslides

Very low 23,530 7.90 2 0.09
Low 51,529 17.31 44 1.99
Moderate 66,159 22.22 134 6.07
High 69,919 23.49 319 14.45
Very high 58,197 19.55 728 32.99
Extremely high 28,374 9.53 980 44.40
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computing the receiver operating characteristic (ROC) plot of sensitivity (% of terrain 
units containing landslides that are correctly classified) and 1-specificity (% of terrain 
units containing landslides that are correctly classified). The ROC area under the curve 
(AUC) evaluates the overall performance of the landslide susceptibility models (Bui 
et al. 2011). As a rule, the closer the ROC AUC value to 1, the better is the landslide 
model performance (Shahabi et  al. 2014). For the BSA method, AUC value (0.837) 
is higher when the optimal seven factors were used than 0.794 from all the original 
factors (Fig.  16a). For the BLR model, the AUC value of the prediction rate curve 
(84.8%) from the seven factors is higher than that from all factors (80.8%) as shown in 
Fig. 16b. Consequently, using the seven factors gives a higher accuracy than using all 
the original factors. In addition, BLR has a slightly higher accuracy than BSA.

Fig. 12   Susceptibility class distribution within the study area and the occurrence of landslides according to 
the classification scheme for LSM using the BSA method with the selected seven factors

Table 5   Result of statistics 
analysis concerning landslide 
susceptibility from the BSA 
method with the selected seven 
factors

Class Area of each 
class in pixels

Percentage 
of domain

No. of 
land-
slides

Percentage 
of landslides

Very low 26,388 8.86 6 0.27
Low 52,840 17.75 33 1.50
Moderate 64,488 21.66 137 6.21
High 69,376 23.30 372 16.86
Very high 58,052 19.50 770 34.89
Extremely high 26,564 8.92 889 40.28
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6 � Discussions

Devastating landslides as a result of intense rainfall are common in many places around the 
world every year. Predicting the exact locations of the instabilities and therefore landslide 
susceptibility assessment is rather difficult due to the uncertainty of the spatial and tempo-
ral distribution of rainfall. We investigated the landslide characteristics triggered during the 
torrential rainfall caused by Typhoon Bilis in the Dongjiang Reservoir Watershed region. 
In the study area, intense rainfall caused slope failures associated with severely weathered 
granite, resulting in numerous shallow landslides. While there are many factors that lead 
to landslides such as rainfall, slope, aspect, curvature, bedrock, drainage density, elevation, 
SPI, CPI are the important ones. Though the selection of factors is a fundamental step for 
landslide susceptibility evaluation, universal standard or rule to select the predisposing fac-
tors is absent (Dou et al. 2019a, b). These issues are commonly addressed by GIS-based 
landslide susceptibility studies.

To address this problem, we proposed the CF method to select the principal factors. 
Different scholars use various landslide-predisposing factors for LSM. Using this method, 
we selected the predisposing factors highly related to landslide occurrence. Our study of 
rainfall-induced landslides in Dongjiang Reservoir Watershed can be applicable in many 
similar cases. The resultant improvement in the values of AUC validates our approach. The 
use of the optimized factors led to a higher accuracy than when all possible factors were 
simultaneously used. Spatial autocorrelation and data redundancy among the predisposing 
factors before optimization are the possible causes for this observation.

Analysis of CF suggests that drainage density and total curvature are important in the 
case study area besides the other common factors such as lithology and rainfall. Total cur-
vature represents the morphological measurement of the topography (Lee and Pradhan 
2006). A more upwardly concave or convex slope holds more water and keeps it longer, 
and these hydrological controls of topography are more expressed in mountainous areas 
and lower in the flat areas. Furthermore, another important factor that does not represent in 

Table 6   Coefficients, statistics of the factors with all factors used in the BLR equation

Factors B SE Wald df Sig. Exp(B) 95% C.I. for 
EXP(B)

Lower Upper

Elevation − 0.50 0.04 187.79 1 0.00 0.61 0.56 0.65
Slope angle 0.07 0.02 9.50 1 0.00 1.08 1.03 1.13
Slope aspect − 0.06 0.02 10.75 1 0.00 0.95 0.91 0.98
Plan curvature 0.13 0.08 2.52 1 0.01 1.14 0.97 1.34
Profile curvature − 0.25 0.07 12.86 1 0.00 1.28 1.12 1.47
Curvature 0.08 0.06 1.88 1 0.02 1.08 0.97 1.20
Drainage density 0.03 0.03 0.92 1 0.03 1.03 0.97 1.09
Dist. drainage network 0.21 0.03 42.40 1 0.00 1.24 1.16 1.32
SPI 0.22 0.05 21.43 1 0.00 1.25 1.14 1.37
CTI − 0.45 0.06 55.03 1 0.00 0.64 0.57 0.72
Accumulative rainfall 0.01 0.03 0.17 1 0.05 1.01 0.95 1.08
Lithology 0.01 0.02 0.06 1 0.01 1.01 0.97 1.05
Constant − 0.18 0.15 1.48 1 0.02 0.84
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Fig. 13   LSM maps produced by the BLR method: a selected seven factors and b original 12 factors. Maps 
show the spatial probability of landslide occurrence in six classes. The upstream of the reservoir is located 
at the lower left corner of the map
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this study is the location of the reservoir and its implications. During the heavy rains that 
drenched the area, the fluctuation of groundwater might have played a very important role 
in triggering landslides around the reservoir. The slopes tend to lose their stability due to 
the loss of suction under this circumstance. Previous studies have indicated precipitation, 
subsequent infiltration, groundwater circulation patterns, and the resultant increase in the 
hydrostatic pressures that have cumulated over long periods in triggering the landslides (de 
Montety et al. 2007; Ronchetti et al. 2009). Debieche et al. (2012) in their study pointed out 
that the influence of flow path and aquifer complexity in the hydrogeology of a landslide. 
Susceptibility assessments may also be influenced by other important factors such as lithol-
ogy as noticed in the CF analysis. The weathering of granite bedrock provided a source for 
forming into the residual soil. Under the unsaturated conditions, residual soil depositions 
are probably the frequent prone to induce landslides associated with long-duration rainfall 
(Regmi et al. 2013; Yamagishi et al. 2004). The permeability and drainage characteristics 
of the area also affected the large-scale movement of boulders and sediments. Based on 

Fig. 14   Susceptibility class distribution within the study area and the occurrence of landslides according to 
the classification scheme for LSM using the BLR method with the original 12 factors

Table 7   Result of statistical analysis concerning landslide susceptibility from the BLR method with the 
original 12 factors

Class Area of each class Percentage of 
domain

No. of landslides Percentage 
of landslides

Very low 16,245 5.46 1 0.05
Low 28,468 9.56 25 1.13
Moderate 54,336 18.25 73 3.31
High 72,201 24.25 197 8.93
Very high 73,890 24.82 654 29.63
Extremely high 52,568 17.66 1257 56.96
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the degree of fracturing and weathering, the underlying rock could have acted as a sink or 
as a source for groundwater in the overlying landslide and should be very crucial for slope 
stability analyses. Studies in the Japanese archipelago by various researchers in granitic 
terrains of central Japan found that groundwater flowing in permeable weak and fractured 
rocks seeps into the overlaying unconsolidated sediments (Asano et al. 2003; Katsura et al. 
2008), resulting in landslides.

Additionally, previous research by the authors in Sado Island, Japan (Dou et al. 2015c), 
has found that the drainage density, lithology, and slope angle are the typical factors. These 
findings also agree with the other studies around the world (Jebur et al. 2014; Dou et al. 
2015c). For instance, the drainage density can provide an indirect measure of groundwater 
conditions that play an important role in landslide activity (Dou et al. 2015c). Thus, these 
landslide factors may be common to various areas in the world. We believe that our research 
findings differ from the others in a way that we provide a method to select and qualify 
the landslide-predisposing factors. The comparison of BSA and BLR with the support of 

Fig. 15   Susceptibility class distribution within the study area and the occurrence of landslides according to 
the classification scheme for LSM using the BLR method with selected seven factors

Table 8   Result of statistical analysis concerning landslide susceptibility from the BLR method with the 
selected seven factors

Class Area of each class Percentage of 
domain

No. of landslides Percentage 
of landslides

Very low 16,889 5.67 1 0.05
Low 30,600 10.28 17 0.77
Moderate 59,412 19.96 68 3.08
High 73,816 24.79 216 9.79
Very high 74,014 24.86 608 27.55
Extremely high 42,977 14.44 1297 58.77
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respective AUC values suggests that logistic regression has a better performance than BSA. 
This conclusion is also in a good agreement with the other researchers around the world 
(Chen and Wang 2007; Devkota et al. 2013). However, both the BLR- and BSA-derived 

Fig. 16   a ROC curves for landslide susceptibility maps produced using BSA with the selected seven and 
original 12 factors; b ROC curves for landslide susceptibility maps produced using BLR with the selected 
seven and original 12 factors
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LSM maps ought to leave some stripping, called here as ghost effect (Fig. 16). These ghost 
effects can be largely attributed from the buffer zone reproduction of drainage density and 
distance to drainage networks. Saha et al. (2005) also reported ghost effects in their LSM 
because of structural discontinuity buffering while producing landslide nominal suscepti-
bility factor for Himalayas. Nevertheless, the resultant prediction maps from data-driven 
models are very much helpful in emergency response and management of the Dongjiang 
region.

7 � Conclusions

This study explores characteristics of landslides induced by the Typhoon Bilis. Due to the 
orographic effects, around the reservoir areas are likely to have received extremely high 
rainfall totals. Two main reasons are responsible for landslide event: (1) torrential rainfall 
at the high intensity and rainfall duration and (2) serious weathering rock formed into con-
siderable sediment, thus combined with the water formation into mudslides downstream. 
Additionally, this research determines the usefulness of the CF model in identifying the 
fitted predisposing factors for LSM mapping. Based on the CF model, seven influencing 
factors with the high correlations to landslide occurrence were selected from a set of origi-
nal factors. The LSM maps were then produced by the BSA and BLR methods for the 
CF-identified predisposing factors and the original set of factors. Both the success rate and 
prediction rate indicated for both the BSA and BLR methods that the seven factors obtain 
better results than that of all factors. In addition, we noticed that the maps prepared by 
using seven predisposing factors have much more homogeneous classes than the original 
factors. The proposed certainty factor method provides a useful way to select the predis-
posing factors of landslides in particular where data redundancy or scarcity is critical. The 
findings acknowledge that in the mountainous regions suffering from data scarcity, it is 
possible to select key factors related to landslide occurrence based on the CF models in a 
GIS platform. Moreover, in this research, BLR has slightly outperformed the others such as 
frequency ratio, BSA, which agrees with results from some other researchers in the world.

We believe that the results of our studies provide helpful information for disaster man-
agement, urban planning, risk mitigation, and related decision making in landslide-prone 
areas. For example, in the study areas, the resultant landslide susceptibility maps can be 
conducive to select appropriate locations for urban development to increase economic ben-
efits and decrease future damages and loss of lives.
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