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Abstract
The recognition of landslides and making their inventory map are considered to be urgent 
tasks not only for damage estimation but also for planning rescue and restoration activities. 
Owing to the capability of synthetic aperture radar (SAR) for day-and-night and all-weather 
imaging, various studies utilizing SAR data for landslide detection have been reported to 
date. Among the detection methods utilizing SAR data, those based on height differences 
accompanying landslides are attractive and should be further improved, since they can 
directly contribute to damage estimation through a volumetric estimation of landslides. In 
this context, we propose in this paper a landslide detection method utilizing height differ-
ences derived from pre- and post-event SAR digital elevation models (DEMs) combined 
with amplitude differences. The proposed method was applied to the landslides triggered 
by the 2016 Kumamoto earthquake. The application results demonstrate that SAR DEMs 
with a high altitudinal resolution can improve the detection ability and that the incorpora-
tion of the amplitude differences is effective for decreasing the number of false detections. 
Although the reliability of the proposed method is deemed moderate when evaluated on the 
basis of the kappa coefficients derived through an accuracy assessment, most of the outliers 
are correctly filtered out and large- and medium-scale landslides are detected. Therefore, 
the inventory maps derived from the proposed method are thought to be effective at the 
initial stage of planning rescue and restoration activities.
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1  Introduction

According to Cruden (1991), a landslide is defined as the mass movement of rock, earth 
or debris down a slope. Landslides can be induced by natural events and human activi-
ties such as heavy rainfall, earthquakes, deforestation and the excavation of slopes (Dai 
et al. 2002). Landslides wreak havoc on human lives and infrastructures in mountainous 
areas (Dai et al. 2002; Metternicht et al. 2005; Scaioni et al. 2014); thus, the recognition 
of landslides and making their inventory map are urgent tasks not only to support damage 
estimation but also to plan rescue and restoration activities (Plank 2014; Plank et al. 2016). 
Owing to its capability of wide-area observation, remote sensing based on spaceborne and 
airborne sensors is a powerful tool for performing this task. Landslide recognition has been 
performed using various remotely sensed data such as optical passive sensor data, thermal 
infrared data, laser scanning data and synthetic aperture radar (SAR) data (Scaioni et al. 
2014).

SAR data hold a unique position among these remotely sensed data owing to the capa-
bility of SAR for day-and-night and all-weather imaging. The processed SAR data are 
expressed as a complex image that consists of amplitude and phase at each resolution pixel 
(Oliver and Shaun 2004). The amplitude data alone can be directory utilized for visual 
interpretation. On the other hand, the phase data are often combined with two or more 
SAR data acquired from similar orbits to derive a digital elevation model (DEM) through 
the interferometric SAR (InSAR) technique, as well as to derive minute changes in the 
slant range direction through the differential InSAR (DInSAR) technique (Lu et al. 2010). 
Moreover, polarimetric SAR data have been studied for terrain and land use classification. 
Various studies utilizing SAR data for landslide detection and characterization have been 
reported, even for these ten years (e.g., Cao et al. 2008; Liao and Shen 2009; Christophe 
et al. 2010; Dong et al. 2011; Kawamura et al. 2011; Furuta and Sawada 2013; Zhao et al. 
2013; Liu and Yamazaki 2015; Shibayama et al. 2015; Tang et al. 2015; Plank et al. 2016).

These methods can be roughly classified into two groups: those dependent on the coher-
ency of coevent SAR data and those that are not. One of the advantages of the former is 
that they can treat surface changes or movements smaller than the wavelength of a SAR 
system. For example, Zhao et al. (2013) analyzed the L-band Advanced Observing Satel-
lite (ALOS) Phased Array-type L-band SAR (PALSAR) using the short baseline subset 
(SBAS) InSAR. They detected pre-rockslide movement of less than 50 cm within 184 days 
for the 2009 Jiweshan rockslide in China. However, the requirement of coherency between 
coevent data imposes a severe constraint on their spatial and temporal baselines. On the 
other hand, for the latter methods, the constraint on the baselines is less rigorous, although 
the scale of the phenomena that they can treat depends on the spatial resolution of the SAR 
system, which generally becomes coarser than those of the coherency-based methods. For 
example, to detect landslides in combination with a slope map derived from an external 
DEM, Liu and Yamazaki (2015) analyzed and visually assessed the difference in polari-
metric backscattering coefficients for the coevent data obtained from different airborne 
L-band SAR sensors having a time lag of more than 10  years. Their research indicated 
that the coherency-independent methods have more chances of being applied to landslides 
detection than the coherency-dependent ones. Moreover, Plank et al. (2016) proposed and 
assessed quantitatively a landslide detection method that utilized high-resolution satellite 
optical imagery as the pre-event data and very high-resolution satellite SAR imagery as the 
post-event data.
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Now, we further classify the coherency-independent methods into two groups on the 
basis of their viewpoints: One viewpoint is the land cover change, and the other is the 
height change in association with landslides. The former methods assume that landslides 
replace vegetated areas with bare soil or rock. However, such a land cover change can 
be triggered not only by landslides but also by human activities such as the cultivation 
of flatlands. Thus, some previous studies involved attempts to filter out the detected land 
cover changes independent from landslides using a slope map calculated from an external 
DEM or a post-event SAR DEM (e.g., Cao et  al. 2008; Liu and Yamazaki 2015; Plank 
et al. 2016). On the other hand, the latter methods treat the height changes of landslides. 
Arturi et al. (2003) generated a post-event SAR DEM from the European Remote Sensing 
(ERS)-1 and ERS-2 tandem pairs and subtracted it from an external pre-event DEM. They 
mentioned that the DEM differences showed a good fit to landslide features qualitatively, 
although they also showed strong differences where the landslide did not produce evalu-
able effects. The methods utilizing the SAR DEM seem to be attractive since they may 
successively contribute to damage estimation through a volumetric estimation of landslides 
and thus to the planning of subsequent rescue and restoration activities. To improve the 
detection accuracy of landslides from the subtraction of pre- and post-event DEMs, the 
following two ideas can be pointed out. The first is to incorporate other factors given that 
the landslide detection methods based on land cover changes are often combined with a 
slope map. This would contribute to a decrease in the number of false detections. The sec-
ond is to utilize more accurate DEM datasets. For example, to generate a height change 
map for the 2009 Jiweshan rockslide, Zhao et al. (2013) generated a SAR DEM by stack-
ing several post-event ALOS InSAR data and then subtracted Shuttle Radar Topography 
Mission (SRTM) DEM from the obtained SAR DEM. They reported that the accuracy of 
their height change map is approximately 14 m. Tang et al. (2015) also generated a height 
change map and performed a volumetric estimation for the 2008 Wenjiagou landslide using 
SRTM and SAR DEM calculated from TerraSAR-X and TanDEM-X.

Considering the aforementioned two ideas, in this paper, we propose a landslide detec-
tion method utilizing height differences derived from pre- and post-event SAR DEM com-
bined with amplitude differences. The rest of this paper is organized as follows. In Sect. 2, 
we introduce a study event and datasets. The proposed method is described in Sect. 3. In 
Sect. 4, we demonstrate the proposed method and discuss the application results. Finally, 
conclusions are given in Sect. 5.

2 � Study area and datasets

A large earthquake, called the 2016 Kumamoto earthquake, occurred on April 16, 2016, at 
01:25 JST (Japanese standard time, JST = UTC + 9 h) in Kyusyu, Japan. The epicenter and 
magnitude of this earthquake were 32.8°N, 130.8°E and M7.3, respectively, as determined 
by the Japan Meteorological Agency (Yagi et al. 2016). Yagi et al. (2016) constructed a 
rupture process model of this earthquake. According to their model, the mainshock rupture 
mainly propagated northeastward from the epicenter and terminated near the southwest 
side of Aso volcano. A large number of landslides occurred because of this earthquake. 
In addition to field surveys, various observations such as aerial and satellite photographs 
and SAR data acquisition and aerial laser scanning were performed after this earthquake 
occurred.
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The National Institute of Information and Communications Technology (NICT) per-
formed SAR observation on April 17, 2016, the day after the earthquake occurred, using 
the airborne X-band SAR called Pi-SAR2, which has been developed by NICT since 2006 
(Nadai et  al. 2009). Pi-SAR2 is a left-side-looking SAR having the capabilities of full 
polarimetric and cross- and/or along-track interferometric observations (XTI and/or ATI) 
simultaneously (Kojima et al. 2014). Among the operation modes of Pi-SAR2, the finest 
spatial resolution of 0.3 m is achieved when operated in modes 0 and 1. In these opera-
tion modes, the center frequency and bandwidth are 9.55 GHz and 500 MHz, respectively. 
Pi-SAR2 collects XTI data using the main and subantennas suspended separately at the 
base of the left and right wings of a Gulfstream II aircraft. The baseline length for XTI is 
approximately 2.6 m, and the standard deviation of height measurement of XTI was esti-
mated as 2.4 m using corner reflectors on a runway in a preliminary evaluation (Kobayashi 
et al. 2012).

NICT performed coincidentally a Pi-SAR2 observation at Aso volcano and its sur-
roundings on December 5, 2015, approximately 4  months before the earthquake. The 
purpose of this observation at that time was to monitor the activity of Aso volcano. 
In response to the existence of this pre-earthquake observation, some of the platform 
orbits on April 17, 2016, were set to follow the pre-earthquake observation that resulted 
in the acquisition of pre- and post-event SAR data pairs for the earthquake. The obser-
vation parameters of pre- and post-event data pairs analyzed in this paper are listed in 
Table 1. The area of each scene is 2 km in the ground range and 1 km in the azimuth 
direction. Owing to the perturbation of platform orbits, some parameters such as plat-
form altitude and baseline between pre- and post-event data differ for each scene, even 
though these scenes were cut from the same stripmaps. Thus, the parameters are listed 
for each scene in Table 1.

Figure 1 shows the aerial photographs corresponding to the scenes listed in Table 1. 
These photographs were taken by the Geospatial Information Authority of Japan (GSI) 
on April 16, 2016, one day before the Pi-SAR2 observation. In this paper, as the truth 
data, we adopted the polygon data for landslides based on the visual interpretation 
of photograph data released by the National Research Institute for Earth Science and 

Table 1   Observation parameters for pre- and post-event data

Parameters Scene A Scene B Scene C
Pre-event Post-event Pre-event Post-event Pre-event Post-event

Observation ID 2015120515 2016041709 2015120515 2016041709 2015120515 2016041709
Platform altitude 8945.9 m 8993.5 m 8948.0 m 8992.5 m 8946.3 m 8989.3 m
Platform azimuth 

angle -89.9 ˚ -89.9 ˚ -90.0 ˚ -90.0 ˚ -90.0 ˚ -90.0 ˚

Incident angle at 
nearest range 50.8 ˚ 50.2 ˚ 37.9 ˚ 37.1 ˚ 36.1 ˚ 35.2 ˚

Incident angle at 
farthest range 55.4 ˚ 54.9 ˚ 45.1 ˚ 44.4 ˚ 43.6 ˚ 42.8 ˚

Baseline between 
pre- and post-event 191.6 m 186.9 m 183.7 m

Pixel number in 
slant range direction 8550 8485 7093 6981 6856 6739

Pixel number in 
azimuth direction 4000

Pixel spacing 0.19 m in slant range × 0.25 m in azimuth directions

Note that the platform altitude is geoid-height corrected values
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Disaster Resilience (NIED.) The landslide features in each scene are briefly summa-
rized as follows: In Scene A (Fig. 1a), no landslides are identified in the truth data. In 
Scene B (Fig. 1b), a large-scale landslide, indicated by the red arrow, occurred in the 
upper left region, and slope failures occurred along the gullies from north to south and 
from west to east in the center region. In Scene C (Fig. 1c), three medium-scale land-
slides, indicated by the blue arrows, occurred in the middle region and some small-scale 
landslides occurred mainly in the upper left region. The proposed method described in 
the next section is applied to these scenes.

3 � Methods

The schematic images of the proposed method are shown in Fig. 2. The datasets required 
for this method are single-look slant range complex (SSC) pairs for XTI processing in pre- 
and post-events. Each pair consists of master and slave data collected in the vertical polari-
zation and referred to as VVm and VVs, respectively. The pulses were transmitted from 
the main antenna for both the master and slave data. On the other hand, the backscattered 
signals were received at the main antenna for the master data and at the subantenna for 
the slave data. Namely, the SSC pairs utilized in the proposed method are the dataset for 
bistatic XTI. The proposed methods can be divided into four parts: the data processing 
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Fig. 1   Aerial photographs taken by GSI on April 16, 2016, one day before Pi-SAR2 observation. The red 
and blue arrows are added to indicate the landslides regarded as large- and medium-scale ones in this paper: 
a Scene A; b Scene B; c Scene C
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for each pre- and post-event data, the coregistration processing between pre- and post-
event data, difference processing and fusion processing. In the rest of this section, we first 
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Fig. 2   Schematic images of the proposed method: a processing for generation of amplitude and height dif-
ference maps, b fusion processing for landslide detection



491Natural Hazards (2019) 95:485–503	

1 3

introduce the expected features of landslides in the height and amplitude differences and 
then describe each processing part. Note that the window sizes for coherence, median and 
mean filtering are set to be 9 × 9 pixels that corresponds to 1.71 m in slant range × 2.25 m 
in azimuth directions. Including these window sizes, the value of parameters and thresh-
olds required for the proposed method was empirically chosen to give satisfactory pre-
experiment results.

3.1 � Landslide features on amplitude and height difference maps

The expected features of landslides on the height and amplitude difference maps are as 
follows: At the source area, the ground is gouged, and thereby, the height decreases. 
At the same time, land cover objects such as trees are scoured away. This results in the 
increase in the amplitude of vertical polarization since the land cover change from veg-
etation to bare soil or rock makes the surface scattering dominant. In addition, steep 
slopes might form, resulting in the formation of radar shadow areas where tree canopies 
were observed in the pre-event data. Therefore, the amplitude can increase or decrease. 
On the other hand, at the deposit area, flowed-in soil or rock is heaped on the former land 
cover objects. Then, the height increases and the amplitude also increases. On the basis 
of the consideration mentioned above, the landslide features are summarized into the 
following three patterns: The height decreases and the amplitude increases, the height 
decreases and the amplitude also decreases, and the height increases and the amplitude 
also increases. The proposed method is designed to extract these three patterns. Note that 
meaningful information cannot be extracted from low-coherence areas in both pre- and 
post-event data. Thus, we define the coherence threshold of 0.8 to exclude these areas 
from landslide detection.

3.2 � Data processing for each pre‑ and post‑event data

First, pre- and post-event raw data are processed into the SSC data pairs aligned in the 
same azimuth direction as performed by Kobayashi et al. (2016). This alignment reduces 
the rotational component of the affine conversion so that we can effectively narrow down 
the extent of the search area for tie points. Next, the interferogram and VVm amplitude 
image in the logarithmic scale are processed for each pre- and post-event. The coherence 
map, a by-product of InSAR processing, is utilized for quality validation in the latter pro-
cesses. After the interferogram generation, flat-earth phase removal and phase unwrapping 
are performed. In this study, the minimum Lp-norm algorithm (Ghiglia and Pritt 1998) is 
adopted for the phase unwrapping. The height values are converted from the unwrapped 
phase differences (Richards 2007):

where h(p) and ϕ(p) are the true height and phase difference at point p, respectively. The 
constants h0 and ϕ0 are used to convert the relative height into the true one; as expressed 
in Eq. (1), when ϕ(p) is equal to ϕ0, h(p) becomes h0. The coefficient of αIF(p) is the inter-
ferometric scale factor (Richards 2007) expressed as

(1)h(p) = h0 + �IF(p)
(

�(p) − �0

)

,

(2)�IF(p) =
�H cot�(p)

n�B sin�(p)
,
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where λ, H, B and ψ(p) are the wavelength of a SAR system, the platform altitude, the 
baseline length and the depression angle at point p, respectively. Note that the baseline is 
assumed to be horizontally located in Eq. (2). The constant n in the denominator depends 
on the form of XTI observation. As mentioned above, the SSC pairs utilized in the pro-
posed method are for bistatic XTI so that n is equal to 2. The phase difference values of the 
interferogram are doubtful in the low-coherence areas (Massonnet and Feigl 1998) such as 
the radar shadows, roads and water surfaces. Thus, we perform linear interpolation for the 
height values in such areas along the slant range direction.

3.3 � Coregistration between pre‑ and post‑event data

A coregistration process is required to derive any differences between pre- and post-event 
data. The coregistration processing in the proposed method is based on the algorithm reported 
by Tobita et al. (1999). Their algorithm estimates the affine coefficients between amplitude 
images based on the magnitude of cross-correlation (CC) around the automatically selected 
tie points. One of the advantages of their method is the refinement of the matching accuracy 
through the iterative elimination of erroneous tie points. Generally, the variation of incident 
angle within the swath width is not negligible for airborne SARs. Thus, in addition to the nor-
mal affine conversion, our coregistration process takes the distortion caused by this incident 
angle variation into consideration. For the latter processes, we exclude tie points having a low 
magnitude of the zero-mean normalized CC (ZNCC) coefficient. The ZNCC coefficient of z(x, 
y) at the position of p(x, y) between the amplitude image of Am(x, y) and the another one of 
As(x, y) shifted by (x′, y′) is expressed as

where M and N define pixel numbers of window and Am and As are amplitude values, 
respectively. Am and As are averaged amplitude values defined as

and

As performed in Tobita et al. (1999), the coefficient is refined through FFT over-sampling. 
After estimating the transformation coefficients between the pre- and post-event amplitude 
images, we transform the pre-event products. The bicubic interpolation method is used in 
this transformation. Note that the areas are excluded for landslide detection in the latter 
processes where the bicubic interpolation cannot be applied, for example, neighborhoods 
to the edges of an image.

(3)

z(x, y) =

∑x+M

i=x−M

∑y+N

j=y−N

�

Am(i, j) − Am

��

As

�

i + x�, j + y�
�

− As

�

�

∑x+M

i=x−M

∑y+N

j=y−N

�

Am(i, j) − Am

�2
�

∑x+M

i=x−M

∑y+N

j=y−N

�

As(i + x�, j + y�) − As

�2

,

(4a)Am =
1

(2M + 1)(2N + 1)

x+M
∑

i=x−M

y+N
∑

j=y−N

Am(i, j)

(4b)As =
1

(2M + 1)(2N + 1)

x+M
∑

i=x−M

y+N
∑

j=y−N

As

(

i + x�, j + y�
)

.
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3.4 � Difference processing

In this step, we estimate the offsets in the relative height maps between the pre- and post-
events as well as in the amplitude images at first. Figure 3 shows the amplitude images of 
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Fig. 3   Amplitude images of VVm, flat-earth phase removed interferograms and difference maps in the pre- 
and post-events for Scene B. In the difference maps, values are derived from subtracting the pre-event val-
ues from the post-event ones and black-colored areas indicate those excluded from landslide detection. a 
Amplitude image in the pre-event, b amplitude image in the post-event, c amplitude difference map, d inter-
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VVm, flat-earth phase removed interferograms and difference maps in the pre- and post-events 
for Scene B as reference. On the basis of Eq. (1), the height maps in the pre- and post-events 
are expressed as

and

where the subscripts pre and post denote the pre-event and post-event, respectively. Let 
hpre(p) be 0 when ϕpre(p) is equal to 0, and then, Eq. (5a) is modified to

This approximation yields an additional gradient along the slant range and prevents us 
from deriving the true height map in the pre-event. However, this is a good approximation 
because what we need to estimate is not the absolute height maps in both the pre- and post-
events, but the relative height changes between them. The height difference at point p can 
be derived by subtracting Eqs. (5c) from (5b):

On the basis of Eq. (6), when hdif(p) is equal to 0, we can estimate ϕ0,post as

As expressed in Eq.  (6), it is necessary to determine ϕ0,post to estimate hdif(p). Now, the 
problem is to seek the areas where the condition that hdif(p) is equal to 0 are satisfied. 
When taking the possibility of speckle noise contamination into consideration, it is inex-
pedient to calculate Eq. (7) at a certain point. However, the estimation of ϕ0,post from the 
whole area still seems insufficient. The reason is that hdif(p) is not equal to 0 in the areas 
where landslides occurred and the vegetation changed seasonally. In this context, we utilize 
the values at pixels showing a high coherence around the resultant tie points. As men-
tioned in Sect. 3.3, we exclude tie point candidates having a low ZNCC coefficient. This 
is because we can expect a high ZNCC coefficient at the areas where no changes occurred 
between the pre- and post-events. On the basis of this expectation, we estimate ϕ0,post by 
averaging the right side of Eq. (7) around the tie points mentioned above. In addition to the 
phase offset, the amplitude offset is estimated in the same manner. Finally, through median 
and mean filtering, we acquire the coregistrated and offset-removed difference maps of 
height and amplitude. Note that the areas are excluded for landslide detection where the 
relative height is not obtained in the pre- or post-event.

3.5 � Fusion processing

Figure 4 shows the histograms of the amplitude (Fig. 4a) and height differences (Fig. 4b) 
for Scene A where no landslides have been identified in the truth data. These differences 

(5a)hpre(p) − h0,pre = �IF,pre(p)
(

�pre(p) − �0,pre

)

(5b)hpost(p) − h0,post = �IF,post(p)
(

�post(p) − �0,post

)

,

(5c)hpre(p) = �IF,pre(p)�pre(p).

(6)
hdif(p) = �IF,post(p)

(

�post(p) − �0,post

)

− �IF,pre(p)�pre(p), hdif(p) ≡
(

hpost(p) − h0,post
)

− hpre(p),

(7)�0,post = �post(p) −
�IF,pre(p)

�IF,post(p)
�pre(p).
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are derived from subtracting the pre-event values from the post-event ones. The curve in 
each panel corresponds to the fitted normal distribution function. As shown in Fig. 4a, 
b, each histogram is well fitted with the normal distribution function. The mean and 
standard deviation for the amplitude difference map are approximately 0.6  dB and 
1.9  dB, while those for the height difference map are 0.2  m and 2.0  m, respectively. 
These indicate that the offset estimation method described in Sect. 3.4 works well. The 
width and offset from the center of each histogram indicate the limitation of differences 
that we can detect using the proposed method and/or the Pi-SAR2 system. On the basis 
of the mean and standard deviation values, we utilize only the pixels having absolute 
values greater than the thresholds. The threshold for amplitude is 5  dB and that for 
height is 5 m.

To fuse the height and amplitude differences, we calculate the ZNCC coefficient 
between them in the proposed method. Thresholding based on the ZNCC coefficient 
is expected to be effective for noise reduction, since there is no need for the unchanged 
areas to correlate with each other. To do so, the height and amplitude difference maps 
are binarized using the thresholds mentioned above; then, the ZNCC coefficients are 
calculated for the three patterns described in Sect. 3.1. The pixels having a ZNCC coef-
ficient of 0.2 and more are regarded as the candidate areas of landslides. The candidates 
are then segmented into polygons based on the region-growing method after performing 
opening and closing processes. Finally, as performed by Liu and Yamazaki (2015) and 
Plank et al. (2016), small blocks less than 400 m2 are excluded.

4 � Results and discussion

In this section, we describe and discuss the results of the application of the proposed 
method to the scenes listed in Table 1.

4.1 � Amplitude differences

Figure 5 shows the amplitude difference maps for Scenes A, B and C. Red and blue indi-
cate the points at which the amplitude increased and decreased, respectively. The areas 

Fig. 4   Histograms of difference at Scene A. Mean and standard deviation values resulted from fitting the 
normal distribution curve are indicated at the top of each panel: a amplitude difference, b height difference
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excluded from the landslide detection are colored white. The landslides in Fig. 1 can be 
recognized in Fig. 5 as aggregations of the red or blue points. Even the small-scale land-
slides can be recognized, for example, in the upper left region of Fig. 5c. The large-scale 
landslide in the upper left region of Fig. 1b is clearly colored red in Fig. 5b. This is due 
to the surface changes from the vegetated land cover into the bare soil or rock, and this is 
consistent with the assumption of landslide detection methods based on the polarization 
changes (e.g., Cao et al. 2008; Plank et al. 2016). It is worth noting that some landslides are 
indicated by the red and blue areas close to each other, for example, the landslides at the 
center and left lower parts of Fig. 5c. From the comparison between the aerial photograph 
in Fig. 1c with Fig. 5c, it can be seen that the blue areas are located at a higher altitude 
than the red ones. This results from the steep slope formation accompanying the land cover 
objects such as trees being scoured away. The blue regions correspond to the radar shad-
ows. In addition to the areas where the landslides occurred, red and blue points are also 
seen at the areas where no landslides are identified, remarkably in the lower part of Fig. 5a, 
b. By a visual interpretation of Fig. 1a, b, we can identify these areas as fields for cultiva-
tion or residential areas. As listed in Table 1, the pre-event data were acquired in Decem-
ber, whereas the post-event data were acquired in April. Thus, some parts of them result 
from a difference in the growth stage of cultivated crops. On the other hand, the gullet in 
Fig. 5b becomes wider owing to the slope failures accompanying the earthquake. This sug-
gests that the flat areas in the pre-event have changed into slopes or walls. Thus, it can be 
understood that the filtering out of outliers based on slope angles derived from a pre-event 
DEM does not always work well. This fact is consistent with the claim of Lu et al. (2010) 
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Fig. 5   Amplitude difference maps. Areas for analysis are colored gray. The color code of amplitude differ-
ences is shown in the legend at the upper right: a Scene A, b Scene B, c Scene C
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that a timely DEM can be critical for hazard assessments. At the same time, this fact also 
indicates the importance of post-event DEM acquisition. The datasets described in Sect. 2 
include both the pre- and post-event DEMs obtained from the bistatic XTI so that such a 
slope failure can be detected in this study.

4.2 � Height differences

Figure  6 shows the height difference maps for Scenes A, B and C. As is the case in 
Fig.  5, red and blue indicate the points at which the height increased and decreased, 
respectively. In Fig.  6, the areas above and below the height thresholds of ± 20  m are 
highlighted in yellow and light blue, respectively. The threshold of 20 m corresponds to 
the lower limit for landslide detection adopted by Arturi et al. (2003). As seen in Fig. 6, 
the landslides analyzed in this paper become difficult to identify except for a few cases, 
if we adopt the threshold of 20 m. This fact supports our idea described in Sect. 1 that 
accurate DEM datasets improve the accuracy of a DEM-based landslide detection. How-
ever, the small-scale landslides seen in Fig. 5 cannot be seen in Fig. 6. This fact implies 
that the height changes accompanying small-scale landslides are below the threshold of 
5 m and that this threshold may still be insufficient. We discuss this matter in the last part 
of this section.

Except for small-scale landslides, the areas of the landslides as well as the slope fail-
ures are colored in Fig. 6. Most areas are colored blue. The red-colored area that stands 
out is at the middle part in Fig. 6b at the most. From a comparison between Figs. 6b and 
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Fig. 6   Height difference maps. Areas for analysis are colored gray. The color code of height differences is 
shown in the legend at the upper right: a Scene A, b Scene B, c Scene C
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1b, this red-colored area can be recognized as a piled up area of flowed-in soil. However, 
we can find no such area around the gullet. This might be due to the existence of radar 
shadows. The cultivation areas, which are prominent in Fig. 5a, b, are scarcely colored in 
Fig. 6a, b. In addition, although the residential areas are colored in spots, the coherence 
between the amplitude and the height difference maps appears to be not so high.

4.3 � Fused differences

A common feature that can be seen in Figs. 5 and 6 is that the colored pixels are scat-
tered throughout the entire scenes. One of the reasons is the existence of outliers that 
cannot be removed by the median and mean filtering. In addition, for the height differ-
ence maps, the baseline errors, such as the length and angle, are considerable because we 
estimate the phase offset between the pre- and post-event interferograms, but the base-
line errors are not estimated in the proposed method. To eliminate the remaining outli-
ers, we fuse the height and amplitude difference maps with the procedure described in 
Sect. 3.5. Figure 7 shows the fused maps for Scenes A, B and C. Black dots are candi-
dates of landslides having a ZNCC coefficient above the threshold. Most of the cultiva-
tion and residential areas are filtered out by performing the ZNCC calculation. In addi-
tion, the number of mottled outliers is reduced considerably. These facts support our idea 
described in Sect. 1 that the incorporation of other factors into a DEM-based landslide 
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Fig. 7   Candidates of landslides derived through calculation of ZNCC between amplitude and height dif-
ference maps shown in Figs. 4 and 5. Candidates are colored black. Areas for analysis are colored gray: a 
Scene A, b Scene B, c Scene C
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detection improves the detection accuracy. Figure 8 shows the final product of the pro-
posed method for Scenes A, B and C. To obtain these products, the candidates in Fig. 7 
are segmented into polygons after the opening and closing processes and the area-based 
noise reduction, as described in Sect. 3.5.

4.4 � Accuracy assessment

To perform an accuracy assessment, we compare the detected landslides shown in 
Fig. 8 with the polygon data of landslides released by NIED. The NIED polygon data 
are based on visual photograph data interpretation. For comparison, we orthorectify the 
detected landslides shown in Fig. 8 using the external DEM of Fundamental Geospatial 
Data provided by GSI and then polygonize them. Note that treating very small polygons 
is difficult in the accuracy assessment; thus, we also apply the same opening and closing 
processes to the excluded areas shown as white, which are equivalent to the gray areas 
in Figs.  5, 6, 7 and 8. Figure 9 shows the comparison between the detected landslide 
polygons and the truth ones. The areas of true positive, false positive, false negative 
and true negative are shown in different colors, as indicated by the legend at the bot-
tom. Table 2 shows the confusion matrices with the overall accuracies, producer’s and 
user’s ones and the kappa coefficients. The confusion matrix for Scene A is not shown 
because no landslides are identified in the truth data. The user’s accuracy corresponds 
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Fig. 8   Results of landslide detection. Detected landslides are colored black. Areas for analysis are colored 
gray: a Scene A, b Scene B, c Scene C
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Fig. 9   Comparison between the truth data and detection maps of landslide. The color code is shown in the 
legend at the bottom: a Scene A, b Scene B, c Scene C

Table 2   Confusion matrices with the overall, producer’s and user’s accuracies and the kappa coefficient 
for Scenes B and C

Scene B
Detected (ha)

Total
Producer’s 

accuracy (%)Landslides Others

Actual (ha) Landslides 20.4 9.1 29.5 69
Others 10.1 112.5 122.6 92

Total 30.5 121.6 152.1
User’s accuracy (%) 67 93
Overall accuracy (%) 87 Kappa coefficient 0.60

Scene C
Detected (ha)

Total
Producer’s 

accuracy (%)Landslides Others

Actual (ha) Landslides 2.7 4.7 7.4 36
Others 1.0 118.2 119.2 99

Total 3.7 122.9 126.6
User’s accuracy (%) 72 96
Overall accuracy (%) 95 Kappa coefficient 0.46
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to the ratio of correctly detected landslides to all the detected ones, while the producer’s 
accuracy corresponds to the ratio of detected landslides to the actual ones. The kappa 
coefficient is an index for comparing the observed reliability with the one obtained by 
chance. The closer the kappa coefficient is to 1, the more reliable the observed accuracy. 
Congalton (1991), for example, reviewed in detail the accuracy assessment using the 
confusion matrix. 

The overall accuracies and kappa coefficients for Scenes B and C are 87%, 0.60 and 
95%, 0.46, respectively. On the basis of these kappa coefficients, the reliability of the 
proposed method is evaluated as moderate. It is worth noting that the producer’s accu-
racy in Scene C is noticeably low. This is because of two reasons: One is that the small-
scale landslides are not detected, and the other is the imperfect detection of the medium-
scale landslides. The detected areas for medium-scale landslides are half of them at 
best, as seen in Fig. 9c. As shown in Fig. 6c, it can be seen that these landslides are not 
properly identified in the height difference map. This means that the height difference of 
a part of medium-scale landslides is measured as not greater than the threshold of 5 m 
in addition to the small-scale ones. The following two possibilities can be considered. 
One is that the height difference is actually not greater than the threshold. The height 
can decrease when the land cover objects such as trees are scoured away, while it can 
increase when flowed-in soil or rock accumulates. Their synergistic effects result in the 
decrease in the magnitude of height changes. The other reason is possibly the limita-
tion of height measurement accuracy. The baseline errors are not estimated, the offset 
phase of ϕ0,pre in Eq. (5a) is enforced to be 0, and we only estimate the offsets independ-
ent from the pixel positions in the proposed method, as mentioned in Sect. 3.4. Thus, 
the estimated height differences would contain systematic errors depending on the slant 
range position and/or the elevation height. These systematic errors might cause under-
estimation to some extent. Through the comparison between the measured height differ-
ences and truth data, these two possibilities should be discriminated in future studies.

5 � Conclusions

The recognition of landslides and making their inventory map are urgent tasks not 
only to support damage estimation but also for planning rescue and restoration activi-
ties (Plank 2014; Plank et  al. 2016). To date, various studies utilizing SAR data for 
landslide detection have been reported. Among the methods utilizing SAR data, those 
based on height differences accompanying landslides seem attractive since they may 
successively contribute to damage estimation through a volumetric estimation of 
landslides. In this context, we propose a landslide detection method utilizing height 
differences derived from pre- and post-event Pi-SAR2 DEMs combined with ampli-
tude differences. The proposed method is applied to the landslides accompanying the 
2016 Kumamoto earthquake, and the accuracy of the detection result is assessed using 
truth data. Through the application and accuracy assessment, it is demonstrated that 
the detection ability improves with the utilization of SAR DEMs with a higher alti-
tudinal resolution. In addition, it is demonstrated that the incorporation of amplitude 
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differences is effective for reducing the number of outliers that appear in the height 
difference map. The overall accuracy and kappa coefficient for the two scenes includ-
ing landslides are 87%, 0.60 and 95%, 0.46, respectively. Although the reliability of 
the proposed method is moderate, as evaluated on the basis of these kappa coefficients, 
most of the cultivation and residential areas are correctly filtered out, and large- and 
medium-scale landslides are detected so that the inventory maps derived from the pro-
posed method should be effective at the initial stage of planning rescue and restoration 
activities. The reasons why the reliability is not good but only moderate are that small-
scale landslides cannot be detected and medium-scale ones are imperfectly detected. 
There are two possible reasons for this. One is that the height differences in these areas 
are actually not greater than the 5  m threshold. The other is that they are underesti-
mated owing to problems of the estimation method itself. To improve the landslide 
detection accuracy of the proposed method, these two possibilities should be discrimi-
nated in future studies though the comparison between the estimated height changes 
with truth data.
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