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Abstract
Flood routing is one of the methods of flood forecasting in rivers to manage and control the

flood. Today, the new technique of using the intelligent models is widely reported in

various fields of science and engineering, particularly water resources. In this research,

flood routing was studied using artificial neural network (ANN) and adaptive neuro-fuzzy

inference system (ANFIS) models. By using the bat algorithm and imperialist competitive

algorithm (ICA), the structure of ANN models was optimized. This process was repeated

for combining genetic algorithm and particle swarm optimization algorithm with the

ANFIS model. Four input patterns were used for network training, which It-7, It-6, Qt-1,

Qt-2 pattern was the best pattern for network input according to the evaluation test. Results

of routing of 8 flood hydrographs (6 hydrographs for network training and 2 hydrographs

for network testing) indicated that the ANN–ICA predicted the hydrograph volume, peak

flow and flood time more accurately. The statistical analyses at the training stage were:

RMSE = 0.33, MARE = 0.32, SI = 0.05, BIAS = 0.18 and at the testing stage were: RMSE

= 0.3, MARE = 0.32, SI = 0.04, BIAS = 0.08. Also, according to the sensitivity analysis,

It-6 has the highest impact on flood discharge. Finally, the flood hydrograph was predicted

for a return period of 10,000 years.
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1 Introduction

Any water flow, regardless of its causative factor, is considered as flood when discharge in

the river is higher than normal and the flow of water exceeds the natural banks and covers

surrounding lands. Floods are one of the most important natural phenomena that cause a lot

of damages to the world and countries pay a lot of costs annually. Flood routing is one of

the most important engineering techniques for flood control (Wright 2000; Birkland et al.

2003; Brody et al. 2007; Chan 2012; Floater et al. 2014). Rainfall and hydrological

characteristics of the basin are important in flood routing problems and factors such as

previous rainfall, soil permeability and land gradient play a key role for a rainfall to cause

flood occurrence at a certain period (Nguyen and Chua 2012). Today, one of the most vital

concerns about rivers is their flood events. Forecasting is possible with ascent and descent

of river hydrographs at a certain station. This method can be analyzed by flood routing

technique.

Artificial neural network (ANN) has been successfully applied in many fields, including

water resources. Recent studies have indicated that ANN can be an alternative to modeling

the rainfall-runoff process and prediction of inflow to a dam reservoir (Dawson and Wilby

1998; Maier and Dandy 2000; Govindaraju and Rao 2000; Kisi 2004; Kumar et al. 2005;

Mutlu et al. 2008; Zadeh et al. 2010; Kisi et al. 2012).

There are various methods for flood routing. Dynamic wave method is one of the most

widely used. Using dynamic wave method requires cross-sectional mapping and hydro-

metric data. Thus, using this method is costly, time-consuming and sometimes impossible

due to the unavailability of enough relevant data. Thus, studying artificial intelligence

techniques is felt more than ever.

In recent decades, the meta-heuristic algorithms such as GA, ICA, PSO and Harmony

Search (HS) can easily solve optimization problems for approximating the global optimum

of a given function (Atashpaz-Gargari and Lucas 2007). Most of the optimization algo-

rithms such as GA, simulated annealing and PSO have been developed based on biological

intelligence. But the ICA was based on the human intelligence structure and is more

accurate in many issues. The BA is based on the bat’s characteristics and can solve

nonlinear problems (Yang 2010).

Kuo et al. (2001) stated in a study that GA provides more accurate results for opti-

mization of the neural network. Aksoy and Dahamshed (2009) applied ARIMAX time-

series model and PREVIS model to predict 1–7 days flow in the spring season in Chute-du-

Daibale (an area of 9700 km2, located in northern Canada) for reservoir operation. They

compared the performance of ARIMAX and PREVIS conceptual models to the ANN

model. Results indicated that the ANN model is highly capable of prediction of river flow.

Khatibi et al. (2011) compared three artificial intelligence methods [ANN, ANFIS and

genetic programming (GP)] for flood routing. They concluded that GP provided better

results compared to other methods. Several different networks have been used to predict

and analyze rainfall-runoff process (Nourani et al. 2011), to predict flood flow (Dawson

et al. 2006) and route the floods (Barati 2018).

Barati et al. (2012) did a comprehensive analysis of flood decomposition using dynamic

wave method and sensitivity analysis of the parameters. Results showed that errors in the

input parameters (such as low values of Manning roughness coefficient and/or steep bed

slopes) are very significant in the characteristics of design hydrograph. Barati et al. (2013)

performed flood routing for the Karun River using hourly and daily data and the Musk-

ingum-Cunge method. Then, the results were compared to dynamic wave method.
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Bozorg-Haddad et al. (2014) addressed the optimization of reservoir systems using BA

and GA and showed that BA performed better in optimizing reservoir systems. Nikoo et al.

(2016) studied flood routing in the Karun River using feed forward (FF), multilayer per-

ceptron (MLP) and radial basis function (RBF) models. Input and output data were used to

determine the effective delay time. The structure of artificial neural network models was

optimized in terms of the number of nodes in the hidden layer using GA.

The aim of present study was to apply different meta-heuristic algorithms such as GA,

PSO, BA and ICA as well as combinations (hybrids) of these algorithms with ANN and

ANFIS for flood routing and estimation of the flood volume. In addition, flood hydrograph

was estimated for 10,000-year return period using the best obtained hybrid algorithm.

2 Methodology

2.1 Case study

In this study, hydrometric data of two stations of Pir Soleiman and Kaleh Choub were used

for routing the floods in Maryam Negar River, Kermanshah province, Iran. Pir Soleiman

station is located at latitude of 27�470 north and longitude of 42�340 east, and Kaleh Choub

station is located at latitude of 27�470 north and longitude of 35�340 east. The length of

Maryam Negar River between the above stations is 24 km. Figure 1a shows the Maryam

Negar River plan. Figure 1b is the location of this river in Iran.

In this study, 8 measured flood hydrographs at Kaleh Choub and Pir Soleiman stations

were used.

2.2 Flood hydrograph

Studies conducted on the eight measured flood hydrographs showed that some volume of

the inflow hydrograph is lost as transferred from Kaleh Choub to Pir Soleiman stations.

Given the geographic location, it is possible to consider the losses to be due to evaporation.

But decreasing water volume in downstream and peak discharge can be due to water

penetration in the substrate. Comparison of the measured hydrographs between the two

stations showed that in most cases, there is a base flow in Kaleh Choub station and there is

little base flow in Pir Soleiman station (Fig. 2).

2.3 Neural network

Artificial neural network (ANN) is one of the smart computing models. It is a unique black-

box concept, able to model complex systems with nonlinear pattern. It imitates the human

brain’s neural network (Bowden et al. 2005). ANN was first introduced by Rosenblatt as a

perceptron computational model (Rosenblatt 1958). Although ANN is not completely

comparable to the natural neuronal system, it has features that are unique in some appli-

cations such as pattern separation, or wherever there is need for learning with a linear or

nonlinear mapping (Coulibaly et al. 2000).

The structure of ANN is introduced by the relationship between nodes, determining the

communicational weights as well as activity function. The normal structure of an ANN

includes input layer, middle layers and output layer. The input layer is a transmitter layer;

in other words, it provides the data. The last layer or output layer includes the values

estimated by the network. The middle or hidden layers, which are composed of processor
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nodes, are data processing layers. The number of hidden layers and the number of nodes in

each hidden layer are determined by trial and error method. To train the ANN, the fol-

lowings are essential: selection and preprocessing steps, network architecture, training and

testing the model (Bishop 1995).

2.4 Adaptive neuro-fuzzy inference system (ANFIS)

The ANFIS model is a hybrid model of soft computing and neural networks. Considering

an example of this process for a fuzzy inference system (two inputs and one output), the

general structure and the five layers of ANFIS are described as follows:

First layer (input nodes): Each node in this layer represents the degree of membership to

an input.

Fig. 1 a Location of Maryamnegar River. b Map of study site location
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Fig. 2 Flood hydrograph
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Fig. 2 continued
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o1i ¼ lAiðQt�1Þ
o1i ¼ lBi�2ðQt�2Þ

ð1Þ

where Qt-1 and Qt-2 are the first and second inputs, and lAi and lBi-2 are the membership

functions of Ai and Bi of the fuzzy sets. In order to determine the membership degrees,

there are different membership functions: triangular, zodiac, Gaussian and bell-shaped.

Gaussian function has the advantage of being smooth and nonzero, and it has fewer

parameters; therefore, Gaussian function was used in this research.

Second layer (rule nodes): In this layer, the fuzzy operators are used to extract the power

of each fuzzy rule to the sum of the powers of calculated membership degrees in the first

layer:

O2
i ¼ wi ¼ lAiðQt�1ÞlBiðQt�2Þ ð2Þ

Third layer (average nodes): In this layer, the motivational ratio of each fuzzy rule to the

sum of the motivating powers of all the rules is determined as follows:

O3
i ¼ wi ¼

wi

w1 þ w2

ð3Þ

Fourth layer: In this layer, the values of the p, q and r parameters are optimized. In fact,

in this layer, all nodes are going compatible with a node function as follows:

O4
i ¼ wiðpiQt�1 þ qiQt�2 þ riÞ ð4Þ

where p, q and r are sum of the parameters and w is the output of this layer.

Fifth layer (output node): In this layer, all outputs are calculated as the sum of all input

signals as follows:

O5
i ¼

Xn

i¼1
wifi ¼

Pn
i¼1 wifiPn
i¼1 wi

ð5Þ

where p, q and r are sum of the parameters and w is the output of this layer.

2.5 Evolutionary calculations

Each engineering issue may have several different solutions; some of which are possible

and some impossible. The task of designers is to find the best possible solution from

different solutions. The set of possible answers make the design space in which we look for

the best answer. Usually, the classic search technique is used to solve nonlinear equations.

But the new optimization methods that are used today to solve many different issues are

simulated annealing (SA), ant colony algorithm (ACO), PSO, GA, HS, etc. (Pham et al.

2006; Sivanandam and Deepa 2007; Ramezani and Lotfi 2013; Salimi et al. 2018).

2.6 Bat algorithm (BA)

The BA is inspired by the trapping characteristics of small bats in search of bait. Small bats

can fly in absolute darkness, and by emitting sound and receiving it they can hunt their

prey. Development of this algorithm is based on three ideal rules:
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All bats use sound reflection to detect distances and they know the difference between

food and obstacle.

The bats fly randomly at speed mi in distance xi with fixed frequency fmin and different

wavelengths of k and loudness of A0 for hunting. Also, they can automatically set the

waves and the rate of their sent pulses (r [ [0, 1]) with respect to closeness of the prey.

Given that the volume may vary in many different ways, it is assumed that the loudness

of the sound varies between R0 to Rmin.

According to the above-mentioned rules, the xti location and the velocity of vit for each

ith virtual bat at t replication as well as the fi frequency are calculated as follows:

fi ¼ fmin þ ðfmax � fminÞh
vti ¼ vt�1

i þ ðxti � x�Þ
xti ¼ xt�1

i þ vti

ð6Þ

where h [ [- 1, 1] is a random vector with uniform distribution and x0 is the best current

location, which is selected in each replication after comparison with the position of the

virtual bats. Usually, the frequency f is considered with fmin = 0 and fmax = 100. In each

replication, in the local search, one of the answers is selected as the best answer, and the

new position of each bat is updated locally with random pace as follows:

xnew ¼ xold þ eAt
0 ð7Þ

where e [ [- 1,1] is a random number and At �At
i is the average bat loudness at t. In

addition, the loudness of Ai and the sent pulse rate r at each replication is updated as

follows:

Atþ1
i ¼ aAt

i ð8Þ

rtþ1
i ¼ r0i ½1� expð�ctÞ� ð9Þ

where a and c are fixed values for each 0 \ a [ 1 and r [ 0. Figure 3 depicts the

flowchart of BA.

2.7 Imperialist competitive algorithm (ICA)

Recently, a new algorithm called ICA was presented by Atashpaz-Gargari and Lucas

(2007), which is inspired by a social phenomenon instead of the nature. The inventors of

this algorithm analyzed the historical phenomenon of imperialism regarding a sociopo-

litical development of human societies. By mathematical modeling of this process, they

proposed a powerful optimization algorithm.

There are a number of countries in the ICA algorithm. In fact, these sets of countries are

random points within the search space. Then, a few stronger countries (more powerful) are

selected as imperialist. Therefore, powerful countries are considered as imperialist and

weak ones are colonies. At the beginning of the implementation of this algorithm, countries

are randomly generated and several powerful countries are considered as imperialist. Then,

other countries are randomly assigned to one of the imperialists. The number of each

imperialist is in accordance with its power.

In this algorithm, the imperialist countries attract colonial countries into their own

countries by applying assimilation policy (e.g., language and culture). This is modeled by
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the random movement of each colonial country toward its imperialist country in the search

space. As shown in Fig. 4a, the colonial country movement toward the imperialist country

is done at a and an angle of h, which are determined randomly. In the process of movement

of countries during the implementation of the algorithm, a colonial country may become

stronger than its colonizer. In this case, the colonial and colonizer countries will be

replaced. At each stage of the replication of the algorithm, there is a competition between

the imperialist countries. In this process, the weakest colony of the weakest imperialist will

randomly join one of the other imperialists. The probability of assigning this new colony to

each imperialist is proportional to their power. If an imperialist loses all of its colonies, it

will become colonized by another imperialist. The algorithm proceeds similarly so that

there is only one imperialist. In this case, all countries are colonies of an imperialist and the

algorithm ends. Of course, other stop conditions such as a certain process replication can

also be applied (Fig. 4b).

Fig. 3 Bat algorithm flowchart
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Fig. 4 a Imperialism competitive algorithm. b Imperialism competitive algorithm flowchart
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2.8 Combining GA and PSO

The GA is very sensitive to the initial population. In fact, the random nature of genetic

operators leads to this sensitivity. The dependency on the initial population is so that if the

population is not well-chosen, the algorithm cannot get converged at all. However, if the

initial population is well-chosen, the algorithm operator will be improved.

On the other hand, the PSO algorithm is sensitive to the initial population, too. One of

the characteristics of the PSO is its rapid convergence toward overall optimization at early

stages of the search process. The idea behind this research is to combine (hybridize) the

GA and PSO so that it performs better than GA and PSO. This means that the speed of

getting response increases significantly, while the accuracy is acceptable as well (Kennedy

and Eberhart 1995; Shi and Eberhart 1999; Murthy et al. 2010).

2.9 Criteria for evaluation of the accuracy of the models

The following criteria were used to evaluate the models (Sudheer et al. 2002; Barati

2011, 2013).

MAE ¼
Pn

i¼1

Qi�Q�
i

Qi

���
���

n
ð10Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Qi � Q�

ið Þ2

n

s

ð11Þ

BIAS ¼
Pn

i¼1 Qi � Q�
i

� �

n
ð12Þ

SI ¼ RMSE

Qi

ð13Þ

SSQ ¼
XN

i¼1

Qi � Q�
i

� �2 ð14Þ

where Qi is observed flow, Q�
i is calculated flow, and Qi is average calculated flow.

2.10 Selection of input and output parameters of the models

In this research, statistical data are used as inputs of the neural network as well as training,

testing and validating the neural network and reviewing and comparing them.
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QðtÞ ¼ f ðIt�7Þ
QðtÞ ¼ f ðIt�7; It�6Þ
QðtÞ ¼ f ðIt�7; It�6;Qt�1Þ
QðtÞ ¼ f ðIt�7; It�6;Qt�1;Qt�2Þ

ð15Þ

Using trial and error procedure, the above 4 patterns were selected for flood routing,

where It-7 is the inflow with delay time of t-7, It-6 is inflow with delay time of t-6, Qt-1

is outflow with delay time of t-1, and Qt-2 is outflow with delay time of t-2. Inflow is the

Table 1 Statistical parameters of the accuracy of the ANN

Pattern input Training Testing

SI MARE SSQ RMSE BIAS SI MARE SSQ RMSE BIAS

It 0.68 1.11 1996.87 4.32 1.98 0.82 1.98 1012.05 5.23 2.68

It-7 It-6 0.61 1.01 1619.28 3.89 1.91 0.71 1.14 762.62 4.54 2.03

It-7 It-6 Qt-1 0.49 0.98 1034.91 3.11 1.68 0.61 1.01 568.55 3.92 1.75

It-7 It-6 Qt-1

Qt-2

0.47 0.96 950.2 2.98 1.46 0.47 0.95 335.22 3.01 1.51

Fig. 5 a Calculation hydrograph and observation hydrograph in flood event 1. b Calculation hydrograph
and observation hydrograph in flood event 2
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measured flow at Kaleh Choub station, and outflow is the flow measured at Pir Soleiman

station.

The following formula was used for normalizing the data:

xnormalðiÞ ¼
xi � xmin

xmax � xmin

ð16Þ

In the next step, the inflow and outflow data are divided into two categories: 6

hydrographs were used or training, and 2 hydrographs were used for testing. The input

matrix of our data includes the parameters that each flood event depends on it. The total

number of flows was 147; 109 data were used to train the network; and 38 data were used

for testing.

2.11 Sensitivity analysis

Over the past years, several methods have been used to analyze the effect or importance of

input variables on the output of the proposed neural network. These methods are divided

into two sets of analysis based on weight and sensitivity analysis. However, these methods

are subject to limitations. The sensitivity analysis using weight was first used for the first

time by Garson (1991) and is followed by Goh (1995) and Gervey et al. (2003):

Table 2 Output hydrograph profile obtained from ANN

Hydrograph Volume flood (MCM) Pick inflow Flood start time (h)

Flood event 1

Observation 1,585,800 49 10

Calculation 1,332,300 39 10

Model error (%) - 16 - 6 0

Flood event 2

Observation 536,400 11 21

Calculation 532,800 8 24

Model error (%) - 1 - 27 14

Table 3 Statistical parameters of the accuracy of the ANN–ICA

Pattern input Training Testing

SI MARE SSQ RMSE BIAS SI MARE SSQ RMSE BIAS

It 0.19 0.44 156.65 1.21 1.13 0.21 0.53 68.43 1.36 1.11

It-7 It-6 0.12 0.36 63.44 0.77 0.69 0.13 0.41 35.53 0.98 0.85

It-7 It-6 Qt-1 0.05 0.32 10.95 0.32 .0.11 0.08 0.34 10.7 0.54 0.35

It-7 It-6 Qt-1 Qt-2 0.04 0.32 9.63 0.3 0.08 0.05 0.32 4.03 0.33 0.18
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Qik ¼

PL
j¼1

wijPN

r¼1
wrj

mjk

� �

PN
i¼1

PL
j¼1

wijPN

r¼1
wrj

mjk

� �� � ð17Þ

Fig. 6 a Calculation hydrograph and observation hydrograph in flood event 1. b Calculation hydrograph
and observation hydrograph in flood event 2

Table 4 Output hydrograph profile obtained from ANN–ICA

Hydrograph Volume flood (MCM) Pick inflow Flood start time (h)

Flood event 1

Observation 1,585,800 49 10

Calculation 1,530,200 45 9

Model error (%) - 3 - 6 - 11

Flood event 2

Observation 536,400 11 21

Calculation 550,800 10 21

Model error (%) 2 - 9 0
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An analysis based on the weight values is exclusively based on the values stored in the

static-weight matrix to determine the relative effect of each input data on the output.

Different equations for the weight values are provided; all of which are determined by

calculating the weight product of wij (the binding weight between input neuron i and

hidden neuron j) and mjk (the binding weight between hidden neuron j and output neuron k).

Table 5 Statistical parameters of the accuracy of the ANN–BA

Pattern input Training Testing

SI MARE SSQ RMSE BIAS SI MARE SSQ RMSE BIAS

It 1.65 0.44 362.25 1.84 - 1.81 1.86 0.53 164.72 2.11 1.46

It-7 It-6 0.84 0.36 131.83 1.11 - 1.09 1.81 0.41 136.2 2.01 1.34

It-7 It-6 Qt-1 0.73 0.32 90.56 0.92 0.9 0.69 0.34 46.41 1.12 1.03

It-7 It-6 Qt-1

Qt-2

0.57 0.32 48.03 0.67 0.63 0.64 0.32 29.97 0.9 0.68

Fig. 7 a Calculation hydrograph and observation hydrograph in flood event 1. b Calculation hydrograph
and observation hydrograph in flood event 2
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3 Results and discussion

3.1 Flood routing results using ANN

MLP model was applied to predict the outflow hydrograph. Number of nodes in its first

layer was 5. TanhAxon transfer function and the momentum network learning algorithm

were used. Equation (15) was used to select the best combination of inputs. As seen in

Table 1, pattern 4 is the best pattern. In this model, the moment discharge flow depends on

the inputs of t - 7 and t - 6 and the discharge flow of the same station depends on the

inflow Q - 1 and Q - 2 of Pir Soleiman station.

The statistical profile of the hydrograph calculated by the model is presented in Table 1.

Figure 5 presents the calculated hydrographs. In addition, calculations for hydrograph

volume at peak flow and peak time and relative error that is obtained by dividing the

measured hydrograph values into calculated hydrographs are available in Table 2.

3.2 Flood routing results using ANN–ICA

As stated above, six hydrographs were used for training and two hydrographs were used for

model testing. The parameters used in the MATLAB software for predicting outflow

hydrographs using the ICA are: number of countries = 150, number of imperialists = 10,

number of decades = 50 and revolution rate = 0.1.

To select the best input composition from the time delays, data were divided into four

different combinations. According to Eq. (15), the best combination was selected using

different tests.

Table 6 Output hydrograph profile obtained from ANN–BA

Hydrograph Volume flood (MCM) Pick inflow Flood start time (h)

Flood event 1

Observation 1,585,800 49 10

Calculation 1,470,600 42 9

Model error (%) - 7 - 14 11

Flood event 2

Observation 536,400 11 21

Calculation 590,400 8 21

Model error (%) 10 - 27 0

Table 7 Statistical parameters of the accuracy of the ANFIS (PSO–GA)

Pattern input Training Testing

SI MARE SSQ RMSE BIAS SI MARE SSQ RMSE BIAS

It 0.27 0.45 339.01 1.78 1.13 0.23 0.54 81.04 1.48 1.14

It-7 It-6 0.17 0.43 136.62 1.13 0.96 0.17 0.46 46.41 1.12 0.9

It-7 It-6 Qt-1 0.11 0.36 53.93 0.71 0.41 0.13 0.39 21.93 0.77 0.42

It-7 It-6 Qt-1 Qt-2 0.06 0.33 17.98 0.41 0.08 0.09 0.36 10.39 0.53 0.18
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The hydrograph profile calculated by the model is presented in Table 3. In addition,

Fig. 6a, b presents the calculated hydrographs. Furthermore, calculations for hydrograph

volume at peak flow and peak time and relative error that is obtained by dividing the

measured hydrograph values by the calculated hydrograph values are presented in Table 4.

3.3 Flood routing results using ANN–BA

The parameters used in the MATLAB software for predicting outflow hydrographs using

the BA are: walk factor = 0.03, walk rate = 5, Amin = 0.03, A0 = 0.9, fmax = 1 and fmin = 0.

Fig. 8 a Calculation hydrograph and observation hydrograph in flood event 1. b Calculation hydrograph
and observation hydrograph in flood event 2

Table 8 Output hydrograph profile obtained from ANFIS (PSO–GA)

Hydrograph Volume flood (MCM) Pick inflow Flood start time (h)

Flood event 1

Observation 1,585,800 49 10

Calculation 1,513,800 46 10

Model error (%) - 4 - 6 0

Flood event 2

Observation 536,400 11 21

Calculation 568,800 10 20

Model error (%) 6 - 9 - 4
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To select the best input composition from the time delays, data were divided into four

different combinations. The best combination was selected using different criteria.

The calculated hydrograph profile using the present model is presented in Table 5.

Figure 7 presents the calculated hydrographs. Furthermore, calculations for hydrograph

volume at peak flow and peak time are presented in Table 6.

Fig. 9 a Calculate and observed discharge by using ANN–ICA in training. b Calculate and observed
discharge by using ANN–ICA in testing
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3.4 Flood routing results using ANFIS (PSO–GA)

The parameters used in the MATLAB software for predicting outflow hydrographs using

GA and PSO combination optimization are: population = 50, crossover rate = 0.7, mutation

rate = 0.1 and number of iterations= 1000.

To select the best input composition from the time delays, data were divided into four

different combinations. The best combination was selected using different tests.

Fig. 10 a Network error changed by using ANN–ICA in training. b Network error changed by using ANN–
ICA in testing
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The calculated hydrograph profile using the present model is shown in Table 7. Figure 8

presents the calculated hydrographs. Furthermore, calculations for hydrograph volume at

peak flow and peak time are presented in Table 8.

3.5 Comparison of the models

There is a general consensus that each model is more appropriate than others for a number

of specific issues. Therefore, the disadvantages and advantages of the models should be

considered in relation to each other. In this research, the performance of each method has

been compared regarding the prediction of outflow hydrographs. In Tables 1, 3, 5 and 7,

using the statistical parameters, the success rate of each of the models for fitting the

measured hydrographs was evaluated. The results of these tables indicated that for both

hydrographs, ANN–ICA performed better in prediction of the outflow hydrographs. Rel-

ative error percentage was used to compare the performance of different models in pre-

diction of outflow hydrograph characteristics, including volume of outflow flood

hydrograph, peak discharge of the hydrograph and the time of peak flow occurrence.

According to Tables 2, 4, 6 and 8, in both flood cases, ANN–ICA performed better for

prediction of the peak flow rate and volume of outflow hydrograph and time of occurrence

of the peak flow was predicted more precisely by ANFIS. Figure 9 presents the calculated

and observed flows using ANN–ICA. It is seen that the results are acceptable, peak flow is

calculated accurately and it provided us reasonable results for the baseflow.

Figure 10 represents the variations of error in ANN–ICA.

Given Figs. 9 and 10, statistical criteria, as well as relative errors, it can be concluded

that ANN–ICA performed better than other single and hybrid algorithms in terms of peak

flows and flood volume. The PSO–GA and ANN–BA ranked next. Ultimately, it is con-

cluded that all three methods were better than ANN. Results showed that combination of

intelligent algorithms with ANN leads to an increase in accuracy of the neural networks.

Results of the ANN–ICA were used to predict the outflow hydrographs.

Fig. 11 Sensitivity analysis
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3.6 Sensitivity analysis of the input parameters

Sensitivity analysis was used to measure the influence of the four input parameters in the

ANN on the output of the model. Results of ANN–ICA sensitivity analysis are presented in

Fig. 11.

According to Fig. 11, the It-6 parameter had the highest effect on the output of the

model (with a value of 58.3%) and next were Qt-1, It-7 and Qt-2 (23.2, 11.6 and 6.9%,

respectively).

Table 9 Flood hydrograph values (10,000 year)

Time
(h)

Discharge
(m3/s)

Time
(h)

Discharge
(m3/s)

Time
(h)

Discharge
(m3/s)

Time
(h)

Discharge
(m3/s)

1 5 12 9.7 23 237.9 34 14.5

2 5 13 76.7 24 205 35 11.3

3 5 14 273.9 25 178.8 36 9.1

4 5 15 569 26 156.1 37 7.7

5 5 16 700 27 132.8 38 6.8

6 5 17 794 28 106.1 39 6.3

7 5 18 648.8 29 79.8 40 5

8 5 19 515.2 30 57 41 5

9 5 20 426.3 31 39.2 42 5

10 5 21 305.1 32 27.4 43 5

11 6.4 22 269 33 19.6 44 5

Fig. 12 Flood hydrograph (10,000 year) calculated by ANN–ICA

Table 10 Values of different flood parameter (10,000 year)

Peak inflow (m3/s) Flood volume (m3) Time of peak flow (h)

Flood 10,000 year 749 21,435,680 17
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3.7 Overflow flood prediction

Given the results of previous sections and the superiority of ANN–ICA, this hybrid method

was used to predict overflow characteristics. Using the prediction of inflow in Kaleh Choub

station flood routing information of Maryam Negar River, the outflow discharge with a

return period of 10,000 years is calculated (Table 9). The reason for choosing 10,000-year

flood is that the dam was considered to be highly at risk.

In this hydrograph, which is shown in Fig. 12 and Table 10, the peak flow is 794 m3/s

and the flood volume is 21,435,480 m3. This is the inflow hydrograph which enters the dam

reservoir. Since the reservoir is assumed to be full, this volume of flood is released as

overflow on the spillway.

Of course, given the limited data, this method should be used with caution to predict a

10,000-year flood.

Given the data in Table 9, the full hydrograph is drawn.

4 Conclusion

In this research, few meta-heuristic algorithms and their combinations with ANN and

ANFIS were used for flood routing of Maryam Negar River. Results indicated that con-

sidering the river inflow in Kaleh Choub station and transmission losses in the river reach,

the ANN model accurately simulated the outflow hydrograph in the Pir Soleiman station.

To test the model, the It-6, It-7, Qt-1 and Qt-2 patterns were used. The ICA, BA, PSO and

GA were used to optimize ANN and ANFIS. This technique significantly decreased the

time needed to determine the optimal structure. Results of the routed inflow hydrograph

indicated that ANN–ICA was the best method for flood routing. The error of predicting

flood volumes was acceptable, but it is not applicable for peak flow. Then, by using the

best prediction model (i.e., ANN–ICA), the 10,000-year peak flood discharge was esti-

mated as 794 m3/s. The outflow hydrograph could be used in design of hydraulic structures

such as dam spillway. To determine the effect of each of the input parameters on prediction

of flood, sensitivity analysis was carried out by Garson (1991) method using the adjusted

weight gain as well as ANN–ICA. The results indicated that It-6, Qt-1, It-7 and Qt-2 were

evaluated with 58.3, 23.2, 11.6 and 6.9%, respectively.
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