
Vol.:(0123456789)

Natural Hazards (2019) 96:121–147
https://doi.org/10.1007/s11069-018-3532-4

1 3

ORIGINAL  PAPER

Landslide susceptibility mapping in and around Mussoorie 
Township using fuzzy set procedure, MamLand 
and improved fuzzy expert system‑A comparative study

Bipin Peethambaran1  · R. Anbalagan1 · K. V. Shihabudheen2

Received: 5 January 2018 / Accepted: 12 November 2018 / Published online: 30 November 2018 
© Springer Nature B.V. 2018

Abstract
A landslide susceptibility map (LSM) is an imperative element in the planning of sus-
tainable development practices and geo-environmental conservations in mountainous ter-
rains. In recent times, approaches that couple soft computing techniques and Geographic 
Information System (GIS) has emerged as better-suited models that can diminish the flaws 
and limitations of heuristic, probabilistic and distribution approaches in landslide suscep-
tibility mapping. This paper presents an improved fuzzy expert system (FES) model, a 
fusion of Mamdani fuzzy inference system (Mamdani-FIS) and frequency ratio method for 
GIS-based landslide susceptibility mapping. The improved FES model has been applied 
for mesoscale (1:15,000) landslide susceptibility mapping of Mussoorie Township, Utta-
rakhand, India, along with conventional fuzzy set procedure (FSP) and an existing FES 
model, MamLand. The LSMs generated through different procedures have been validated 
and compared by means of spatial distribution of susceptibility zones and statistical anal-
ysis with the help of landslide inventory. The validation and comparative analysis have 
indicated the significantly better performance of the improved FES model over FSP and 
MamLand.

Keywords Landslide susceptibility mapping · Geographic information system · Fuzzy 
set procedure · Mamdani-FIS · MamLand · Improved fuzzy expert system · Mussoorie 
Township

1 Introduction

Landslides are widespread and frequently occurring natural hazard, which cause serious 
damages to lives and property, especially on mountainous terrains. The increased aware-
ness about socioeconomic aftermaths of landslides and need of urbanisation in mountain-
ous terrains have necessitated the incorporation of preliminary slope stability evaluations 
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schemes such as landslide susceptibility mapping in development and safeguard practices 
in landslide-prone terrains. Landslide susceptibility mapping is the process of classifying 
the land surface into different categories of stability relatively, based on an estimated sig-
nificance of landslide causative factors. The relative classification of slopes in terms of 
stability helps the engineers and planners to adopt suitable environmental regeneration 
measures and planning of sustainable development schemes such as the construction of 
roads, buildings and other infrastructures in landslide-prone terrains more efficiently and 
economically (Anbalagan 1992; Feizizadeh et al. 2013a, b).

The landslide susceptibility mapping techniques can be broadly classified into two cat-
egories: qualitative and quantitative approaches. The qualitative approaches are inventory-
based and knowledge-driven methods such as distribution models (Wright and Nilsen 
1974), geomorphic mapping (Humbert 1977), and map integration models (Brabb 1991). 
On the other hand, the quantitative approaches are data-driven methods and physically 
based models. The quantitative approaches are probabilistic models (Lan et al. 2004; Lee 
et  al. 2002), deterministic models (An et  al. 2018; Gokceoglu and Aksoy 1996; Vieira 
et al. 2010) and statistical models (Clerici et al. 2002; Fabbri et al. 2003; Feizizadeh and 
Blaschke 2013, 2014). Among the statistical models, bivariate statistical models such as 
fuzzy logic (Champatiray et  al. 2007; Ercanoglu and Gokceoglu 2004; Feizizadeh et  al. 
2013b; Juang et al. 1992; Kanungo et al. 2009) and multivariate statistical models such as 
neural networks (Gómez and Kavzoglu 2005; Kanungo et al. 2005; Pradhan et al. 2010; 
Yilmaz 2009) are the most popular and widely applied approaches. However, the land-
slide susceptibility mapping is a nonlinear and multicriteria modelling, which is sensitive 
to uncertainties or imprecisions associated with decision-making and noises of input data; 
thus, it may deliver unreliable results if modelled with linear or highly data sensitive sta-
tistical models (Feizizadeh and Blaschke 2011). Therefore, researchers like Feizizadeh 
et al. (2013b, 2014), Hudson (1990), Zhu et al. (2014) emphasise the need of multicrite-
ria decision analysis (MCDA) approaches formulated either based on expert knowledge or 
combines information derived from different sources under fuzzy logic as the better-suited 
approach for GIS-based multicriteria modelling like landslide susceptibility mapping.

The fuzzy logic or FSP, a bivariate, nonlinear statistical learning theory, was introduced 
by Zadeh (1965) for formal modelling of systems with missing or vague input information. 
Later, Mamdani and Assilian (1975) and Takagi and Sugeno (1985) have advanced fuzzy 
expert system (FES) that allows incorporation of expert knowledge in the basic fuzzy logic 
theory, known as Mamdani fuzzy logic and TSK model, respectively. The Mamdani fuzzy 
logic or popularly known as Mamdani-FIS is perhaps the most preferred fuzzy method to 
formulate FES for solving complex problems in Engineering Geology (Grima 2000). In 
spite of its huge popularity, the Mamdani-FIS has not been widely applied to landslide sus-
ceptibility mapping, and a comparative analysis of FES models and conventional FSP have 
not been encountered in the landslide literature. A few FES models for landslide suscep-
tibility mapping based on Mamdani-FIS are available in the landslide literature; they are: 
Akgun et al. (2012), Saboya et al. (2006), Zhu et al. (2004, 2014).

Zhu et  al. (2004, 2014) developed an LSM model based on expert knowledge and 
Mamdani-FIS. The membership function (MF) structure of the model constituted by a Bell 
waveform function for each causative factor, the categories of causative factors and their 
significance are determined empirically. Saboya et al. (2006) assessed the failure potential 
of slopes by ranking the causative factors based on a questionnaire answered by experts. 
Further, the ranks were fuzzified under Mamdani-FIS using a similarity concept to deter-
mine the failure potential of slopes. Akgun et al. (2012) developed a model called Mam-
Land for landslide susceptibility mapping. Unlike earlier models, MamLand introduced the 
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use of overlapping membership sets (MSs) within an MF and fuzzy combination rules to 
fuzzy logic-based landslide susceptibility mapping. The published FES models face major 
shortcomings such as subjectivity associated with classification and significance estimation 
of causative factor–landslide relation, the incompetence of FIS structure to represent physi-
cal condition of causative factors as well as low grade of interpretability and portability.

In view of the shortcomings, an effort has been made to put forth an improved FES 
model that attenuates the deficiencies of earlier FES models as well as more effective than 
conventional FSP for GIS-fuzzy-based landslide susceptibility mapping. The improved 
FES model presented in this paper is a fusion of Mamdani-FIS and FR method based on a 
strategy, ‘mean and neighbour’. The ‘mean and neighbour’ strategy governs the construc-
tion of input (fuzzifier) and output (defuzzifier) MF structure of Mamdani-FIS, whereas 
the FR method plays part in the formulation of fuzzy if–then rules. Under the strategy, two 
FIS structures, Bell–Gaussian (BG) and Triangular–Trapezoidal (TT) are proposed for the 
model based on MF’s shape miscibility and dynamics. The improved FES (BG and TT 
separately) along with an existing FES model, MamLand and conventional FSP has been 
applied for GIS-based landslide susceptibility mapping in and around Mussoorie Town-
ship, Uttarakhand, India, on mesoscale (1:15,000). The produced LSMs have been vali-
dated and compared in terms of spatial distribution of susceptibility zones and statistical 
analysis by receiver operative characteristics (ROC) and FR method with the help of land-
slide inventory layer of the study area.

2  Methodology

In this study, landslide susceptibility analysis has been carried out by using three mod-
els: (1) FSP, (2) MamLand and (3) the proposed model—improved FES. In FSP analysis, 
the cosine amplitude method has been used to determine the membership value of catego-
ries of causative factors, whereas the MamLand and improved FES models are based on 
Mamdani-FIS.

2.1  Fuzzy set procedure

The FSP or simply fuzzy logic was introduced by Zadeh (1965) for formal modelling of 
real-world systems with ambiguous, vague or missing input information to arrive at a defi-
nite conclusion. The computing mechanism of fuzzy logic is non-dichotomous in character 
unlike traditional formal modelling tools such as Boolean algebra or classical set theory. 
The fuzzy logic considers spatial objects on a map as members of a set and possibility or 
belongingness of each member to the set are expressed as membership value.

If X is the universe of discourse and elements of X are denoted by x, then a fuzzy set A 
in X can be defined as a set of ordered pairs.

where �A(x) is the membership value of x in A, in the range [0, 1] with 0 representing non-
membership and 1 representing the full membership. The membership value can be deter-
mined by using the alternate hierarchy process (AHP), cosine amplitude method or can be 
user-defined (Vakhshoori and Zare 2016). Given two or more maps with fuzzy membership 
functions for the same set, various fuzzy operators can be used to combine the membership 

(1)A =
{
x,�A(x)

||x ∈ X
}
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values (Zimmermann 1996). The fuzzy operators are Fuzzy AND, Fuzzy OR, Fuzzy Prod-
uct, Fuzzy Sum and Fuzzy Gamma (γ).

Let �i(x), i = 1, 2,… , n be the membership value of the fuzzy system having n vari-
ables, the combination of maps for a fuzzy set using different fuzzy operators can be writ-
ten as:

Fuzzy AND

Fuzzy OR

Fuzzy Sum

Fuzzy Product

Fuzzy Gamma (γ)

When the AND and OR operators used, only one membership value contribute to the 
result. The Sum and Product operators make resultant fuzzy set larger than, or equal to the 
maximum value and smaller than, or equal to the minimum value among all fuzzy sets, 
respectively. The resultant set integrated with the Gamma operator has the value between 
that of Sum and Product operators. The value of Gamma is closely associated with the 
degree of compensation between the extreme confidence levels.

2.2  Cosine amplitude method

Cosine amplitude method is one of the most commonly preferred similarity concept meth-
ods to determine the pairwise relationship. In the context of landslide susceptibility map-
ping, cosine amplitude method can be used to determine the correspondence between cat-
egories of a causative factor and landslides (Kanungo et  al. 2006). The correspondence 
between categories and landslides is expressed as the strength of relationship (rij).

Suppose n be the number of categories of a causative factor represented as an array 
X ={x1, x2,…, xn} each of its elements, xi is a vector of pixels p (i.e. number of pixels) and 
can be expressed as, xi = {xi1, xi2,…, xip}

The strength of relation, rij, results from the direct comparison of a causative factor 
i to occurred landslides j, say xi and xj containing elements xik and xjk, respectively. The 
strength of relation, rij (membership value) values ranging from 0 to 1, where a value close 
to 0 indicates weak correspondence and value close to 1 indicate strong correspondence.

(2)�AND(x) = MIN
[
�1(x),�2(x),… ,�n(x)

]

(3)�OR(x) = MAX
[
�1(x),�2(x),… ,�n(x)

]

(4)�Sum(x) = 1 −

n∏

i=1

(1 − �i(x))

(5)�Product(x) =

n∏

i=1

1�i(x)

(6)��(x) = [�Sum(x)]
� × [�Product(x)]

1−�
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The strength of relation (rij) can be defined as the ratio of total number of landslide pixels 
in the category to the square root of the multiplication of total number of pixels in that cat-
egory and the total number of landslide pixels in the area.

2.3  Mamdani‑FIS

Mamdani-FIS is an FES that combines expert knowledge and fuzzy set theory for efficient 
formal modelling. The basic idea of Mamdani-FIS is to use rules in linguistic form instead 
of explicitly defined algorithm to control the fuzzy inference process. The Mamdani-FIS 
has four units, namely fuzzifier, rule base, fuzzy inference mechanism, and defuzzifier.

Fuzzifier converts the crisp input to fuzzy input with membership value to a set by using 
MF of a particular shape. The most commonly used MFs are Triangular, Trapezoidal, 
Gaussian and Bell (Russell and Campbell 1996). The rule base is the fuzzy logic way to 
incorporate knowledge in natural language form to link input variables (antecedents) to 
output variable (consequent).

A continuous fuzzy system with non-interaction inputs x1 and x2 (antecedents) and a 
single output y (consequent) is described by the collection of r linguistic ‘if–then fuzzy 
rules’.

where Ak
1 and Ak

2 are the fuzzy sets representing the kth antecedent pairs and Bk are the 
fuzzy sets representing the kth consequent.

The inference mechanism establishes an optimum logical connection between the input 
and output by using the fuzzy operators. Defuzzifier converts the resultant MF to a crisp 
value. There are various defuzzification methods available in the literature, such as fuzzy 
mean, adaptive integration, centre of area (COA), but the centre of gravity (COG) is the 
most commonly used defuzzification method.

COG can be defined as:

where μ(y) indicates output membership value after fuzzy implication.

2.4  MamLand

The MamLand was introduced as an FES model for landslide susceptibility predic-
tion based on Mamdani-FIS. The FES has three units: input MFs (fuzzifier), output MF 
(defuzzifier), and fuzzy combination rules (if–then rules). The structure of MFs (both input 
and output) and fuzzy combination rules is formulated based on expert opinion. The input 

(7)
rij =

�∑p

k=1
xikxjk

�

�
�∑p

k=1
x2
xik

��∑p

k=1
x2
jk

�

If x1 isA
k
1
and x2 isA

k
2
, THEN y isBk for k = 1, 2,… , r

(8)y∗ =
∫ y�(y)dy

∫ �(y)dy
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variables are considered as two types: categorical (ex. lithology) and numerical (ex. slope 
gradient) variables. The MF of the categorical input variable is consists of non-overlap-
ping triangular MSs, while the MFs of numerical variables are consist of two triangular 
MFs overlapping each other. The allocation of fuzzy combination rules also depends on the 
type of input variables. The criterion for establishing fuzzy combination rules according to 
Akgun et al. (2012) is given below:

a. The categorical input variable can be classified into three classes: high, moderate and 
low based on landslide density, whereas the numerical input variables can be classified 
into two classes: positive and negative class for landslide occurrence.

b. The fuzzy combination rule that includes the high class of categorical variable in the 
input; the output is accepted as high or very high. Likewise, if the categorical input class 
is low, the output is accepted as very low.

c. If the input class of categorical variable is moderate, dominating class of numerical 
variables can be considered for determining the output.

2.5  Proposed model‑improved FES

The essential qualities of any FES models are that it should be representing the physical 
condition of causative factors, interpretable, portable, objectivity and most importantly, 
capable of accommodating the real-world fuzziness that exists between categories of caus-
ative factors. For example, if the slope gradient has been classified into five classes: such as 
0°–15°, 16°–25°, 26°–35°, 36°–45° and > 45° and assumes that the landslide susceptibility 
is very low, low, moderate, high and very high, respectively. In the case of moderately sus-
ceptible class, the value ranges from 26°-35°, but in real-world conditions, the slope gradi-
ents 23°, 24°, 25°, 36° or 37° may also be moderately susceptible to landslide.

Owing to these requirements, a fusion of Mamdani-FIS and FR method rooted on a 
strategy ‘mean and neighbour’ has been developed to put forth an improved FES model for 
GIS-based landslide susceptibility mapping. The improved FES has two main segments: 
first, fabrication of FIS structure based on ‘mean and neighbour’ strategy according to the 
classification of causative factors. Second, significance estimation of categories of causa-
tive factors by FR method to furnish the fuzzy if–then rules required for the inference. 
The ‘mean and neighbour’ strategy for construction of input structure (fuzzifier) of FIS is 
explained below;

a. In case of numerical causative factors, if a particular category has only a neighbour cat-
egory, the maximum membership value (i.e. 1) is reserved to the end, or starting point 
and membership value gradually reduce to the minimum value (i.e. 0) at the mean point 
of the neighbouring category. Such end categories can be represented with a Trapezoidal 
or Bell waveform function.

b. If a particular category has neighbouring categories, the maximum membership value 
(i.e. 1) is reserved for the mean value of that category and membership value gradually 
reduces to the minimum value (i.e. 0) at the mean point of neighbouring categories on 
both sides. Such categories can be represented by a Gaussian or Triangular waveform 
function.

c. For categorical causative factors like lithology, it is non-essential and impractical to 
consider fuzziness between categories thus, a non-overlapping MF of Gaussian or Tri-
angular waveform function may prefer to represent each category.
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Under the strategy, a combination of two types of MFs required to constitute the MF 
structure of fuzzifier. Therefore, based on MF’s dynamics and shape miscibility two 
combinations: Bell–Gaussian (BG) and Trapezoidal–Triangular (TT) waveform func-
tions can be clubbed together to constitute the structure. The output (defuzzifier) MF of 
both structures (BG and TT) can also be constituted by the same choice of MFs. As dis-
cussed earlier, the fuzzy if–then rules link the antecedent part to the consequent part of 
the FIS. The number of fuzzy rules is directly proportional to the number of categories 
considered for the causative factors. In this model, a novel procedure for rule fabrica-
tion has been developed based on the FR method. FR method establishes the relative 
significance of categories of the causative factor by direct comparison with the landslide 
inventory. The hierarchy of FR value can be followed to formulate the required fuzzy 
if–then rules objectively.

The FR method can be defined as:

where Li number of landslide pixels in the category i, Lt total number of landslide pixels, Ci 
number of pixels in the category i, Ct number of pixels in the category i.

3  Study area: Mussoorie Township

The Mussoorie Township famously known as the queen of hills is one of the most popular 
tourist destinations in the State of Uttarakhand, India. The city primarily established as the 
summer hub for British officers during the colonial period kept on drawing tourists from 
all over the world. With tourism being the wellspring of income for the native people and 
Municipality of Mussoorie, the development practices in the city has been taking place at a 

(9)FR = Li ⋅ Lt∕Ci ⋅ Ct

Fig. 1  Location of study area
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rapid pace. A prolonged winter season with heavy snowfall and monsoon being the promi-
nent seasons, Mussoorie experiences precipitation of 150 mm/year on an average. The city 
falls in the Zone IV of the Seismic Zonation Map of India (IS 1893, 2002). Considering the 
importance and rate of expansion of the township, a 43 km2 area in and around Mussoorie 
Township has been chosen as the study area for mesoscale landslide susceptibility map-
ping. Location map of the study area is shown in Fig. 1.

3.1  Slope instability problems in and around Mussoorie Township

The Township Mussoorie is located on the Lesser Himalaya hills. The topography of 
Lesser Himalayan hills are highly rugged and characterised by the Proterozoic-Cambrian 
rocks of Krol Belt, which has been thrust over the sedimentary rocks of Siwalik Group 
along the main boundary thrust (MBT). The proximity to MBT and Sairku fault makes this 
seismically active terrain inherently vulnerable to landslides. The slope instability prob-
lems in and around Mussoorie have been identified through fieldwork and remote sensing 
to prepare the landslide inventory map, an integral element in the validation of outcome of 
any landslide susceptibility analysis (Soeters and Van Westen 1996). Altogether, 49 land-
slides were located (indicated as points on Fig. 2), the active landslides observed on over-
burden slopes fall in the category of talus, circular and creep mode of failures, whereas on 
the rock slope, the failure modes are mainly planar and wedge.

3.2  Characterisation of causative factors for the study area

The degree of slope instability is controlled by the net effect of inherent causative fac-
tors. A total of eight geo-environmental factors have been considered as input causative 
factors in this study. The causative factors are lithology, land use & land cover (LULC), 
slope gradient, slope aspect, altitude, curvature, lineament and topographic wetness index 
(TWI). The causative factors were characterised for the study area through fieldwork and 
by processing remote sensing data on GIS platform. A brief discussion of causative factors 
is given below.

The process of weathering and erosion by physical agents depends on the type of lithol-
ogy or slope forming materials (SFM). Stratigraphically, the study area comprised of two 
Formations—Krol and Tal Formations of Mussoorie Group (Valdiya 1980). In the present 
study, the SFM has been considered broadly as two categories, rock exposure and soil or 
overburden materials. Further, the overburden has been considered as two categories based 
on thickness,  shallow overburden (1–5m) which are prone to translational or talus mode 
of failure and overburden (> 5m), where the mode of failure will be rotational or circular. 
The lithology map was prepared by carrying out geological fieldwork (Fig. 2a). The types 
of SFM are listed in Table 1 and it can be interred from Table 3, that shallow overburden is 
particularly vulnerable to slope failure incidents in the area.

LULC condition is one of the major parameters that govern the slope stability in 
mountainous terrains. The degree of vegetation plays an important role in resisting 
slope movements, particularly shallow failures. A well-spread network of root system 
provides shear resistance to SFM on soil slopes by acting as a natural anchoring system. 
Moreover, a thick blanket of vegetation suppresses the action of weathering and erosion 
by physical agents and hence adds to the stability of the slope. On the other hand, barren 
or sparsely vegetated slopes easily get exposed to physical degradation process easily, 
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Fig. 2  a Thematic map of lithology, b thematic map of LULC, c thematic map of slope gradient, d The-
matic map of slope aspect, e thematic map of altitude, f thematic map of curvature, g thematic map of RR, 
h thematic map of TWI
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thus rendering it vulnerable to failure. Agricultural practices and dwelling constructions 
are the major land uses in mountainous terrains. Under normal circumstances, agricul-
tural practices by local terracing and urbanisation on gentle slopes are safe. On steeper 
slopes, quality of drainage system and load of civil structure immensely influence the 
stability condition. Land cover varies from barren land to thickly vegetated forest area, 
and major land uses are agricultural practices and urbanisation in the study area. The 
LULC map was prepared by fieldwork and by referring Google Earth and Bing Map 
images (Fig.  2b). It can be inferred from Table  3 that barren and sparsely vegetated 
areas are more prone to landslides, whereas the urbanised area is least affected by the 
slope instability problems.

Slope gradient is a reflection of a series of localised processes and controls, which 
has been imposed on the slope. As landslides are shear and gravitational failure of 
slope-forming materials, the slope gradient plays an important role in slope stability. 
The slope gradient map of the study area was prepared from the digital elevation model 
(DEM) of 15  m resolution. In the study area, slope gradient ranges from 0° to 72.5° 
(Fig. 2c), and the mean slope gradient value of landslide pixels was found to be 35.37° 
(Table 2).

Slope aspect is the orientation of the terrain with respect to the true geographic north 
along maximum slope direction. Slope aspect has an indirect influence on slope insta-
bility in terms of sunlight exposure, drying winds and rainfall. Slope aspect map was 
prepared from the DEM (Fig. 2d), and it can be inferred from Table 2 that landslides 
typically occur on southeast slopes.

Table 1  Categories of lithology and description

Formation Categories Description

Krol Formation Ls-K Limestone with thin beds of shale
LDspqc-K Massive limestone and dolomitic limestone with minor 

intercalation of slate, calcareous phyllite, quartz arenite 
and chert

oLDss-K Well compacted overburden predominantly comprised of 
debris of limestone and dolomitic limestone with minor 
intercalation of shale and slates

sLDss-K Moderate to well compacted shallow overburden predom-
inantly comprised of limestone and dolomitic limestone 
rock fragments with minor presence of shale and slates

oSl-K Loosely compacted overburden predominantly comprised 
of reddish slate debris and minor limestone fragments

sSPsl-K Loosely compacted shallow overburden comprising of 
rock fragments of grey slate and green phyllite and 
intermittent appearance of shale and limestone

Tal Formation sQSl-T Moderately compacted shallow overburden consisting of 
debris with predominantly rock fragments of quartzite 
and slates with minor fragments of limestone

oSSq-T Well compacted overburden predominantly comprised of 
black debris of subordinate slate, argillaceous shale and 
very minor quartzite rock fragments

Q-T Moderately weathered quartzite
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Altitude indicates the concentration of local landslide triggering parameters like rain-
fall and surface runoff in an area with respect to change in elevation. The DEM is used 
as altitude map in this study, and it ranges from 732  m to 2253  m in the study area 
(Fig.  2e), and the mean altitude value of landslide pixels was found to be 1315.77  m 
(Table 2).

Curvature indicates the morphometry of the slope; there are two sorts of curvatures can be 
derived from a DEM: plan and profile curvature. Plan curvature is the horizontal curvature 
that affects the convergence and divergence of down-flowing fluid, whereas profile curvature 
is the vertical curvature of the slope that controls acceleration and deceleration of down-flow-
ing fluid. The standard curvature that combines both plan and profile curvature has been used 
in this study. Negative values of curvature indicate the slope is of concave morphometry, 
whereas positive values indicate convex morphometry. The curvature map of the study area 
was prepared from the DEM (Fig. 2f). The curvature value ranges from −26.6 to 16.4 in the 
study area, and mean value of landslide pixels was found to be −0.25 (Table 2).

Lineaments are tectonic discontinuities like faults, joints, and fractures that not only 
cause disturbance to the structure of SFM; but also cause reduction of shear strength of 
SFM. Pan-sharpened LISS-III image fused with Radarsat image was used as source layer 
to prepare the lineament layer of the study area (Fig. 2g). For the analysis, five buffer zones 
(BZ) at 120 m interval was considered. It can be inferred from Table 3 that maximum slope 
instabilities occur close to lineaments and its influence reduces as distance increases.

Topographic wetness index (TWI) indicates the spatial variation of surface moisture 
content. Thus, TWI can be used to interpret the role of water in inducing instability in a 
given area of interest. In this study, TWI was calculated by using the formula proposed by 
Moore et al. (1991).

where As is the specific catchment area  (m2/m) and β is the slope gradient.
TWI ranges from 4.44 to 19.15 in the study area (Fig. 2h), and the mean TWI value of 

landslide pixels was found to be 8.07 (Table 2).

4  Landslide susceptibility mapping of Mussoorie Township

As stated earlier, three soft computing models FSP, MamLand and improved FES have 
been used to carry out GIS-based landslide susceptibility mapping of the study area. Exe-
cution of the models is explained in the following sections.

(10)TWI = ln

(
As

tan�

)

Table 2  General statistics of 
numerical causative factors with 
respect to landslides

Causative 
factor

Min. Max. Mean SD

Slope gradi-
ent

2.13 63.11 35.12 8.59

Slope 
aspect

0.57 359.54 137.13 118.83

Altitude 794 2018 1315.77 359.59
Curvature − 6.22 4.44 − 0.25 1.36
TWI 5.19 14.17 8.07 1.45
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4.1  Execution of FSP

Eight causative factors have been used as input variables in FSP based assessment. For 
lithology, LULC and slope aspect, the inherent classification has been followed to carry 
out the analysis (Table 3). For lineament, five BZs at 120 m interval was preferred whereas, 
rest of the numerical causative factors have been classified into five different classes using 
the natural break classifier on ArcGIS 10.2.1 (Table 3). In order to determine the member-
ship value of each category used in this study, the strength of relationship (rij) has been 
calculated using the Eq. 7 by taking each causative factor and (total number of pixels is 
190594) and landslide inventory layer (1267 landslide pixels) one at a time. The rij values 
thus obtained are given in Table 3.

For example, the constituted fuzzy set of slope gradient via cosine amplitude method 
can be written as:

The FSP executed on ArcGIS 10.2.1 software by using inbuilt fuzzy overlay tool. Prior to 
that, a total of eight fuzzy rasters representing each causative factor were created accord-
ing to the classification and membership values (Table  4). Later, the fuzzy rasters with 
membership values were combined using the standard fuzzy operators AND, OR, Sum, 
Product and Gamma with five different γ values (0.1, 0.3, 0.5, 0.7 and 0.9). The resultant 
output rasters of different fuzzy operators were then classified into five different suscepti-
bility classes using natural break classifier to generate LSMs. The FSP-produced LSMs are 
shown in Fig. 5a–i (LSM-I to LSM-IX).

4.2  Execution of MamLand

The MamLand assessment for the study area has been carried out by using six causative fac-
tors as the model has limitations in incorporating slope aspect and more than one categorical 
causative factors as input. The categories of lithology have been considered as high (LDspqc-
K, oSl-K, and sSPsl-K) moderate (oLDss-K, Ls-K and sLDss-K) and low (Q-T, sQSl-T and 
oSSq-T) categories based on FR value (Table 3) and two-class classification has been adopted 
for rest of the causative factors as recommended. After classifying the causative factors, rep-
resentative MFs and 96 combination fuzzy if–then rules of MamLand were created on Matlab 
2016b software. The thematic layers of causative factors were converted to excel format of 
6 × 190594 dimension and supplied as input to the MamLand model for inferring landslide 
susceptibility pixel wise. The inferred susceptibility values then exported to ArcGIS 10.2.1 for 
the production of LSM in raster format. The natural break classifier has been chosen to clas-
sify the raster into five susceptibility classes. The MamLand-produced LSM is designated as 
LSM-X (Fig. 5j).

4.3  Execution of improved FES

An introduction of the improved FES model is given in Sect.  2.4. Except for lineament, 
the classification of causative factors given in Table 3 has been adopted here to execute the 
improved FES model. For lineament, the BZ interval was decided as 15 m (i.e., the dimension 
of raster) for construction of MF, and a collection of eight BZs (i.e. a set of eight rasters) is 

Slope gradient −
[
0.0059∕Very gentle, 0.0139∕Gentle,

0.0378∕Moderate, 0.0673∕Steep, 0.0658∕Very steep
]
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considered for the rule the fabrication procedure. The total number of categories of causative 
factors is 49 thus, the structure of the FIS comprised of that many MSs for the eight input MFs 
and five  MSs for the single output MF. As discussed earlier, two FIS structures: BG (Fig. 3) 
and TT (Fig. 4), have been constructed for the study area under the ‘mean and neighbour’ 
strategy according to the distribution of causative factors.

The FR assessment has been carried out by direct comparison of landslide inventory and 
causative factor one at a time using the Eq. 9 (Table 3). Subsequently, the fuzzy if–then rules 
required for the inference process were formulated based on the hierarchy of FR values. The 
rules base for the study area consists of 49 non-combination fuzzy rules in conventional con-
sequent-antecedent format (Table 4). The improved FES model (BG and TT structure sepa-
rately with common 49 fuzzy rules) is constructed on Matlab 2016b software with COG as 
defuzzification method under Mamdani-FIS. Causative factors were converted to excel file 

Fig. 3  BG membership function structure of FIS
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of 8 × 190594 dimension and supplied as input to the model. The susceptibility modelling 
accomplished with both structures (BG and TT) by using the same rule base. The inferred sus-
ceptibility values of both structures then imported to ArcGIS 10.2.1 software for production of 
LSMs in raster format. The BG and TT structure-produced maps are designated as LSM-XI 
(Fig. 5k) and LSM-XII (Fig. 5l), respectively.

5  Results and validation

A total of twelve LSMs have been prepared through three different models: FSP, MamLand 
and improved FES for the study area with each map displaying five susceptibility zones: 
very low susceptible (VLS), low susceptible (LS), moderately susceptible (MS), highly 
susceptible (HS) and very highly susceptible (VHS). The distribution of susceptibility 

Fig. 4  TT membership function structure of FIS
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Table 4  Fuzzy if–then rules generated according to FR value

Rule no. Consequent Antecedent (landslide susceptibil-
ity = ls)

1 If lithology is Ls-K Then ls is moderate
2 If lithology is LDspqc-K Then ls is high
3 If lithology is Q-T Then ls is very low
4 If lithology is oLDss-K Then ls is low
5 If lithology is sLDss-K Then ls is high
6 If lithology is oSl-K Then ls is very high
7 If lithology is sSPsl-K Then ls is very high
8 If lithology is sQSl-T Then ls is low
9 If lithology is oSSq-T Then ls is low
10 If LULC is agricultural land Then ls low
11 If LULC is thickly vegetated Then ls low
12 If LULC is moderately vegetated Then ls moderate
13 If LULC is built-up Then ls very low
14 If LULC is barren land Then ls very high
15 If LULC is sparsely vegetated Then ls high
16 If slope gradient is very gentle Then ls is very low
17 If slope gradient is gentle Then ls is low
18 If slope gradient is moderate Then ls is moderate
19 If slope gradient is steep Then ls is high
20 If slope gradient is very steep Then ls is very high
21 If slope aspect is flat Then ls is very low
22 If slope aspect is north (0–22.5 or 

337.5–360)
Then ls is high

23 If slope aspect is northeast Then ls is high
24 If slope aspect is east Then ls is moderate
25 If slope aspect is southeast Then ls is very high
26 If slope aspect is south Then ls is low
27 If slope aspect is southwest Then ls is low
28 If slope aspect is west Then ls is low
29 If slope aspect is northwest Then ls is moderate
30 If altitude is very low Then ls is very high
31 If altitude is low Then ls is high
32 If altitude is moderate Then ls is low
33 If altitude is high Then ls is very low
34 If altitude is very high Then ls is moderate
35 If curvature is strongly concave Then ls is very high
36 If curvature is concave Then ls is high
37 If curvature is flat Then ls is moderate
38 If curvature is convex Then ls is low
39 If curvature is strongly convex Then ls is very low
40 If distance from lineament is BZ-1 Then ls is very high
41 If distance from lineament is BZ-2 Then ls is high
42 If distance from lineament is BZ-3 Then ls is moderate
43 If distance from lineament is BZ-4 Then ls is low
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zones in different LSMs is given in Table 5. A spatial and statistical analysis is mandatory 
for any probability based landslide susceptibility mapping to validate the reliability of the 
outcome. The spatial analysis aims at close inspection of the distribution pattern of sus-
ceptibility zones in correlation with input thematic layers, whereas statistical assessment 
validates accuracy with regard to an event (i.e. landslides). In this study, a statistical model 
validation technique (pre-production of LSM) and map validation technique (post-produc-
tion of LSM) have been chosen; they are receiver operating characteristic (ROC) (Zweig 
and Campbell 1993) plot and FR analysis, respectively. The ROC plot is constructed by 
plotting the true-positive rate (sensitivity) against the false-positive rate (1-specificity) with 
various cutoff thresholds. The area under the curve (AUC) obtained from ROC plot indi-
cates the accuracy of the model. AUC value ranges from 0.5 to 1.0, an accurate model 
earns value close to 1.0, whereas an inaccurate model earns value close to 0.5. The FR 
analysis compares the similarity between susceptibility zones and landslide inventory; the-
oretically, the FR value must increase from VLS to VHS zone.

5.1  Validation of LSM‑I to LSM‑IX

LSM-I and II display an unacceptable distribution of susceptibility zones as a definite pat-
tern of categorical causative factors are visible on the map. In company with LSM-I and 
II, LSM-IV, V, VI and VII have also displayed an erroneous distribution of zones caused 
by the overabundance of VLS zone, 91.26%, 88.41%, 85.01% and 77.65% respectively 
(Table  5). Subsequently, the HS and VHS zone accounts fewer percentages of landslide 
pixels than VLS and LS accommodate. The LSM-III, VIII and IX show a better distri-
bution of susceptibility zones in terms of pattern and area accounted compared to other 
FSP based LSMs. However, on close inspection, it is visible that the categorical causative 
factors have left minor traces on these maps. It can be inferred from Table 5 that, in LSM-
III, the maximum area is accounted by MS zone (28.64%), whereas VLS zone (41.69%) 
and LS (32.20%) zone occupies the maximum area in LSM-VIII and IX, respectively. 
Furthermore, the area of VHS zone in these three maps are 8.74%, 3.17% and 6.92% and 
accommodates 47.12%, 19.65% and 40.65% of landslide pixels respectively. The lowest 
AUC value of 0.500 (Fig. 6) recorded for the Product (LSM-IV) and Gamma 0.1 (LSM-
V) models, indicating the inaccuracy of the models. The And (LSM-I), Or (LSM-II) and 
Sum (LSM-III) models earned better AUC scores of, 0.847, 0.708, and 0.839 respectively. 
In case of Gamma operator, the AUC value increases from 0.500 for Gamma 0.1 (LSM-
V) and 0.824 for Gamma 0.3 ((LSM-VI) to the highest 0.855 for Gamma 0.5 (LSM-VII) 
model, onward, the AUC values show a decreasing trend with the increase in Gamma value 

Table 4  (continued)

Rule no. Consequent Antecedent (landslide susceptibil-
ity = ls)

44 If distance from lineament is BZ-5 Then ls is very low
45 If TWI is very low Then ls is low
46 If TWI is low Then ls is moderate
47 If TWI is moderate Then ls is high
48 If TWI is high Then ls is very high
49 If TWI is very high Then ls is very low
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Fig. 5  a LSM-I (AND), b LSM-II (OR), c LSM-III (Sum), d LSM-IV (Product), e LSM-V (Gamma 0.1), 
f LSM-VI (Gamma 0.3), g LSM-VII (Gamma 0.5), h LSM-VIII (Gamma 0.7), g LSM-IX (Gamma 0.9), j 
LSM-X (MamLand), k LSM-XI (BG), g LSM-XII (TT)
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as Gamma 0.7 (LSM-VII) and Gamma 0.9 obtain 0.853 and 0.851 AUC values respectively 
(Fig. 6). In FR analysis, barring LSM-I, II, III and IX rest of the maps have not obtained 
the ideal increase of FR value from VLS to VHS zone (Table 5, Fig. 7a, b).

5.2  Validation of LSM‑X

The LSM-X shows a strong influence of categorical causative factor lithology which 
results in deprived and restricted distribution of susceptibility zones. The HS (5.83%) and 
VHS (24.39%) zones are restricted to the Blaini Formation and the MS zone (25.74%) to 
the moderate category and VLS (11.10%) zone are confined to the low category while the 
LS zone (32.95%) present in the moderate and low categories of lithology (Table 5). The 
VHS and HS zones together predict a scant 67.09% of landslide pixels Table 5. In statisti-
cal validation, the MamLand model scores low on ROC assessment (AUC: 0.725) (Fig. 6) 
however, the FR value increase from VLS zone to VHS zone (Table 5 and Fig. 7c).

5.3  Validation of LSM‑XI and LSM‑XII

The LSM-XI (BG) and XII (TT) display significantly better and realistic distribution of 
susceptibility zones with no definite trace of input causative factors. It can be inferred from 
Table  5 that LSM-XI and XII pose an acceptable and similar distribution percentage of 
susceptibility zones with maximum area is accounted by the LS zone, 29.20%, and 29.62% 
respectively. The HS and VHS zones together accommodate an impressive 83.11%  (LSM-
XI) and 79.95%  (LSM-XII) of landslide pixels in both maps. Similarly, the ROC and FR 

Fig. 5  (continued)



142 Natural Hazards (2019) 96:121–147

1 3

Table 5  Distribution of susceptibility zones in oppose to landslide distribution and FR analysis of different 
LSMs

Susceptibility 
zone

Number of 
pixels

Area (%) Number of 
landslide pixels

Area (%) FR value

LSM-I (And)
VLS 15575 8.17 1 0.08 0.01
LS 126122 66.17 257 20.28 0.31
MS 35024 18.38 396 31.25 1.70
HS 6264 3.29 221 17.44 5.31
VHS 7609 3.99 392 30.94 7.75
LSM-II (Or)
VLS 1014 0.53 0 0.00 0.00
LS 2657 1.39 0 0.00 0.00
MS 12356 6.48 2 0.16 0.02
HS 75023 39.36 126 9.94 0.25
VHS 99544 52.23 1139 89.90 1.72
LSM-III (Sum)
VLS 26240 13.77 9 0.71 0.05
LS 51870 27.21 67 5.29 0.19
MS 58530 30.71 128 10.10 0.33
HS 37302 19.57 466 36.78 1.88
VHS 16652 8.74 597 47.12 5.39
LSM-IV (Product)
VLS 173935 91.26 594 46.88 0.51
LS 8144 4.27 256 20.21 4.73
MS 3647 1.91 200 15.79 8.25
HS 2611 1.37 106 8.37 6.11
VHS 2257 1.18 111 8.76 7.40
LSM-V (Gamma 0.1)
VLS 168508 88.41 465 36.70 0.42
LS 11504 6.04 305 24.07 3.99
MS 4792 2.51 251 19.81 7.88
HS 3416 1.79 131 10.34 5.77
VHS 2374 1.25 115 9.08 7.29
LSM-VI (Gamma 0.3)
VLS 162016 85.01 342 26.99 0.32
LS 16059 8.43 376 29.68 3.52
MS 5740 3.01 271 21.39 7.10
HS 3522 1.85 131 10.34 5.60
VHS 3257 1.71 147 11.60 6.79
LSM-VII (Gamma 0.5)
VLS 147995 77.65 243 19.18 0.25
LS 25075 13.16 334 26.36 2.00
MS 8616 4.52 260 20.52 4.54
HS 4779 2.51 236 18.63 7.43
VHS 4129 2.17 194 15.31 7.07
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analysis have also delivered alike result for both models and maps. The obtained AUC val-
ues, 0.844 (BG) and 0.841 (TT) indicate the satisfactory performance of both models in 
predicting an event (Fig. 6). The FR value for VLS is found to be 0.07 for LSM-IX and 
0.05 for LSM-X, whereas for VHS, values are 5.34 and 5.41, respectively (Table 5). More 
saliently, the FR value increase from VLS to VHS for both maps and it is shown in Fig. 7c.

Table 5  (continued)

Susceptibility 
zone

Number of 
pixels

Area (%) Number of 
landslide pixels

Area (%) FR value

LSM-VIII (Gamma 0.7)
VLS 99872 52.40 98 7.73 0.15
LS 57267 30.05 215 16.97 0.56
MS 19690 10.33 377 29.76 2.88
HS 7725 4.05 328 25.89 6.39
VHS 6040 3.17 249 19.65 6.20
LSM-IX (Gamma 0.9)
VLS 45338 23.79 14 1.10 0.05
LS 68388 35.88 138 10.89 0.30
MS 44414 23.30 166 13.10 0.56
HS 20473 10.74 434 34.25 3.19
VHS 11981 6.29 515 40.65 6.47
LSM-X (MamLand)
VLS 21147 11.10 22 1.74 0.16
LS 62799 32.95 193 15.23 0.46
MS 49055 25.74 202 15.94 0.62
HS 11116 5.83 48 3.79 0.65
VHS 46477 24.39 802 63.30 2.60
LSM-XI (BG)
VLS 26992 14.16 13 1.03 0.07
LS 55657 29.20 46 3.63 0.12
MS 54708 28.70 155 12.23 0.43
HS 35252 18.50 414 32.68 1.77
VHS 17985 9.44 639 50.43 5.34
LSM-XII (TT)
VLS 26992 15.37 9 0.71 0.05
LS 55657 29.62 58 4.58 0.15
MS 54708 28.14 187 14.76 0.52
HS 35252 17.94 401 31.65 1.76
VHS 17985 8.94 612 48.30 5.41
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Fig. 6  ROC assessment of different models

Fig. 7  a Frequency ratio assessment of LSM-I to IV, b frequency ratio assessment of LSM-V to IX, c fre-
quency ratio assessment of LSM-X to XII
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6  Discussion

The AND, OR, Product and Gamma operator with 0.1, 0.3 and 0.5 values showed worst 
accuracy in FSP, whereas Sum and Gamma operator with 0.7 and 0.9 values showed 
comparatively satisfactory performance. The AND and OR operators take the minimum 
(least) and maximum (highest) membership value from a fuzzy set, respectively, it results 
in considering a causative factor in the analysis and thus are appears to be most unsuitable 
operators of FSP for landslide susceptibility mapping. Furthermore, the Product operator 
has a decreasing tendency (towards 0, i.e. non-susceptible), contrary to the Sum operator 
(increasing tendency towards 1, i.e. susceptible), is responsible for the overabundance of 
VLS zone on the LSM-IV. Similar to LSM-IV, maps produced through different Gamma 
values also suffer from the very same issue, though statistical validation measures indi-
cate accuracy. Thus, the LSM-III produced through the Sum operator with satisfactory sta-
tistical validation results and negligible error in the spatial distribution of susceptibility 
zones be considered as the best map among FSP-produced LSMs. However, based on the 
research, the FSP can be described as a discrete fuzzy approach in which the fuzziness 
between categories of a causative factor cannot be incorporated due to the dearth of sys-
tematic interaction between categories.

The model MamLand has limitations in accommodating more than one categorical 
causative factors and numerical causative factors with nonlinear behaviour for the analysis. 
Therefore, MamLand was executed for the study area using six causative factors unlike 
FSP and improved FES. Based on the validation of LSM-X, it is evident that the FIS struc-
ture of MamLand is inadequate to make the necessary classification of causative factors. 
Further, the subjective formulation of fuzzy if–then rules based on predefined criteria may 
also have contributed to the below-par performance of MamLand. Compared to FSP and 
MamLand, the outcomes of improved FES model, LSM-XI and XII showed reasonable 
accuracy for the statistical validation measure with a significantly better spatial distribution 
of susceptibility zones. Though both maps pose more or less similar result on validation, 
the LSM-XI of BG structure found to be marginally better than LSM-XII of TT structure. 
It can be interpreted from the result that, the choice of structure is vital in the analysis; in 
this case, the smooth nature of BG structure was better suited. The supremacy of LSM-XI 
and XII indicate successful susceptibility perdition by improved FES model for the stud-
ied area; moreover, this MCDA model that combines expert knowledge and FR method 
under Mamdani-FIS is more efficacious than existing FES models and conventional FSP. 
Furthermore, the improved FES model can vanquish the discrete nature of conventional 
FSP through systematic overlapping of MSs under the ‘mean and neighbour’ strategy, in 
addition to that, construction of FIS structure under the strategy and objective formulation 
of fuzzy if–then rules via the FR method offer a high degree of interpretability as well as 
portability to the model.

7  Conclusion

The FES or expert knowledge formulated under fuzzy logic has been regarded as an ideal 
approach, which can circumvent the deficiencies inherent to qualitative and quantitative 
landslide susceptibility mapping techniques. Although, the existing FES models in land-
slide literature suffer from subjectivity, low grade of interpretability as well as portability. 
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Owing to these shortcomings, the research presented in this paper primarily discusses the 
development of an improved FES model and presents a comparative analysis against an 
existing FES model, MamLand and conventional FSP. The improved FES model, a fusion 
of Mamdani-FIS and FR method is based on a strategy, ‘mean and neighbour’. The ‘mean 
and neighbour’ strategy explains the construction of FIS structure in three aspects, choice 
of MFs and physical representation of causative factors, overlap between MFs for optimum 
fuzziness between categories and interpretability. In addition to that, the improved FES 
model uses the FR method to estimate the significance of categories of causative factors 
in order to formulate the required fuzzy if–then rules objectively. The improved FES was 
executed along with FSP and MamLand for landslide susceptibility mapping of Mussoorie 
Township, Uttarakhand, India on mesoscale. A total of 12 LSMs have been prepared for 
the study area through three different models. The LSM-IX (BG), the outcome of improved 
FES model found to be in better agreement with all validation exercises compared to 
other LSMs. Based on validation and comparative analysis, it can be concluded that the 
improved FES introduced in this paper is capable of diminishing shortcomings associated 
with existing FES models and more effective than conventional FSP. The LSM-IX will 
be of great help to the Municipality Authority of Mussoorie and town planners to choose 
future developmental practices on safer slopes as well as to adopt suitable control measures 
and environmental regeneration schemes such as afforestation, banning of quarries on sen-
sitive slopes in time.
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