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Abstract
Flash flooding occurs when low-lying geographic areas are rapidly flooded and is mainly 
caused by heavy rains. Urban road networks are the primary structures affected by flood 
inundation, which causes disruption to transportation and reduces the efficiency of rescue 
services. This paper proposes a physically based spatiotemporal method of analyzing flood 
impacts on urban road networks that considers both the physical parameters of flooding 
and the susceptibility of the transportation network. The results indicate that the proposed 
method provides reasonable spatiotemporal and synthetic estimates of impacts to the road 
network of Austin, Texas, USA, under flash flooding.

Keywords Flood disaster evaluation · Flash floods · Transportation network · Cellular 
automata

1 Introduction

Flash floods are considered one of the most devastating and deadly natural hazards in 
urban areas, and they are caused by an intense rain event that produces several hun-
dreds of mm of rain in a few hours (Versini 2012). Recent studies have shown that flash 
floods are attracting growing public and research concern due to the increasing large-
scale damage they cause in highly urbanized regions (Debionne et  al. 2016, Vincen-
don et  al. 2016, Pregnolato et  al. 2017a). Urban road networks are among the critical 
infrastructure components that can be seriously affected by a flash flood due to their 
low-lying nature and high density throughout an urban territory (Yin et  al. 2016). 
Inundation of urban road networks generally leads to high transportation vulnerability 
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and flood-related deaths as a result of vehicles being driven through flooded roadways 
(Jonkman and Kelman 2005).

According to the definition of “flood risk” used by the EU Flood European Floods 
Directive 2007/60/EC (EC 2007), we define the flood risk in a road network as the com-
bination of the probability of a flood event and the potential adverse consequences for 
transport functions, security, society and economy when a road network is impacted by 
a flood event. The failure of a road network has the great impact on our daily lives as 
well as rescue operations for disasters. Therefore, a detailed analysis of flood hazards 
(characterized by the probability of flood events with a certain magnitude and other 
characteristics) and the flood vulnerability of road networks (considering the degree 
of influence on transportation at a given flood depth) should be performed to form a 
comprehensive understanding of the flood risks associated with road networks in urban 
areas.

Methods of assessing the hazards, risks and vulnerability associated with flooding 
can be categorized into two types (Balica et al. 2013): physically based methods (Hans-
son et  al. 2008; Li et  al. 2013) and parametric methods. The parametric approach is 
often used when only a few parameters are available but the goal is to estimate the com-
plete vulnerability value of a system. Connor and Hiroki (2005) proposed a Flood Vul-
nerability Index (FVI), which combines different cause and effect factors and consists 
of four components (meteorological, hydrogeological, socioeconomic, and a counter-
measure component) (Connor and Hiroki 2005; Balica et al. 2009). Although the para-
metric method can perform a wider evaluation of flood vulnerability, it does not provide 
a rigorous assessment of flood risk (Balica et al. 2013); moreover, it fails to explore the 
spatiotemporal characteristics of the flood vulnerability of residents during flash floods.

Physically based hydrological models and finite difference methods of hydraulic cal-
culations (Ghimire et al. 2013; Li et al. 2015; Liu et al. 2015) have been used to esti-
mate dynamic flood parameters that can be combined with social vulnerability data to 
understand disaster processes. Recent studies have performed evaluations of the flood 
impacts on road networks (Vincendon et  al. 2016; Lang et  al. 2016; Yin et  al. 2016; 
Pedrozo-Acuña et  al. 2017), flood hazard analyses for people and vehicles (Xia et  al. 
2011), assessments of the daily exposure of commuters (Terti et  al. 2015; Debionne 
et  al. 2016), and correlations between depth and disruption from economic aspects 
(Penning-Rowsell et  al. 2013; Pregnolato et  al. 2017b). This research has provided 
physically based analyses for the hazards, exposure or vulnerability associated with road 
network flooding. However, the current literature fails to integrate all these elements 
into a unified framework to provide the ability to perform spatiotemporal analyses and 
examine how flood dynamics affect people’s transportation based on individual char-
acteristics (e.g., income, age, and social relationships). Therefore, detailed information 
about the daily exposure of commuters to flooding (Debionne et al. 2016) and the risk 
factors for driving into flooded roads (Lim et al. 2016; Drobot et al. 2007) should also 
be considered via spatiotemporal analyses to achieve a comprehensive and synthetic 
understanding of flood impacts on road networks.

In this paper, we propose a physically based spatiotemporal method to analyze the 
impacts of floods on urban road networks. A Cellular Automata (CA) model is devel-
oped to address the spatiotemporal urban flood complexity, and the multiple transporta-
tion characteristics of stakeholders are incorporated to evaluate the dynamic impact of 
floods on urban road networks. The conclusions drawn in this work can identify mapped 
regions with high potential emergency management risks during a flash flood event.
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2  Materials and methods

The case study area is located in the central part of the city of Austin (Town Lake-Colorado 
River sub-watershed area) in Texas, USA (Fig. 1). Austin is on the shore of the Colorado 
River and the 11th-most populous city in the USA. The elevation of Austin varies from 425 
feet (130 m) to approximately 1000 feet (305 m) above sea level. Austin has experienced 
frequent flash floods, which are often caused by thunderstorms. The 2015 Halloween Flood 
was a presidentially declared disaster that affected Austin and Travis County and began 
during the pre-dawn hours of October 30, 2015 (Swearengin and Moore-Guajardo 2015).

2.1  Data availability and processing

This section introduces the data collection and processing methods. Our data sets include 
rainfall data, topography data, land use and soil data, and road network and commuting 
data.

2.1.1  Rainfall data

Rainfall is a disaster-inducing factor since it serves as an external driving force in the dynamic 
evolution of urban flooding. The historical precipitation in Austin can be obtained from the 
Weather Underground web site, which is a  commercial weather service  that provides  real-
time weather information  via  the Internet. To simulate the 2015 Halloween Flood in Aus-
tin, we downloaded the hourly historical precipitation data of October 30th, 2015. The data 

Fig. 1  Research area
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were processed into rainfall data at a time scale of seconds as an input to the flood simulation 
model.

2.1.2  Topography data

Ten-meter resolution Digital Elevation Model (DEM) and gauge station data were acquired 
from the national map web site of the United States Geological Survey (https ://viewe r.natio 
nalma p.gov/basic /) (Fig. 2a).

The hydrological characters of an urbanized area are affected by buildings. In this work, the 
building boundary data were obtained from the United States Census Bureau (https ://www.
censu s.gov/geo/maps-data/data/tiger -geoda tabas es.html); the GIS-based dataset provides 
characteristics that include the heights of each building polygon (Fig. 2b).

The Digital Surface Model (DSM) of the urban area is represented by overlay and raster 
calculation operations of the DEM layer and the building layer and rasterized using building 
height attributes.

2.1.3  Land use and soil type data

In this study, the surface roughness and infiltration factors in the research area could be empir-
ically estimated using land use and soil types, which affect the rainfall-runoff and flood routine 
characteristics in flash floods. The land use data were downloaded from the Multi-Resolution 
Land Characteristics Consortium (MRLC) (https ://www.mrlc.gov/nlcd1 1_data.php), and the 
soil type data were downloaded from the United States Department of Agriculture (https ://
www.nrcs.usda.gov/wps/porta l/nrcs/detai l/soils /surve y/?cid=nrcs1 42p2_05362 7).

The  runoff curve number  method (United States Department of Agriculture 1986) was 
used to estimate the runoff factor from the simulated excess rate of rainfall:

Fig. 2  Topological data

https://viewer.nationalmap.gov/basic/
https://viewer.nationalmap.gov/basic/
https://www.census.gov/geo/maps-data/data/tiger-geodatabases.html
https://www.census.gov/geo/maps-data/data/tiger-geodatabases.html
https://www.mrlc.gov/nlcd11_data.php
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/%3fcid%3dnrcs142p2_053627
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/%3fcid%3dnrcs142p2_053627
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where Q represents runoff (m), P represents rainfall (m), S represents potential maximum 
retention after runoff begins (m) and Ia represents the initial abstraction (m). For urbanized 
watersheds, we adopt Ia = 0.05S (Hawkins et al. 2002), and

where CN represents the runoff curve number, which ranges from 30 to 100 and was 
extracted from the land use classification and soil type data (United States Department of 
Agriculture 1986).

2.1.4  Road network and commuting data

The commuting statistical data at the district level are more accessible than individual 
travel trajectories due to privacy issues. The exposure analysis of commuters during 
flash floods should consider the distribution of road network and the time-varying com-
muting statistics. In the research area, the hourly statistical commuting statistic data at 
the district level can be obtained from the United States Census Bureau. In addition, 
the distribution of travel time to work in districts is also documented in the dataset, 
which can assist in the collection of statistics of the averaged travel time in each district. 

(1)Q =

(
P − Ia

)2
(
P − Ia

)
+ S

(2)S =

(
1000

CN
− 10

)/
39.37

Fig. 3  Road network and commuting statistics for the a average travel time to work and b road density
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Figure  3a depicts the 213 district partitions, where gravity centers are represented as 
black dots on the map. Figure 3b illustrates the road network density in each district.

2.2  Methods

This section introduces a group of methods that were developed for this research work. The 
methods include a cellular automata model for urban flood simulation and a road network 
impact analysis method based on the spatiotemporal flood simulation results.

2.2.1  Cellular automata model for urban flood simulation

In this work, we developed a cellular automata model for analyzing flood impacts on road 
networks in the city of Austin. A proposed cellular automata model (Fig. 4) for road net-
work inundation impact simulations includes two stages: cellular automata initialization 
and cellular automata simulation. The cellular automata model is initialized by prepar-
ing all the data layers under a unified grid size and boundary. A Von Neumann neighbor-
hood structure is adopted to carry out the simulations for road network inundation impact 
analysis.

Rasterization of building
shapefile using building

height attributes

DEM selected by
natural watershed

boundary

Overlay and merge

Roughness
coefficients

DSM bounded by natural watershed

Runoff curve
number Base flow

Cellular automata initialization

Time-series
parameters that drive
the CA evolution

Precipitation
dynmaics

Watershed
upstream&downstr
eam flow dynamics

Cellular automata simulation

T->T+ t
Update upstream and downstream boundary grids

Ground grids Building grids

Update flux according to
momentum conservation
rules

Update water stage according to mass conservation rules

Flux is directly calculated
according to precipitation

Fig. 4  Cellular automata model for urban flood simulation
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The simulation of an urban flash flood has three key characters: (1) it is mainly driven 
by intensive precipitation in a short period; (2) the impact of buildings on the watershed 
landform and flood routine should be considered at an appropriate level of detail; and (3) 
the infiltration and drainage parameters are specified on spatial and temporal discrete grids.

In this article, an effective flood modeling and simulation workflow appropriate for catch-
ments mainly occupied by buildings is proposed. The dynamic precipitation data of each step 
are obtained by interpolation of the weather observations and added to the water stage of each 
grid cell (the grid cells taken up by buildings are treated in the same way).

The movement of water volume among non-building cells is solved by shadow water equa-
tions fitted in a cellular automation framework as introduced by Li et al. (2013):

In Eqs. (3)–(5), ht
i,j

 represents the average water depth (m) of the CA cell (i, j) at time t; 
Mt

i,j
 and Nt

i,j
 are the single-width fluxes  (m2 s−1) of the CA cell (i, j) at time t in the x and y 

directions, respectively; �t
i,j

 and �t
i,j

 represent the average horizontal water speeds (m s−1) in 
the CA cell (i, j) at time t in the x and y directions, respectively, where �t

i,j
= Mt

i,j
∕ht

i,j
 and 

�
t
i,j
= Nt

i,j
∕ht

i,j
 ; zt

i,j
 represents the average water stages (m) of the CA cell (i, j) at time t; Qt

i,j
 is 

the estimated runoff value (m s−1) of the CA cell (i, j) obtained from formulas (1), (2); EVt
i,j

 
is the evaporation value (omitted for flash flood analysis); ni,j is the hydraulic roughness coef-
ficient  (m−1/3 s) of the CA cell (i, j); and Δt , Δx , and Δy represent the temporal unit(s), the 
spatial unit in the x direction (m), and the spatial unit (m) in the y direction, respectively.

The calculations of water volume movement from building cells to non-building cells need 
to be adjusted due to significant elevation differences as shown in Fig. 5.

The water flux through the four neighborhoods of grid (i, j) can be calculated with Eqs. (3) 
and (4), where Mt

i,j
 and Nt

i,j
 are the single-width fluxes  (m2 s−1) of the CA cell (i, j) at time 

T + ∆t in the x and y directions, respectively; PT is the precipitation intensity (m s−1); NEi,j is 
the number of edges of grid(i, j) that are adjacent to ground grids; and Δt , Δx , and Δy represent 
the temporal unit(s), the spatial unit in the x direction (m), and the spatial unit (m) in the y direc-
tion, respectively.

(3)Mt+1
i,j

= Mt
i,j
− g

Δt(ht
i+1,j

+ ht
i,j
)(zt

i+1,j
− zt

i,j
)

Δx
− gn2

i,j

ui,jΔt

√(
ut
i,j

)2

+
(
vt
i,j

)2

[
(ht

i+1,j
+ ht

i,j
)∕2

]1∕3

(4)Nt+1
i,j

= Nt
i,j
− g

Δt(ht
i,j+1

+ ht
i,j
)(zt

i,j+1
− zt

i,j
)

Δy
− gn2

i,j

vi,jΔt

√(
ut
i,j

)2

+
(
vt
i,j

)2

[
(ht

i,j+1
+ ht

i,j
)∕2

]1∕3

(5)ht+1
i,j

= ht
i,j
−

Δt(Mt+1
i+1,j

−Mt+1
i,j

)

Δx
−

Δt(Nt+1
i,j+1

− Nt+1
i,j

)

Δy
+ Qt

i,j
− EVt

i,j

(6)MT+Δt
i,j

= −MT+Δt
i,j−1

=
PT × Δx

NEi,j

(7)NT+Δt
i,j

= −NT+Δt
i−1,j

=
PT × Δy

NEi,j
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2.2.2  Spatial–temporal road network impact analysis method

For most studies in flash flood risk analysis, human mobility is rarely considered and residen-
tial population density data are usually assumed to have a static distribution (Debionne et al. 
2016). This paper adopts a dataset that collects statistical data on hourly variations of commut-
ing behavior that can be integrated with flash flood dynamic data to provide a more accurate 
and appropriate spatiotemporal commuter exposure analysis for flash floods.

The proposed estimation method is based on two assumptions: (1) for each district, the 
commuters are distributed with equal spatial probability in each road cell and equal temporal 
probability in each time span (as was documented in the statistical data); and (2) each com-
muter travels using the averaged commuting time of the district in which he or she lives. The 
detailed transition rules for the flood exposure of commuters at each road cell are depicted in 
Fig. 6.

Equations (8) and (9) demonstrate the calculation method of CEt
i
(commuter exposure esti-

mation of road cell i at time t) (person s−1):

where DCt
c
 represent the number of commuters (person s−1) in the current district of cell i 

at time t; nDist , NRGTotal and NGTotal represent the number of districts, road grids and total 
CA grids in the research area, respectively; Rc and NRGc represent the equivalent radius 

(8)CEt
i
= DCt

c
× Rc

/
(Vmoter × NRGc)

+

j≠c∑
0≤j<nDist

CEt
j−>i

(9)CE
t
j−>i

=

⎧
⎪⎪⎨⎪⎪⎩

DC

t−
di
j
�
Vmoter

j
×ΔxΔy

𝜋di2
j
×NRGTotal∕NGTotal

�
if di

j

�
Vmoter

≤ CTj

�

0

�
if di

j

�
Vmoter

≤ CTj

�

Fig. 5  Calculations of water 
volume movement from building 
cells to non-building cells
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(calculated according to the district area) and the number of road grids of the current dis-
trict, respectively; di

j
 is the distance (m) from road cell i to the gravity center of district j, 

and Vmoter is the estimated driving velocity (m s−1); CTj is the averaged commuting time (s) 
in district j; and Δx , Δy represent the spatial unit in the x and y direction (m), respectively. 

Therefore, DC
t−d

i
j

/
Vmoter

j
 represents the number of commuters in district j at leave-home 

time and 
j≠c∑

0≤j<nDist

CE
t
j−>i

 is the estimation of commuter exposure of road cell i at time t con-

tributed by other districts.
For the road network impact analysis, the flood depth needs to be translated via the road 

network into increased commuting time and then evaluated using the value of time (VoT) 
(Ford et al. 2015). Pregnolato et al. (2017b) proposed a relationship between flood water 
and vehicle speed that has proven to be a good fit to the observed data and has an R-square 
value of 0.95:

where v represents the vehicle speed limit (km/h) and h is the flood depth (mm).
In this paper, we adopt the relationship to estimate the vehicle speed reduction due to 

flooding. Therefore, the total road network impact at time t ( RD(t) ) can be calculated by 
Eq. (11):

where CEt
i
 represents the commuter exposure estimation of road cell i at time t (person s−1) 

introduced in Eqs.  (8) and (9); v(ht
i
) is the maximum speed as a function of flood depth 

in cell i at time t; v0 is the speed allowed by transport regulations; and VoT  is the value of 

(10)v(h) = 0.0009h2 − 0.5529h + 86.9448

(11)RD(t) =
∑
i∈S

CE
t
i
×
(
1 − v(ht

i
)
/
v0

)
× VoT

Fig. 6  Transition rules for the flood exposure estimation of commuters
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time (dollar s−1). The VoT  value used in this paper was based on US average hourly wages, 
which were US$ 21.19 per hour (in Oct. 2015 prices).

3  Results

The CA model was initialized using the DSM, roughness coefficient, infiltration, and popu-
lation density datasets. A profile of precipitation from 7:00 to 17:00 on October 30th, 2015 
is shown in Fig. 7. The water flux through the segment of the Colorado River that connects 
the upstream and downstream of the sub-watershed was estimated from the 5-minute-inter-
val observational data of gauge station 08158000 and preprocessed to fit into the CA model 
together with the precipitation time-series data.

The cellular automata model was used for a simulation from 7:00 to 17:00. Here, we 
choose 6 moments of time to illustrate the dynamic change of the water depth. The sub-
merged statistics, broken down by graded water depth, are shown in Table 1. Figure 8 is 
also provided to depict the evolution of flood, which illustrates that dramatic streams and 
ponds quickly form in the urban area from 9:00 to 11:00 and gradually recede after 13:00. 
The grades of water depth are selected manually, in which 0.3 meters is important because 
it is usually the height of the exhaust pipe of a vehicle. Other grades are selected to carry 
out appropriate spatiotemporal flood mapping in the study area.

The simulated results of commuter exposure are shown in Fig. 9 and estimated accord-
ing to the methods in Sect. 2.2.2. The results indicate that the estimated numbers of com-
muters exposed in the road network at 7:30, 9:00 and 10:00 are relatively higher than those 

Fig. 7  Precipitation trend in 
study area from 7:00 to 17:00 on 
October 30th, 2015

Table 1  Submerged statistics 
(sq.km)

Water depth (m) Time

7:30 9:00 10:00 11:00 13:00 17:00

0–0.3 126.92 126.43 122.7 118.04 116.82 117.48
0.3–1 0.46 0.91 4.32 8.05 8.58 8.11
1–3 1.92 1.68 1.95 2.82 3.33 2.88
3–10 0.3 0.58 0.63 0.69 0.87 1.13
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after 10:00 because a number of commuters are still in the morning rush hour during that 
time.

The road network impact results were obtained via simulations, and the average road 
impact per CA grid in each district is shown in Fig. 10 to better describe the spatial and tem-
poral patterns of road network impacts. Figure 10a–f shows that road network transportation 
is more affected at 7:30 and 10:00 than at other time nodes. For the analysis result at 7:30, the 
road impact peak is mainly formed by the morning rush hour according to the estimated com-
muter exposure in Fig. 10a, whereas the road impact peak at 10:00 is due to the joint effect 
of rainfall-runoff and urban commuting dynamics. A rainfall peak from 9:00 to 10:00 results 
in a dramatic increase in the waterlogging depth, and the highly affected districts at 10:00 are 
mainly distributed around the shore of the Colorado River (see Fig. 10c). We can conclude 
that the CA model provides a spatiotemporal estimation of commuter distribution that can 
unite the spatiotemporal calculation of flood parameters and offer insights from the road net-
work impact analysis.

Fig. 8  Water depth results at time a 7:30, b 9:00, c 10:00, d 11:00, e 13:00, and f 17:00
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4  Discussion

In this paper, we validated the performance of urban flood inundation simulation by 
comparisons with the time-series observation data from four gauge stations (Fig. 11). 
The simulated hydrographs can reflect the dynamic trend of flood evolution, which can 
provide spatiotemporal datasets for a road network impact analysis.

We also investigated a parametric approach (Flood Vulnerability Index (FVI)) to pro-
vide comparisons with the proposed physically based spatiotemporal method. Table 2 
illustrates the flood vulnerability index designations.

The FVI method can only provide a vulnerability result between 0 and 1. Spatial and 
temporal results such as economic loss cannot be achieved by this parametric method. A 
summarization was further provided (Table 3) among the proposed methods, parametric 
approaches (such as FVI) and traditional physically based hydraulic modeling.

Fig. 9  Estimated commuter exposure at time a 7:30, b 9:00, c 10:00, d 11:00, e 13:00, and f 17:00
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We can conclude that the proposed physically based method inherits the advantage of 
traditional physically based methods in which the phenomena of river flow and flooding 
can be quantitatively described by coupled sets of equations. Moreover, the proposed 
method extends to flood vulnerability elements and thus provides quantitative economic 
loss estimations in flood events.

Fig. 10  District-averaged road network impact estimated at time a 7:30, b 9:00, c 10:00, d 11:00, e 13:00, 
and f 17:00
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5  Conclusions

A fully dynamic simulation analysis of flood impacts on urban road networks is a chal-
lenging and meaningful task: it is challenging because the flood impacts on road networks 
represent interactions among hazards, exposures, and risk vulnerabilities, which makes it 
rather complex to explore and validate all the elements; and it is meaningful in that it pro-
vides insights into and knowledge of the comprehensive spatiotemporal information of the 
flood process.

In this research work, we combined flood rainfall-runoff simulations and commuting 
exposure estimations at a spatiotemporally discrete level and a VoT-based vulnerability 
analysis was developed to fit in the cellular automata analysis. Our proposed method ena-
bled a quantitative spatiotemporal road network impact analysis for flash floods. From the 
analysis results, the evolution of a flood and its impact on a road network could be visual-
ized, including spatial details.

In this paper, the district-level commuting behavior data are based on a statistical 
approach. However, a more comprehensive model could be achieved if more detailed 
commuting data are obtained. In addition, we considered the infiltration effect during the 
rainfall-runoff process using an empirical method that estimated the runoff curve num-
ber. Errors exist because detailed urban drainage pipeline data and accurate landform and 
rainfall distributions are difficult to obtain, which also reflects the limitations of physically 
based modeling techniques.

Fig. 11  Comparisons between gauge depth and simulated water depth
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