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Abstract
A hybrid clustering-fusion methodology is developed in this study that employs genetic

algorithm (GA) optimization method, k-means method, and several soft computing (SC)

models to better estimate land subsidence. Estimation of land subsidence is important in

planning and management of groundwater resources to prevent associated catastrophic

damages. Methods such as the Persistent Scatterer Interferometric Synthetic Aperture

Radar (PS-InSAR) can be used to estimate the subsidence rate, but PS-InSAR does not

offer the required efficiency and accuracy in noisy pixels (obtained from remote sensing).

Alternatively, a fusion-based methodology can be used to estimate subsidence rate, which

offers a superior accuracy as opposed to the traditionally used methods. In the proposed

methodology, five SC methods are employed with hydrogeological forcing of frequency

and thickness of fine-grained sediments, groundwater depth, water level decline, trans-

missivity and storage coefficient, and output of land subsidence rate. Results of individual

SC models are then fused to render more accurate land subsidence rate in noisy pixels, for

which PS-InSAR cannot be effective. We first extract 14,392 different input–output pat-

terns from PS-InSAR technique for our study area in Tehran province, Iran. Then, k-means

method is used to divide the study area into homogenous zones with similar features. The

five SC models include adaptive neuro fuzzy inference system, support vector regression,

multilayer perceptron neural network and two optimized models, namely radial basis

function and generalized regression neural network. To fuse individual SC models, three

methods including GA, K-nearest neighbors and ordered weighted average (OWA) based

on ORNESS method and ORLIKE method, are developed and evaluated. Results show that

the fusion-based method is significantly superior to each of the employed individual

methods in predicting land subsidence rate.
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1 Introduction

Metropolitan and agricultural development increase groundwater resources withdrawal,

which in turn poses serious environmental challenges. Unregulated and excessive

groundwater extraction for agricultural, domestic and industrial use have resulted in severe

drop in groundwater table in several basins in Iran (Motagh et al. 2008; Sadegh et al. 2010;

Sadegh and Kerachian 2011). Decline in groundwater level increases the effective stress in

the aquifer system that promotes compaction in fine-grained sediments (Budhu and

Adiyaman 2010; Dehghani et al. 2013), which in turn prompts land subsidence. In addition

to groundwater level decline, other geology and hydrogeology factors can affect subsi-

dence rate, including gas, oil and geothermal water extraction (Gambolati et al. 2005), coal

mining (Jung et al. 2007) and sudden hydrogeological changes along faults (Burbey 2002).

Precise estimation of land subsidence provides helpful information to decision makers

in their efforts to control and mitigate the impacts of such a grave hazard. Satellites have

provided alternative land subsidence monitoring methods complementing in situ obser-

vations based on remote sensing techniques. In the previous decades, several studies have

performed monitoring and analyzing land subsidence due to groundwater withdrawal based

on observations from satellites and radars such as Environmental Satellite Advanced

Synthetic Aperture Radar (ENVISAT ASAR) (Osmanoglu et al. 2011; Yue et al. 2011; Ng

et al. 2012; Dehghani et al. 2013; Strozzi et al. 2017; Deng et al. 2017; Lu et al. 2018; Du

et al. 2018). Interferometry Synthetic Aperture Radar (InSAR) is one such technique that

provides accurate measurements of land subsidence (Amelung et al. 1999; Carnec and

Fabriol 1999; Nakagawa et al. 2000; Ding et al. 2004; Dehghani et al. 2009; Yue et al.

2011; Calderhead et al. 2011;Cigna et al. 2012; Teatini et al. 2012; Qu et al. 2014; Strozzi

et al. 2017; Lu et al. 2018; Du et al. 2018; Nadiri et al. 2018). Another such technique is

Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) that is recently

developed to address the decorrelation problem in land subsidence estimation, and is

widely used in the literature (Jung et al. 2007; Osmanoglu et al. 2011; Cigna et al. 2012;

Teatini et al. 2012; Dehghani et al. 2013; Strozzi et al. 2013; Wu and Hu 2016; Sun et al.

2017; Deng et al. 2017; Maghsoudi et al. 2018). However, although the remotely sensed

techniques offer valuable opportunities and advantages for land subsidence estimation as

opposed to traditional in situ observations, a potential drawback associated with remote

sensing is lack of accurate and detailed information about subsidence in noisy pixels

(Dehghani et al. 2013). In view of the fact that the PS-InSAR technique is based on

persistent scatterer points, noisy behavior could be observed in many points of the study

area especially in non-urban regions (Gehlot and Hanssen 2008). In such cases, an

approach based on soft computing models can be effectively utilized to estimate land

subsidence. For example, Artificial Neural Networks (ANNs) have been used to monitor

subsidence in various studies. In Table 1, related studies on subsidence analysis using soft

computing models are summarized.

In a closely related effort to this study, Dehghani et al. (2013) studied land subsidence

due to groundwater extraction in Tehran basin, Iran. They considered six hydrogeological

variables as multilayer perceptron (MLP) model’s forcing to estimate subsidence rate. In

their study, forcing of the MLP model is not classified, and the subsidence rate is estimated

only by one soft computing model (MLP). Hence, the developed model is not sufficiently

precise as evidenced by relatively high root-mean square error (RMSE). To improve the

accuracy of land subsidence rate estimation one can cluster forcing data and train a
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separate model for each cluster, and/or employ several soft computing models and fuse

their estimations.

In the past years, the increasing demand for enhanced accuracy of soft computing (SC)

models has stimulated researchers to develop fusion-based methods. Model fusion is the

procedure of gathering data from several models such as different individual SC models’

outputs, aiming to provide more precise and reliable information compared to each indi-

vidual model (Dasarathy 1997). Fusion-based methods, such as Bayesian Model Averag-

ing, have been recently used in different research areas, namely drought index estimation

(Azmi et al. 2016; Alizadeh and Nikoo 2018), river-level forecasting (See and Abrahart

2001) and hydrological engineering (Shu and Burn 2004; Duan et al. 2007; Ajami et al.

2007; Azmi et al. 2010; Ashouri et al. 2015). But to the best of authors knowledge, there is

not any study on estimation of land subsidence rate using fusion-based methods. The

importance of this phenomenon motivated the authors to develop a fusion model in order to

achieve more precision in land subsidence estimation. Therefore, in this study a fusion-

based methodology is developed based on five individual soft computing (SC) models,

which are subsequently fused using genetic algorithm (GA), K-nearest neighbors (KNN)

method and ordered weighted average (OWA) method. Five SC models, namely adaptive

neuro fuzzy inference system (ANFIS), support vector regression (SVR), multilayer per-

ceptron (MLP), and two optimized models based on genetic algorithm (GA) including

radial basis function (RBF) and generalized regression neural network (GRNN) were

employed to estimate subsidence rate. The input variables of all SC models are six

effective hydrogeological variables and the output is the subsidence rate derived from PS-

InSAR. Then, k-means is utilized for dividing the study area into clusters (homogenous

zones) with similar features. 70% and 30% of each cluster’s data are used for training and

validating the individual and fusion-based models, respectively. Four fusion methods based

on genetic algorithm (GA) optimization method, K-nearest neighbors (KNN) and ordered

weighted average (OWA) models are then developed to fuse the outputs of individual SC

models. The latter (OWA) consists of two submodels, namely ORNESS and ORLIKE

methods. The main novelty of proposed methodology is developing several fusion-based

models as well as optimized soft computing (SC) models to achieve the best possible result

in land subsidence estimation. In the next sections main parts of proposed methodology,

case study and results are presented.

Table 1 Summary of related studies on subsidence analysis using soft computing models based on artificial
intelligence neural network

Numbers References Soft computing
model

Study area Reason of
subsidence

1 Ambrožič and Turk (2003) ANN Velenje mine
(Slovenia)

Mining

2 Kim et al. (2009) ANN Samcheok (Korea) Mining

3 Lee et al. (2012) ANFIS Samcheok (Korea) Mining

4 Dehghani et al. (2013) ANN Tehran (Iran) Groundwater
withdrawal

5 Ocak and Seker (2013) ANN, SVM Istanbul (Turkey) Tunneling

6 Rafie and Samimi Namin
(2015)

ANN Tehran (Iran) Tunneling
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2 Methodology

Flowchart of the fusion-based methodology which proposed for land subsidence rate

estimation is presented in Fig. 1. The proposed methodology consists of five main steps. In

the first step, the data are prepared and derived from ENVISAT ASAR and PS-InSAR. In

the next step, to obtain more precision in subsidence rate estimation, the k-means method is

used to classify data. Then, each cluster’s data are randomly separated as train and vali-

dation sets. In the third step, five individual Soft Computing (SC) models, namely ANFIS,

SVR, MLP and two optimized models, namely RBF and GRNN are developed. In the

fourth step, four different methods including KNN, GA and two OWA-based models,

namely ORNESS and ORLIKE are utilized as fusion methods for analysis and estimation

Start

Gathering images from 
ENVISAT ASAR

MLP SVR ANFIS

Optimized 
RBF 

Optimized 
GRNN 

Developing fusion-based models

End

Preparing ascending and 
descending dataset of PS-

InSAR technique

Developing a k-means method to classify dataset 
into different clusters associated with their similar 

features

Randomly separate 70% of each clusters' data 
as train input and 30% as test input

Ordered Weighted 
Average (OWA) 

methods

K-Nearest Neighbors 
algorithm (KNN)

Genetic Algorithm 
(GA) optimization 

model

Calculating optimal 
Maximum Neurons (MN) 
and Spread of RBF model 
using Genetic Algorithm 
(GA) optimization model

Calculating optimal Spread 
of GRNN model using 

Genetic Algorithm (GA) 
optimization model

Selecting the superior model by comparison the best 
fusion model with the best individual SC models.

Calculating optimal weights 
based on ORNESS 

weighting method using 
Genetic Algorithm (GA) 

optimization model

Calculating optimal 
weights based on 

ORLIKE weighting 
method

Developing five individual soft computing
models

Step 1:
Preparing 

data

Step 2: 
Developing 

k-means 
method

Step 3:
Developing 

individual Soft 
Computing (SC) 

models

Step 4:
Developing 

fusion models

Step 5:
Selecting the 
best model

Collecting six 
hydrogeological 

variables at different 
piezometric wells in the 

study area

Fig. 1 Flowchart of fusion-based methodology for land subsidence rate estimation
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of land subsidence rate based on PS-InSAR data. Finally, the results of SC models and

model fusion methods are assessed and compared through different statistical error indices.

In the next sections, the main steps of proposed methodology are briefly described.

2.1 k-Means method

This algorithm classifies data into several homogenous clusters with similar features. k-

Means method initializes the center of k clusters by random search in each iteration and

subsequently measures the distances between data points (xij) and the centers (cj). So, by

minimizing the objective function specified in Eq. 1, this algorithm assigns cluster k to data

point xij (MacQueen 1967).

Minimize : d ¼
Xk

j¼1

Xn

i¼1

xij � cj
�� ��

2

ð1Þ

In this study, we have tried different number of iterations to avoid converging to local

optima by the k-means algorithm, and successively increased the number of iterations until

the result not change anymore. We also have repeated the k-mean algorithm several times,

each time setting the initial centroid point at the previous optimized points to ensure k-

means reached a global optimum.

2.2 Soft computing (SC) models

In order to reach the optimal network architecture of individual SC models, various values

of models’ effective parameters (model settings) were optimized with two approaches: (1)

Trial-and-error analysis for MLP, SVR and ANFIS, and (2) Genetic algorithm (GA)

optimization model for RBF and GRNN. Eventually, SC model structures were selected

that provided superior results according to several statistical error indices such as scatter

index (SI), root-mean-square error (RMSE), root-mean relative error (RMRE), Nash–

Sutcliffe (NS) efficiency, correlation coefficient (CC) and bias:

Bias ¼ 1

n

Xn

i¼1

oi � eið Þ ð2Þ

SI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 ei � Eð Þ � oi � Oð Þð Þ2

q

O
ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

oi � eið Þ2
s

ð4Þ

CC ¼
Pn

i¼1 oi � eið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 o

2
i

Pn
i¼1 e

2
i

p ð5Þ

NS ¼ 1�
Pn

i¼1 oi � eið Þ2
Pn

i¼1 oi � Oð Þ2
ð6Þ
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RMRE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

oi � ei

ei

����

����

s
ð7Þ

where ei and oi are respectively ith estimated and observed subsidence rate (SR) and n is

the size of dataset. Also, E and O indicate the average estimated and observed SR,

respectively. The name of main parameter(s) of each individual SC model and their

method of determination are shown in Fig. 2.

2.3 Fusion-based models

Model fusion is a subset of data fusion technique which amalgamates different model

simulations with a goal that the result of combining data from different sources becomes

more accurate and reliable than the result of each of the primary sources (Hall and Llinas

1997). Key role of the fusion method is to specify weights to individual models. There are

various methods available to specify such weights. In this paper, in order to acquire a more

precise estimate of land subsidence rate, four fusion methods including genetic algorithm

(GA), K-nearest neighbors (KNN), and ordered weighted average (OWA) method based on

ORNESS and ORLIKE methods are employed to derive the weights of individual SC

models. For estimation purposes, suppose yj(j = 1, 2, …, k) represents observed data, n

signifies each individual model, and the estimated value by ith individual model is shown

as ŷijði ¼ 1; . . .; nÞ. If weights vector is w = [w1, w2, …, wn]
T, the estimated output of

fusion model (Yj) can be expressed as below:

Yj ¼
Xn

i¼1

wiŷij ð8Þ

Subject to :
Xn

i¼1

wi ¼ 1 wi 2 ½0 ; 1� ð9Þ

Individual model errors are calculated through eij ¼ ŷij � yj, while the corresponding

error of fusion methods is specified as Ej = Yj - yj.

In order to improve estimation accuracy, the corresponding errors of fusion methods

should be minimized. For this purpose, four different fusion methods including GA, KNN
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Fig. 2 Main parameter(s) of individual soft computing (SC) models and their method of determination
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and OWA method (ORNESS and ORLIKE methods) are utilized (Fig. 3). A brief expla-

nation of these approaches is given in the next sections.

2.3.1 GA fusion method

Genetic algorithm (GA) is one of the optimization methods based on evolutionary process.

This method, by iteratively generating a set of possible solutions, tries to achieve a global

optimum solution. In the present study, decision variables of the GA optimization model

are the weights assigned to each individual SC model. The objective function is to obtain

decision variables that minimize Mean Absolute Relative Error (MARE) between the

weighted individual models’ output (output of fusion method, wiŷij) and target values of

subsidence rate (yj):

MinimizeMARE ¼

Pk
j¼1

Pn

i¼1
wiŷij�yj

yj

� �

k
� 100

Subject to :
Xn

i¼1

wi ¼ 1 wi 2 ½0 ; 1�

ð10Þ

where n is the number of individual models and k is the size of dataset.

2.3.2 KNN fusion method

K-nearest neighbor (KNN) obtains the best estimate of a target variable for a specific point

based on a weighted average of the target values from its k-nearest samples (Altman 1992).

Briefly, Euclidean distance of all available samples to the desired point is calculated

according to Eq. 11, and its k-nearest samples are selected to estimate the target value at

Input Data
(frequency and thickness of fine-

grained sediments, groundwater depth, 
water level decline, transmissivity and 

storage coefficient)

Output data
(estimated land subsidence)

Individual SC
models

MLP

ANFIS

GRNN

SVR

RBF

Fusion 
Methods

GA

KNN

ORNESS ORLIKE

Fig. 3 Schematic representation of the fusion-based methodology
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this point. Neighbors that are closer to the desired point should be weighted more heavily

than more distant ones. Hence, reciprocal of squared distance of each data (Eq. 12) is used

as weight. Then, using Eq. 13, the target value for the desired point is estimated (Larose

2005):

8xx d ðxx; xiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðxi � xxÞ2
s

ð11Þ

wi ¼
1

dðxx ; xiÞ2
ð12Þ

Ynew ¼
Pn

i¼1 wi YiPn
i¼1 wi

ð13Þ

where xi(i = 1, …, n) are the sample data with known target values Yi, and xx is the desired

point, for which the target value, Ynew, is being sought. In this study, the best results of five

SC models are applied as inputs of KNN method in order to fuse them. For further

information about this method refer to Altman (1992) and Larose (2005).

2.3.3 ORNESS-OWA

The ordered weighted average (OWA) method is a mapping tool F:Rn ? R, in which n is

the number of individual models. This method allocates weight of each model with the

constraint:

Xn

i¼1

wi ¼ 1 wi 2 ½0 ; 1� ð14Þ

Here we first provide some background about the OWA methodology, and then discuss

assigning wi values in the subsequent sections. If the predicted subsidence rate of ith

individual model is bi, then the vector of the results of n individual models will be

B = {b1, b2, …, bn} and the vector of corresponding weights will be w = {w1, w2, …, -

wn}. Since weighing individual models by the OWA method makes different combinations

of weights, Yager (1988) defined the parameter orness and Dispersion to determine the

dispersion of weights around the median value of the parameters:

orness ðwÞ ¼
Xn

i¼1

ðn� iÞ
ðn� 1Þ wi orness ðwÞ 2 0 ; 1½ � ð15Þ

Dispersion ðwÞ ¼ �
Xn

i¼1

wi ln ðwiÞ ð16Þ

A 0.5 value for orness represents the equality of all weights, meaning weights are

normally distributed around the median. Therefore, orness values between 0.5 and 1

indicate that the weight distribution has a positive skewness, so that larger weight is

assigned to a better model.

123

912 Natural Hazards (2018) 94:905–926



In this approach, the fusion weights for the SC models are estimated using the genetic

algorithm (GA) optimization model for different a values between 0 and 1 (Eq. 16).

O’Hagan (1988) used the following optimization model to determine the weights so that

for the specified values (a) of the orness parameter, the maximum value of Dispersion(w)

is calculated:

MaximizeDispersionðwÞ ¼ �
Xn

i¼1

wi lnðwiÞ ð17Þ

Subject to: orness ðwÞ ¼
Xn

i¼1

ðn� iÞ
ðn� 1Þ wi ¼ a a 2 0 ; 1½ � ð18Þ

Xn

i¼1

wi ¼ 1 wi 2 0 ; 1½ � ð19Þ

2.3.4 ORLIKE-OWA

Yager and Filev (1994) present a family of OWA weights named S-OWA, which include

two main weighing methods (ORLIKE and ANDLIKE1). In this paper, ORLIKE-OWA is

used. In this method, similar to ORNESS, the best model gets the highest weight and worst

model is penalized in the weighting scheme. This method calculates the weights by solving

the following equations. F is the ORLIKE method’s operator as shown in Eq. 20:

wi ¼
1

n
ð1� aÞ þ a i ¼ 1

1

n
ð1� aÞ i ¼ 2; . . .; n

8
><

>:
a 2 0 ; 1½ � ð20Þ

F ¼ 1� a
n

þ a

� �
b1 þ

1� a
n

Xn

i¼2

bi ð21Þ

orness ðFÞ ¼ 1� a
2

þ aþ 1� a
n

Xn

i¼2

n� i

n� 1
¼ 1� a

n
þ aþ 1� a

n

n� 2

2

) orness ðFÞ ¼ aþ 1

2

ð22Þ

In this method, for a = 0, the orness parameter is equal to 0.5 and for a = 1, the value of

orness parameter is equal to 1, that means the first model will gain more weight. Since the

results of individual models are sorted in the descending order of the best result to the

worst one, it is necessary that the model weights are also adjusted in the descending order

so that the highest weight is given to the best model output. It is noteworthy that for a

1 In the ANDLIKE method, the worst model gets the highest weight. Authors considered in this study both
models to assign weight in a sequence. Both (ORLIKE and ORNESS) assign the highest weight to the best.
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values smaller than 0.5, the weights of the models are ascending, and for more than 0.5, the

weights of the models are descending. To accommodate weights and variables, a values

[ 0.5 have been used to implement the optimization and weighting process. For more

information about OWA methods, refer to Yager (1988), O’Hagan (1988) and Yager and

Filev (1994). In this study, ORNESS and ORLIKE methods are performed for different a
values and their best results are determined (Tables 6, 7).

3 Study area

Tehran basin with a total area of 2250 km2 is surrounded by the Alborz and the Fasha-

pouye Mountains (Dehghani et al. 2013). The vast majority of this basin, which is under

agricultural activities, is subject to subsidence due to excessive abstraction of groundwater.

The study area, depicted in Fig. 4, is in the southwest of the Tehran basin in central north

part of Iran.

The data collected by Dehghani (2010) is used in this study to develop a model fusion

methodology for estimating land subsidence using PS-InSAR technique. Dehghani (2010)

extracted, with piezometric measurements, the effective parameters on subsidence rate,

including water level decline (observed between 1968 and 2003), groundwater depth,

storage coefficient, transmissivity, alluvial thickness and frequency of fine-grained sedi-

ments. Also, the subsidence rates were inferred from the PS-InSAR technique. As previ-

ously mentioned, to achieve more accuracy in land subsidence rate estimation, the dataset

were clustered using k-means method. Statistics of hydrogeological variables, including

maximum, minimum and average, for each cluster are presented in Table 2.

Fig. 4 Location of the study area in Tehran province
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4 Results

For all Soft Computing (SC) models, available hydrogeology information, which were

extracted from piezometric measurements, are utilized as forcing and subsidence rates

from PS-InSAR technique is used as output data. Available data is categorized by k-means

method into five clusters, and of each cluster’s data, 70% are used for training and 30% for

validation. To train the five SC models, namely ANFIS, SVR, MLP, RBF and GRNN, we

employed trial-and-error analysis and genetic algorithm (GA) optimization. It should be

noted that the GA optimization method is utilized for training two SC models (RBF and

GRNN), optimizing ORNESS-OWA and also as one of the fusion methods. Specifications

relating to the GA optimization method used in aforementioned models are presented in

Table 3. Scattered crossover function with fraction value 0.8 is considered for this

Table 2 Range of hydrogeological variables of each cluster

Cluster’s
number

Hydrogeological variables

Alluvial
frequencya

(%)

Alluvial
thickness
(m)

Water
level
decline
(m)

Groundwater
depth (m)

Storage
coefficient
(%)

Transmissivity
(m2/day)

1 Maximum 85.0 83.0 - 7.4 50.0 3.8 1004.0

Minimum 60.0 20.0 - 21.4 30.0 1.0 321.0

Average 76.9 46.3 - 17.8 38.0 2.1 725.2

2 Maximum 100.0 176.0 - 10.4 97.0 10.2 2012.0

Minimum 53.0 62.0 - 45.1 30.0 0.4 1515.0

Average 84.9 94.8 - 20.6 40.9 2.0 175.8

3 Maximum 100.0 103.0 - 7.1 45.0 4.0 1521.0

Minimum 68.0 38.0 - 22.4 30.0 1.0 1004.0

Average 85.8 71.2 - 15.2 34.4 1.8 1285.1

4 Maximum 96.0 107.0 - 24.0 113.0 9.7 3000.0

Minimum 12.0 31.0 - 31.9 51.0 1.6 2560.0

Average 55.3 69.1 - 28.9 86.0 4.7 2840.3

5 Maximum 100.0 190.0 - 19.6 120.0 11.1 2559.0

Minimum 10.0 30.0 - 51.8 42.0 1.0 2005.0

Average 55.8 98.2 - 32.9 82.5 5.7 2267.3

aAlluvial frequency: frequency of fine-grained sediments

Table 3 Specifications relating to the genetic algorithm (GA) used in different parts of the proposed
methodology

Model Number of variables Population size Number of generations

RBF 2 20 40

GRNN 1 100 20

ORNESS 5 100 20

GA as fusion model 5 50 80
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approach. The TolFun 1e-10 (tolerance value) for StallGenLimit 80 (generation limits) are

defined as stopping criteria for models. The results of each individual model’s parameters

and their method of determination are listed in Table 4.

In order to evaluate the accuracy of these models, six statistical error indices including

NS, CC, SI, RMSE, RMRE and Bias (Eqs. 2–7) are calculated for all individual models.

As an example, the results of all SC models in estimating land subsidence rate in validation

stage are presented in Table 5.

Proximity of the NS and CC to 1, and RMSE, RMRE, SI and Bias indices to 0, indicate

higher accuracy of the model. Each model result is then ranked based on superior per-

formance and ranked, with 1 representing best model. Minimum summation of ranking in

each cluster (Table 5) specifies the more accurate SC model according to all indices (bold

values). Since the aim of this study is to improve accuracy of subsidence rate estimation,

four fusion-based methods including genetic algorithm (GA) optimization model,

K-nearest neighbors (KNN) and two ordered weighted average (OWA) models, namely

ORNESS and ORLIKE methods were used to fuse the outputs of individual SC models and

were compared with the best individual model in each cluster (Fig. 6). The performance of

ORNESS (Eqs. 14–19) for a values from 0.5 to 1 and ORLIKE (Eqs. 20–22) for a values

from 0.1 to 1 are determined and compared based on trial-and-error analysis (Tables 6, 7).

As noted earlier, in ORNESS and ORLIKE methods, the best model gets the highest

Table 4 Results of each individual models’ parameters and their method of determination

Model Method of
parameters
determination
(training)

Parameter Cluster’s number

1 2 3 4 5

MLP Trial-and-error Number of
hidden layer

1 1 1 1 1

Number of
neurons

26 20 18 20 32

Type of
transfer
function

Tangent
sigmoid

Tangent
sigmoid

Tangent
sigmoid

Tangent
sigmoid

Tangent
sigmoid

SVR Trial-and-error Kernel
function

Gaussian Gaussian Gaussian Polynomial Gaussian

ANFIS Trial-and-error Number of
membership
function

2 2 2 2 2

Type of
membership
function

Trapezoid Trapezoid Trapezoid Trapezoid Trapezoid

Number of
epochs

20 15 15 10 25

RBF GA
optimization

Maximum
number of
neurons

99 100 100 88 400

Spread 87.48 40.62 43.19 28.89 20

GRNN GA
optimization

Spread 0.11 1.7 1.1 0.3 3.6
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Table 5 Several statistical error indices for individual soft computing models in estimating land subsidence
rate in validation stage

Clusters’
number

Individual
Model

RMREa RMSEb

(mm/
year)

Bias
(mm/
year)

CCc NSd SIe Summation of
ranking

1 MLP

Value 0.880 15.070 11.130 0.728 - 0.208 0.270

Rank 1 5 5 4 5 2 22

SVR

Value 1.160 2.870 0.390 0.982 0.920 0.260

Rank 3 1 2 1 1 1 9

ANFIS

Value 1.320 3.350 0.460 0.975 0.891 0.310

Rank 4 2 3 2 3 3 17

RBF

Value 0.959 3.365 0.163 0.975 0.893 0.310

Rank 2 3 1 2 2 3 13

GRNN

Value 1.460 4.790 0.870 0.955 0.777 0.440

Rank 5 4 4 3 4 4 24

2 MLP

Value 0.260 25.330 - 0.270 0.998 0.643 0.070

Rank 3 5 3 2 5 2 23

SVR

Value 0.240 5.060 0.040 0.999 0.986 1.000

Rank 1 1 2 1 1 4 10

ANFIS

Value 0.250 5.620 0.000 0.998 0.982 0.060

Rank 2 2 1 2 2 1 10

RBF

Value 0.304 8.767 1.276 0.996 0.957 0.099

Rank 5 3 5 3 3 3 22

GRNN

Value 0.280 11.560 - 1.120 0.993 0.926 1.010

Rank 4 4 4 4 4 5 25

3 MLP

Value 0.270 3.930 0.99 0.997 0.967 0.080

Rank 1 2 2 1 2 1 9

SVR

Value 0.270 3.760 0.640 0.997 0.969 0.080

Rank 1 1 1 1 1 1 5

ANFIS

Value 0.290 4.420 0.990 0.996 0.958 0.090

Rank 2 3 2 2 3 2 14
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Table 5 continued

Clusters’
number

Individual
Model

RMREa RMSEb

(mm/year)
Bias
(mm/year)

CCc NSd SIe Summation of
ranking

RBF

Value 0.375 7.244 - 1.625 0.990 0.887 0.153

Rank 4 4 3 3 4 3 21

GRNN

Value 0.370 8.390 - 2.010 0.987 0.848 1.020

Rank 3 5 4 4 5 4 22

4 MLP

Value 0.500 33.820 0.820 1.000 0.868 0.030

Rank 1 5 3 1 4 1 15

SVR

Value 1.040 8.10 1.190 0.998 0.992 0.930

Rank 5 2 4 3 3 5 22

ANFIS

Value 0.790 10.380 1.190 0.997 0.988 0.110

Rank 4 4 4 4 1 3 20

RBF

Value 0.553 5.433 0.606 0.999 0.997 0.056

Rank 2 1 2 2 2 2 11

GRNN

Value 0.570 10.370 0.350 0.997 0.988 0.910

Rank 3 3 1 4 1 4 16

5 MLP

Value 0.880 61.950 0.510 0.999 0.053 0.060

Rank 4 5 3 1 5 1 19

SVR

Value 1.810 5.470 1.480 0.998 0.993 0.080

Rank 5 2 5 2 2 3 22

ANFIS

Value 0.660 4.440 0.070 0.999 0.995 0.070

Rank 1 1 1 1 1 2 7

RBF

Value 0.758 6.313 0.392 0.998 0.990 0.093

Rank 3 3 2 2 3 4 17

GRNN

Value 0.690 7.420 - 0.610 0.997 0.986 1.050

Rank 2 4 4 3 4 5 22

aRMRE: root-mean relative error
bRMSE: root-mean square error
cCC: correlation coefficient
dNS: Nash–Sutcliffe
eSI: scatter index
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weight. Therefore, according to Tables 6 and 7, the results obtained from these two

methods are compared based on two statistical error indices (NS and RMSE) for different a
values. Best prediction and associated a are shown in bold in Tables 6 and 7 for the

ORNESS and ORLIKE methods. In addition to the trial-and-error analysis, a values were

also optimized using GA optimization methods, results of which did not significantly

change the findings of Tables 6 and 7.

Table 8 presents performance evaluation of four fusion methods of this study in terms

of the six statistical error indices mentioned before. Also, in this table, bold values rep-

resent the best fusion method for each cluster. Comparing the statistical error indices

shown in Tables 5 and 8 shows the superior accuracy of the fusion methods compared to

the individual models.

To make the intercomparison of fusion methods more visually appealing, bar charts of

fusion models performance with respect to different statistical error indices are presented

in Fig. 5. This figure shows that ORNESS-OWA model has a superior performance and is

more accurate as opposed to the other fusion methods in most of clusters.

Figure 6 compares the best fusion method in each cluster with the best individual SC

model in the same cluster. The figure confirms that the fusion-based methods are more

accurate in estimation of land subsidence rate.

The average RMSE reported by Dehghani et al. (2013) is 4.055 (mm/year), while in this

study, we obtained an RMSE value of 3.89 (mm/year) for the best individual SC model

(SVR) in most clusters and 2.55 (mm/year) for the best fusion model (ORNESS-OWA) in

most clusters. Comparing the present study results with Dehghani et al. (2013) shows that

the presented methodology in this study is more accurate. Moreover, fusion-based methods

are more accurate than individual soft computing methods.

Table 6 Comparison of results of ORNESS method for different a values based on NSa and RMSEb

statistical error indices

Clusters’ number Statistical error index a = 0.5 a = 0.6 a = 0.7 a = 0.8 a = 0.9 a = 1

1 RMSE 2.813 2.764 2.478 2.049 1.872 1.714

NS 0.923 0.925 0.940 0.959 0.965 0.971

2 RMSE 5.061 4.722 3.824 3.368 3.204 3.021

NS 0.985 0.987 0.991 0.993 0.994 0.994

3 RMSE 3.309 3.160 2.631 2.251 1.806 1.736

NS 0.976 0.978 0.985 0.989 0.992 0.993

4 RMSE 4.597 43.370 3.479 2.219 1.766 1.639

NS 0.997 0.998 0.998 0.999 0.999 0.999

5 RMSE 3.872 3.239 2.988 2.343 2.145 1.831

NS 0.996 0.997 0.997 0.998 0.998 0.999

aNS: Nash–Sutcliffe
bRMSE: root-mean square error
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Table 8 Statistical error indices for four fusion methods in estimating land subsidence rate in validation
stage

Clusters’
number

Fusion
methods

RMREa RMSEb(mm/
year)

Bias
(mm/
year)

CCc NSd SIe Summation
of ranking

1 GA

Value 0.898 2.870 0.332 0.982 0.920 0.263

Rank 2 3 3 2 2 2 14

KNN

Value 1.372 4.237 1.736 0.969 0.825 0.357

Rank 4 4 4 3 3 4 22

ORNESS

Value 0.658 1.714 0.151 0.993 0.971 0.158

Rank 1 1 1 1 1 1 6

ORLIKE

Value 1.117 2.868 0.204 0.982 0.920 0.264

Rank 3 2 2 2 2 3 14

2 GA

Value 0.265 5.804 - 0.359 0.998 0.981 0.066

Rank 3 3 3 2 3 3 17

KNN

Value 0.282 7.542 2.685 0.997 0.968 0.081

Rank 4 4 4 3 4 4 23

ORNESS

Value 0.156 3.022 0.152 1.000 0.995 0.035

Rank 1 1 2 1 1 1 7

ORLIKE

Value 0.235 5.365 - 0.034 0.998 0.984 0.061

Rank 2 2 1 2 2 2 11

3 GA

Value 0.267 3.877 0.957 0.997 0.968 0.081

Rank 1 2 2 1 2 2 10

KNN

Value 0.324 5.264 2.421 0.996 0.940 0.101

Rank 3 3 3 2 3 3 17

ORNESS

Value 0.269 3.634 - 0.202 0.997 0.971 0.078

Rank 2 1 1 1 1 1 7

ORLIKE

Value 0.346 7.722 - 4.411 0.991 0.871 0.137

Rank 4 4 4 3 4 4 23
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5 Summary and conclusion

Land subsidence due to excessive and unsustainable groundwater withdrawal is a para-

mount hazard to infrastructure safety. Estimating subsidence rate (SR) with sufficient

precision is hence of particular interest to sustain human and environmental safety and

well-being. In this paper, in order to increase the precision of subsidence rate estimation in

the Tehran basin, Iran, a new methodology is developed based on four fusion-based

methods, namely genetic algorithm (GA), K-nearest neighbors (KNN) and ordered

weighted average (OWA) with two weighting methods (ORNESS and ORLIKE) to fuse

Table 8 continued

Clusters’
number

Fusion
methods

RMREa RMSEb(mm/
year)

Bias
(mm/
year)

CCc NSd SIe Summation
of ranking

4 GA

Value 0.502 3.212 0.143 1.000 0.999 0.034

Rank 1 1 1 1 1 1 6

KNN

Value 0.625 5.409 2.658 0.999 0.997 0.049

Rank 3 3 3 2 3 3 17

ORNESS

Value 0.611 3.868 0.255 1.000 0.998 0.04

Rank 2 2 2 1 2 2 11

ORLIKE

Value 0.754 9.323 - 5.626 0.998 0.990 0.078

Rank 4 4 4 3 4 4 23

5 GA

Value 0.830 4.13 0.400 0.999 0.996 0.06

Rank 3 2 2 2 2 2 13

KNN

Value 0.970 5.34 2.54 0.999 0.993 0.070

Rank 4 3 3 2 3 3 18

ORNESS

Value 0.430 1.84 0.18 1.000 0.999 0.030

Rank 1 1 1 1 1 1 6

ORLIKE

Value 0.810 7.51 - 3.62 0.998 0.986 0.100

Rank 2 4 4 3 4 4 21

aRMRE: root-mean relative error
bRMSE: root-mean square error
cCC: correlation coefficient
dNS: Nash–Sutcliffe
eSI: scatter index
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five individual Soft Computing (SC) models. The approach initiates with obtaining

hydrogeological information and subsidence rates estimated based on PS-InSAR tech-

nique, and employing a k-means method to categorize different station data into homo-

geneous groups. The cluster data are in turn used to train five Soft Computing (SC) models,

namely adaptive neuro fuzzy inference system (ANFIS), support vector regression (SVR),

multilayer perceptron (MLP) neural network and two optimized models, namely radial

basis function (RBF) and generalized regression neural network (GRNN). Fusion methods

then create a weighted average of individual SC models to improve land subsidence rate

accuracy. To evaluate and compare the results of all models, six statistical error indices,

namely scatter index (SI), root-mean-square error (RMSE), root-mean-relative error

(RMRE), Nash–Sutcliffe (NS) efficiency, correlation coefficient (CC) and bias, were uti-

lized. The results show that, fusion methods are more accurate than individual SC models.

Also, the result of fusion methods, reveals that ORNESS-OWA method is the superior

model in most of clusters. Authors’ suggestions for future studies are (i) to consider

Subsidence Vulnerability Indices (SVIs) to represent subsidence potential that affect the

vulnerable aquifer, and (ii) to employ the proposed methodology to determine these indices

more precisely. Also, Fuzzy set theory can be utilized to address uncertainty sources in

land subsidence estimation.
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