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Abstract
Climate change caused by carbon emissions continuously threatens sustainable develop-

ment. Due to China’s immense territory, there are remarkable regional differences in

carbon emissions. The construction industry, which has strong internal industrial differ-

ences, further leads to carbon emission disparity in China. Policymakers should consider

spatial effects and attempt to eliminate carbon emission inequality to promote the sus-

tainable development of the construction industry and realize emission reduction targets.

Based on the classic Markov chain and spatial Markov chain, this paper investigates the

club convergence and spatial distribution dynamics of China’s carbon intensity in the

construction industry from 2005 to 2014. The results show that the provincial carbon

intensity in the construction industry is characterized by ‘‘convergence clubs’’ during the

research period, and very low-level and very high-level convergence clubs have strong

stability. Moreover, the carbon intensity class transitions of provinces tend to be consistent

with that of their neighbors. Furthermore, the transition of carbon intensity types is highly

influenced by their regional backgrounds. The provinces with high carbon emissions have a

negative influence on their neighbors, whereas the provinces with low carbon emissions

have a positive influence. These analyses provide a spatial interpretation to the ‘‘club

convergence’’ of carbon intensity.

Keywords Club convergence � Spatial distribution � Carbon intensity � Markov chain �
Spatial Markov chain

1 Introduction

The large-scale exploitation and use of fossil fuels have caused serious ecological

destruction, environmental pollution, and greenhouse gas emissions. Many countries and

regions have made commitments to mitigate carbon emissions (Hu and Liu 2016).

Understanding the distribution of carbon emissions via spatial and temporal perspectives is

beneficial to formulating more utility-effective policies to combat climate change (Burnett

& Libiao Bai
hanshannuanyang@chd.edu.cn

Extended author information available on the last page of the article

123

Natural Hazards (2018) 94:519–536
https://doi.org/10.1007/s11069-018-3400-2(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-4105-6476
http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-018-3400-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-018-3400-2&amp;domain=pdf
https://doi.org/10.1007/s11069-018-3400-2


2016; Zhao et al. 2015). The government should consider the source and distribution of

carbon emissions when designing policies. The ‘‘Contraction and Convergence’’ proposed

by the Global Commons Institute, which is an approach to reduce emissions, aims at

allocating commitments across countries (GCI 2008). This method gradually compresses

the process of carbon emission reduction (contraction) and equalizes the per capita carbon

emissions among countries (convergence), which could apply to a country with many

regions.

China, which has become the largest carbon emitter in the world, is facing great

pressure from the international community to mitigate its carbon emissions (Wang et al.

2011; Zhang et al. 2017). Due to China’s immense territory, there are significant regional

differences among the economic levels, technical levels, energy structures, and energy

consumption in different regions. This results in carbon emission disparity in geographical

space (Du et al. 2017). As a main source of carbon emissions (Li et al. 2017), the con-

struction industry has strong industrial differences due to high industry relevancy and the

closure property of regions in the construction industry. These further lead to carbon

emission disparity in the construction industry. If this regional carbon emission disparity

can be weakened and provinces with higher carbon emissions can be positively influenced

by provinces with lower carbon emissions, then the overall carbon emissions in China’s

construction industry can then be significantly reduced. Governments should consider

spatial distribution and pursue the reduction of carbon emissions, as well as the gradual

equalization of carbon emissions among various provinces (Romero-Ávila 2008). The

convergence of carbon emissions is necessary, whereas ignoring the convergence of carbon

emissions may protract the process of collaborative emission reduction (Westerlund and

Basher 2008). Thus, it is necessary to examine whether carbon emissions have the char-

acteristic of convergence across provinces in China’s construction industry or not. This

shows great significance not only in formulating differential mitigation policies and

strategies but also in promoting the sustainable development of the regional construction

industry.

The concept of convergence originates from the literature about economic growth. In its

most general definition, convergence stands for a decrease in the economic growth dis-

parity across regions with time. Nevertheless, convergence is not limited to the literature

about economic growth alone and has been widely used in other fields, including energy

economics (Burnett and Madariaga 2017; Pan et al. 2015; Duro et al. 2010; Zhu et al.

2014). Convergence tests are split into three principal methods: r-convergence, b-con-

vergence, and club convergence (Burnett 2016). r-Convergence means a decline in the

dispersion of any economic variable such as energy use and output. It occurs when the

coefficient or the standard deviation of the variable’s variation of interest remarkably

decreases over time (Wang and Zhang 2014). b-Convergence implies that emissions in

regions where they are initially high will tend to increase slower than in the regions with

low emissions. The b-convergence of carbon emissions has been explored in previous

research (Wang and Zhang 2014; Brännlund et al. 2015). As Barro and Sala-i-Martin

(2004) point out, club convergence implies that the growth speed of a group of areas with

similar structural characteristics and initial conditions tend to converge to the same steady

state. The existence of club convergence means that different subregion groups tend to

converge to different steady states.

Research on the convergence of carbon emissions seeks to investigate whether carbon

emissions across regions are converging or diverging with time in different scales.

Majority of studies have concentrated on the convergence of carbon emissions across

countries. Romero-Ávila (2008) proved convergence in carbon emissions in 23 countries
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with strong evidence from 1960 to 2002. Ahmed et al. (2017) texted the convergence of per

capita carbon emissions for 162 countries across the globe. Li and Lin (2013) investigated

the club convergence of 110 countries in per capita carbon emissions from 1971 to 2008.

They found evidence of the club convergence of these countries. Some scholars investi-

gated the convergence of carbon emissions at the regional and sector level. Brännlund et al.

(2015) revealed conditional b-convergence of carbon intensity in industrial sectors in

Sweden. Wang and Zhang (2014) examined the r-convergence and b-convergence of per

capita carbon emissions in six sectors across China’s various provinces from 1996 to 2010.

They found that per capita carbon emissions in all sectors showed convergence across

provinces from 1996 to 2010. Hao et al. (2015) found the existence of b-convergence and

stochastic convergence in China’s provincial carbon intensity by using various estimation

specifications and employing different estimation methods.

However, most of these existing studies regarding the convergence of carbon emissions

are based on traditional approaches, which only proved the existence of convergence but

assumed that spatial units were independent. These approaches ignored the spatial inter-

action among spatial units, with few exceptions (Burnett 2016; Zhao et al. 2015; Huang

and Meng 2013; Wu et al. 2016). According to Tobler’s first law of geography, all values

on the geographic surface are interrelated and closer values are more closely related than

distant values (Tobler 1970.). Ignoring spatial dependence might result in unreliable sta-

tistical inferences while researching convergence. Considering the regional differences and

associations via spatial and temporal perspectives is crucial to mitigating carbon emissions.

In addition, carbon emissions of provinces with similar industrial structure, development

level of the construction industry, and other similar features tend to converge to the same

steady state. Due to the fragmental characteristic of Chinese regions and differences in the

construction industry, carbon emissions of different provinces are more likely to converge

to different steady states rather than the same equilibrium, which shows the phenomenon of

‘‘club convergence.’’

These existing studies on the club convergence of carbon emissions mostly utilize the

Phillips-Sul club convergence approach. Panopoulou and Pantelidis (2009) and Herrerias

(2013) applied the Phillips-Sul approach to explore club convergence of carbon dioxide

emissions across countries. Using the same approach, Apergis and Payne (2017) and

Burnett (2016) identified the club convergence of carbon dioxide emissions across US

states, whereas Wang et al. (2014) investigated the club convergence behavior of carbon

dioxide emissions across China’s various provinces. In addition, based on a continuous

dynamic distribution approach, Wu et al. (2016) explored the convergence of per capita

carbon emissions in China using panel data of 286 cities. However, these studies provide a

limited view of the spatial–temporal distribution of carbon emissions and the movement of

the spatial units within the distribution (Rey 2001). Thus, the club convergence of carbon

emissions is investigated in this study with the help of the spatial Markov chain approach

proposed by Rey (2001), which considers the spatial interaction between regions. The

spatial Markov chain has been applied extensively to the field of economics (Torres

Preciado et al. 2017; Liao and Wei 2012; Maza et al. 2012). This approach has two specific

advantages. First, the spatial Markov chain can characterize spatial distribution and stand

out the performance of each spatial unit and the nature of its transition in exploring the

tendency of convergence and divergence (Carluer 2005; Fingleton 1997). Second, the

spatial Markov chain is realistic because it can identify long-term properties toward some

form of convergence club or poverty trap (Fingleton 1997), which cannot be interpreted by

convergence. The spatial Markov chain facilitates the study of the club convergence of
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carbon emissions and the spatial distribution dynamics of carbon emissions throughout the

years.

As the construction industry is a major contributor to carbon emissions, research on the

club convergence of carbon emissions in China’s construction industry could provide a

new perspective for its sustainable development. Therefore, this study innovatively uses

classic Markov chain and spatial Markov chain approaches to analyze the club conver-

gence of provincial carbon intensity and the spatial distribution dynamics over the period

from 2005 to 2014. The structure of this paper is as follows. After this introduction, Sect. 2

provides the data and the methodology used in this study. Section 3 is devoted to the

empirical results and analyses. The final part presents the conclusions.

2 Data and methodology

2.1 Data

2.1.1 Formulation of carbon intensity

As carbon intensity (defined as the ratio of carbon emissions to GDP) is always used as an

important indicator in carbon emissions abatement by the Chinese government, the club

convergence of carbon intensity in China’s construction industry is examined in this paper.

This paper uses panel data of 30 Chinese provinces and municipalities during the period

from 2005 to 2014 (excluding Hong Kong, Macao, Taiwan, and Tibet due to missing data),

which can be defined using Eq. (1).

CI ¼ CT=CIOV ð1Þ

Here CI denotes carbon intensity in the construction industry, CT represents the total

carbon emissions in construction industry, and CIOV stands for the output values of the

construction industry, which could be obtained from statistical yearbooks at a provincial

level.

Considering the characteristics of the construction industry, which has close relation-

ships with other industries, the calculation is divided into two parts: the direct carbon

emissions and the indirect carbon emissions. The direct carbon emissions are emissions

directly generated by the construction industry. The indirect carbon emissions are emis-

sions from other industries induced by the construction industry. The direct carbon

emissions in the construction industry are calculated using the following equation.

CD ¼
X

i¼1

Ei � NCVi � Ai � Oi � 44=12 ð2Þ

Here CD refers to the direct carbon emissions in the construction industry, i denotes the

type of energy, including coal, coke, crude oil, gasoline, kerosene, diesel oil, liquefied

petroleum gas and natural gas. Ei is the consumption of energy i provided by the statistical

yearbooks at a provincial level, NCVi denotes the average lower-order calorific value of

energy i (which could be derived from the China Energy Statistical Yearbook), Ai refers to

the carbon content per unit heat of energy i, Oi is the oxidation rate of energy i, and

figure 44/12 represents the molecular weight ratio of CO2 to carbon. Ai and Oi can be

obtained from The Guidelines to Make Provincial Lists of Greenhouse Gas Inventory.

Average low-order calorific value, carbon content per unit heat and oxidation rate for

different energy type are shown in appendix.
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The calculation process of the indirect carbon emissions in the construction industry is

divided into two steps. First, nine industries related to the construction industry are selected

in this paper, including the mining and washing of coal; extraction of petroleum and

natural gas; mining and processing of metal ores; petroleum refining, coking, and nuclear

fuel processing; manufacture of raw chemical materials and chemical products; manu-

facture of non-metallic mineral products; smelting and pressing of metals; manufacture of

metal products; and transporting, storage, and postal services of products. The equation of

direct carbon emissions of industry j, which is similar to Eq. (2), is as follows.

CD;j ¼
X

i¼1

Ei;j � NCVi � Ai � Oi � 44=12 ð3Þ

Here CD, j represents the direct carbon emissions consumed by industry j and Ei, j denotes

the use of energy i for industry j. Next, according to input–output analysis, the indirect

carbon emissions in the construction industry are calculated as follows (Zhang and Liu

2013)

CI ¼
X

j

CD;j=IOVj

� �
�CIOV � yj ð4Þ

where CD, j refers to the direct carbon emissions of industry j, j is the category of industries,

IOVj denotes the total output values of industry j obtained from the statistical yearbooks at

a provincial level, CIOV stands for the output values of the construction industry, and yj
represents the total consumption coefficient of industry j from the construction industry

provided by the input–output tables.

Finally, the total carbon emissions in the construction industry are then

CT ¼ CDþCI ð5Þ

2.1.2 Description of the data

Currently, the methods of data classification include equal area, equal interval, natural

break, quartile, and standard deviation. The natural break could be used to identify the

classification intervals and the similar values could be grouped more appropriately to

maximize the differences between different classes. Using the natural break, the differ-

ences between the classes are obvious, while the differences within the classes are small.

The club convergence means that different subregion groups tend to converge to different

steady. Before the study of club convergence, this paper first needs to classify the carbon

emissions data. The data with similar characteristics and small differences should be

selected to be a group, and the data with large differences should be classified into different

groups. Thus, the natural break is suitable for the classification of carbon emissions data in

this paper. The carbon intensity in China’s construction industry each year is classified into

five classes: very low (VL), low (L), average (A), high (H), and very high (VH).

2.2 Methodology

With the purpose of investigating the club convergence of carbon intensity in China’s

construction industry, Markov chain approaches are implemented in this paper. The spatial

distribution dynamics of carbon intensity are visualized by ARCGIS based on the results of
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the Markov transition probability matrix and the spatial Markov transition probability

matrix.

2.2.1 Classic Markov chain

The classic Markovian approach is a stochastic process which has the Markov property. Its

distribution in the state at a particular time t ? 1 only relies on its immediate distribution at

time t, which implies that the future can be explained exclusively by the present, rather

than the past. It is the basic approach to specify a vector of the state probabilities that

represent the probability that a province will be a member of a specific carbon intensity

class in a given year. The classes of carbon intensity in construction can be assumed k, and

the state probability vector at time t is Pt, which represents a 1 * k vector Pt = [P1,t,

P2,t,…,Pk,t]. The evolution of the carbon intensity distribution is described by the transition

probability matrix M that is of dimension k * k, which is shown in Table 1, under the

assumption of k = 5 states.

In Table 1, mij is the element of the transition probability matrix which denotes the

probability that a province that was in state i at time t ends up in state j at time t ? 1.

mij ¼
nij

ni
ð6Þ

Here nij and ni can be obtained by counting the number of provinces that was in state i at

time t but turned into state j at the next time period and the number of provinces in state

i during the observation period, respectively.

2.2.2 The spatial Markov matrix

To incorporate spatial interaction into the study of the regional dynamics of carbon

intensity in China’s construction industry, the spatial Markov matrix is implemented as

proposed by Rey (2001). In particular, a modification of the classic Markov transition

probability matrix is used to condition the transition probabilities of a region in the initial

state or class of its spatial lag, named the spatial Markov transition probability matrix.

This spatial version of the spatial Markov matrix accounts for spatial autocorrelation in

the form of spatial lag. The spatial lag of carbon intensity is defined as the product of the

regional carbon intensity value and the spatial weight matrix, and the first-order Queen-

type spatial weight matrix is chosen in this paper. In addition, spatial lag is classified into

five classes using the natural break method in accordance with the classification of carbon

intensity. This way of incorporating the spatial interaction into the analysis of regional

dynamics means that this matrix decomposes the classic k * k transition probability matrix

into a k * k * k dimension system. It is clarified in Table 2 for an assumption with k = 5

Table 1 Markov transition prob-
ability matrix

t/t ? 1 1 2 3 4 5

1 m11 m12 m13 m14 m15

2 m21 m22 m23 m24 m25

3 m31 m32 m33 m34 m35

4 m41 m42 m43 m44 m45

5 m51 m52 m53 m54 m55
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states or classes. The elements mij(k) specify the probability that a province that was in state

i at time t ends up in state j at time t ? 1, under the condition that its neighboring provinces

were initially in state k. In particular, the notation m13|1 expresses the probability of a

province advancing from a VL state toward an A state, under the condition of interacting

spatially with neighboring provinces in a VL state. Here the conditioning is in relation to

the carbon intensity class of the spatial lag during the initial period.

Based on comparing the differences between elements in the classic Markov transition

probability matrix and the corresponding elements in the spatial matrix, the overall

influence of spatial dependence on regional transition is reflected. For example, if

m12\m12|1, the probability of an upward transition for low carbon intensity states

regardless of their neighbors, is lower than the probability of an upward transition for low

carbon intensity states with very low neighbors.

Alternatively, if m12[m12|1, the very low states irrespective of their neighbors have a

higher probability to move upward than very low states with very low neighbors. In other

words, if transition probabilities were not influenced by regional context, then

mij 1j ¼ mij 2j ¼ . . . ¼ mij kj ¼ mij 8i; j:

Table 2 Spatial Markov transi-
tion probability matrix

Space lag t/t ? 1 1 2 3 4 5

1 1 m11|1 m12|1 m13|1 m14|1 m15|1

2 m21|1 m22|1 m23|1 m24|1 m25|1

3 m31|1 m32|1 m33|1 m34|1 m35|1

4 m41|1 m42|1 m43|1 m44|1 m45|1

5 m51|1 m52|1 m53|1 m54|1 m55|1

2 1 m11|2 m12|2 m13|2 m14|2 m15|2

2 m21|2 m22|2 m23|2 m24|2 m25|2

3 m31|2 m32|2 m33|2 m34|2 m35|2

4 m41|2 m42|2 m43|2 m44|2 m45|2

5 m51|2 m52|2 m53|2 m54|2 m55|2

3 1 m11|3 m12|3 m13|3 m14|3 m15|3

2 m21|3 m22|3 m23|3 m24|3 m25|3

3 m31|3 m32|3 m33|3 m34|3 m35|3

4 m41|3 m42|3 m43|3 m44|3 m45|3

5 m51|3 m52|3 m53|3 m54|3 m55|3

4 1 m11|4 m12|4 m13|4 m14|4 m15|4

2 m21|4 m22|4 m23|4 m24|4 m25|4

3 m31|4 m32|4 m33|4 m34|4 m35|4

4 m41|4 m42|4 m43|4 m44|4 m45|4

5 m51|4 m52|4 m53|4 m54|4 m55|4

5 1 m11|5 m12|5 m13|5 m14|5 m15|5

2 m21|5 m22|5 m23|5 m24|5 m25|5

3 m31|5 m32|5 m33|5 m34|5 m35|5

4 m41|5 m42|5 m43|5 m44|5 m45|5

5 m51|5 m52|5 m53|5 m54|5 m55|5
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3 Results and discussions

3.1 Classic Markov chain

This paper analyzes the club convergence of the provincial carbon intensity in China’s

construction industry for the period of 2005 to 2014. Table 3 shows the transition prob-

ability matrix. In Table 3, the elements in the main diagonal represent the probability that a

province remains in their original class and does not move toward a new level over time,

while the elements outside the main diagonal correspond to the probability that a province

moves toward a new class.

To show the transition probability in different directions intuitively, this paper employs

‘‘upward,’’ ‘‘downward,’’ and ‘‘steady’’ to express the transitions states in different

directions, which is displayed in Fig. 1. The horizontal axis of this figure refers to the

classes of carbon intensity in the construction industry, including five classes: VL, L, A, H,

and VH. The vertical axis signifies the transition probability in different directions. An

upward state means that provinces from relatively low carbon intensity classes shift toward

higher classes, while a downward state means provinces from relatively high classes move

toward lower classes. The steady state signifies that provinces remain in their original

classes.

As shown in Table 3 and Fig. 1, provincial carbon intensity in China’s construction

industry has been globally characterized by ‘‘convergence clubs’’ from 2005 to 2014. The

following are three major characteristics.

First, the provincial carbon intensity in the construction industry forms five levels of

convergence clubs, namely VL, L, A, H, and VH. It is observed that the elements in the

main diagonal are relatively greater than the elements outside it. The probability of a

province with very low carbon intensity to maintain its original state is 0.875, and the

probability to move upward is 0.125. The probability of a province with low carbon

intensity to maintain its original state is 0.819, and the transition probability toward a

different class is 0.181. The probability of a province with an average carbon intensity to

maintain its original state is 0.614, with a 0.386 probability to move upward. The prob-

ability of a province with high carbon intensity to maintain original state is 0.873, and the

probability to move downward and upward is 0.127. The probability of a province with

high carbon intensity to keep its original state is 0.967, and the probability to move

downward is only 0.033.

The spatial dependence of provincial carbon emissions in the construction industry may

be caused by the flow of economic elements across provinces, innovation diffusion, the

technology spillover, and the liquidity of architecture production, which can further result

Table 3 Markov matrix for car-
bon intensity in China’s con-
struction industry, 2005–2014

t/t ? 1 n VL L A H VH

VL 48 0.875 0.104 0.021 0.000 0.000

L 72 0.056 0.819 0.125 0.000 0.000

A 57 0.018 0.228 0.614 0.140 0.000

H 63 0.000 0.000 0.095 0.873 0.032

VH 30 0.000 0.000 0.000 0.033 0.967

Bold values emphasize the probability to maintain its original state and
show the convergence characteristics more clearly
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in convergence. Meanwhile, there is obvious regional disparity among the modes of

production, industrial structure, the economic levels, and the technology levels, which

could be defined as innate or internal factors. External factors include the degree of

implementation of carbon-reduction policies and related policies in the construction

industry. The heterogeneity of innate factors and external factors, combined with the

interaction among these factors, may make it difficult for carbon emissions to converge to

the same equilibrium but, instead, converge to different clubs.

Second, very low-convergence and very high-convergence clubs have stronger stability

than other levels. The probability of a province to remain in very high carbon intensity

reaches 0.967, while the probability of a province to remain in very low carbon intensity is

0.875. The probabilities of low-convergence and high- convergence clubs are 0.819 and

0.873, respectively. Provinces have the minimum probability to remain in average carbon

intensity (0.614). The results can fully reveal stronger convergence across provinces with

very low and very high carbon intensity. This means that provinces with lower carbon

intensity can promote the investment of green building material, regenerative clean energy

techniques, and cleaning production measures because of their relatively higher economic

technical level, which contributes to the control of carbon intensity. The closure property

of regions in the construction industry leads to the weakened radiation effect of technology.

Due to their relatively backward technical and economic level, it is difficult for provinces

with higher carbon intensity to reduce their carbon intensity. This why convergence clubs

of very low and very high carbon intensity are more stable than other levels.

Third, the carbon intensity of a province is unlikely to achieve leaping movement

toward a non-adjacent level in a short period. Non-diagonal elements are extremely small,

and the maximum is 0.228, which accounts for 37.13% of the minimum in the main

diagonal. The elements that do not adjoin the main diagonal are less than 0.05, which

means that the provinces in the very low carbon intensity class rarely move toward to an

average class and above. Meanwhile, the provinces in the low class can hardly move

toward a high or very high class in a period of time. Likewise, it is difficult for the

provinces in the average class of carbon intensity to move toward a very high or very low

class. The results suggest that carbon intensity in the construction industry is the result of
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Fig. 1 Carbon intensity transitions probability in different directions in China’s construction industry,
2005–2014
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continuous development and unlikely to achieve leaping increasing and decreasing levels

in a short period, and most provinces change between two adjacent carbon intensity types.

3.2 Spatial distribution dynamics

To explore the performance of each province and the effect of its state transition on the

convergence and divergence of carbon intensity, this paper studies spatial patterns of

carbon intensity class and class transitions in China’s construction industry. Due to limited

space, this study displays the graphs of carbon intensity class for the years 2005, 2008,

2011 and 2014. Spatial patterns of carbon intensity class through time are shown in Fig. 2.

On the whole, the proportion of provinces with low carbon intensity in 2014 increased

compared with the proportion in 2005, indicating that carbon intensity in China’s con-

struction industry had gradually declined between the period 2005–2014. From a regional

view, carbon intensity in the north and northwest regions were located in the higher classes

for a long time. Carbon intensity in the Central China has decreased more significantly,

especially in the regions interacting with neighbors in the eastern coastal areas, having a

tendency to cluster in the low carbon intensity group. In the southern regions, carbon

intensity was generally located in the lower classes since the southeast areas have mature

Fig. 2 Spatial patterns of provincial carbon intensity class in China’s construction industry, 2005–2014.
a Carbon intensity class in 2005, b Carbon intensity class in 2008, c Carbon intensity class in 2011, and
d Carbon intensity class in 2014
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construction technology and higher economic level. From a provincial perspective, a group

with higher carbon intensity included Inner Mongolia, Xinjiang, and Shanxi et al. These

areas have rich energy resources and depend mainly on industries with high consumption

and high emissions.

Figure 3 shows carbon intensity class transitions of regions and neighbors and the

dynamics of the spatial distribution in China’s construction industry during the period

2005-2014. The state of upward means that provinces from relatively low carbon intensity

classes shift toward higher classes, while downward means provinces from relatively high

classes move toward lower classes. The state of steady signifies that provinces remain in

their original classes.

In Fig. 3, the provinces with an upward transition for carbon intensity were Xinjiang,

Heilongjiang, Ningxia, Shaanxi, Anhui and Tianjin, which are located in the Northwest

and North China. 3 provinces located in the northwest, accounting for half of all upward

transfer areas. In general, these areas have rich energy resources and solid industry

foundation. These areas have continuously provided resources and products for the con-

struction industry but also met the needs of the market for construction-related industries.

In addition, in order to promote construction industry development, these provinces mainly

depend on the expansion of the construction scale, and the input of technological inno-

vation and new material application is relatively limited. Likewise, the provinces with a

downward transition for carbon intensity were Liaoning, Jilin, Jiangxi, Guangxi and Hebei,

which are clustered in the Northeast and South China on the whole. These areas face the

Fig. 3 Spatial patterns of carbon intensity class transitions of regions and neighbors in China’s construction
industry, 2005–2014
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pressure from the slowdown of construction industry investment and supply-side structural

reform during the period of the economic transformation. Other provinces remain in their

original class are located in central China. The results reveal that there are remarkable

spatial clustering and regional convergence characteristics in China’s provincial carbon

intensity.

In terms of carbon intensity class transitions of neighbors, the provinces and their

neighbors transfer in the same direction account for 53.3% of all study areas. The pro-

vinces and their neighbors that all have a downward transition are Guangxi, Jilin and

Liaoning, but the provinces and their neighbors that have an upward transition show

inconsistent space expression. In addition, the provinces and their neighbors mostly remain

in their original classes. The above results suggest that carbon intensity class transitions in

China’s construction industry doesn’t exist in isolation and shows significant spatial

dependence. The carbon intensity class transitions of regions mostly tend to be consistent

with class transitions of their neighbors. This space mechanism may promote the spatial

agglomeration and regional convergence of provincial carbon intensity.

3.3 The Spatial Markov chain

Based on classical Markov chain, the spatial Markov chain is used to explore the influence

of spatially interacting on the carbon intensity transition probability, conditional to the

spatial interaction with the neighboring provinces.

Table 4 displays the probabilistic transition matrix of the provincial carbon intensity in

China’s construction industry conditioned to spatial dependence with neighboring regions.

Figure 4 shows the transition probability of five carbon intensity classes (VL, L, A, H, and

VH) with different spatial lags, which could reveal whether different regional backgrounds or

neighbors have different effects on the carbon intensity classes transition or not. The hori-

zontal axis of this figure refers to the classes of spatial lag, while the vertical axis refers to the

transition probability in different directions. ‘‘Upward,’’ ‘‘downward’’ and ‘‘steady’’ have the

same meaning to these three state in Fig. 1. Four characteristics are described as follows.

First, the spatial interaction between provinces has a significant effect on the convergence

clubs of carbon intensity in China. The transition probability of the provincial carbon

intensity differs when conditioned to spatial interaction with provinces located in the classes

with lower or higher carbon emissions. The transition probabilities of provincial carbon

intensity are different to the probabilities in the corresponding elements in the classic Markov

transition probability matrix. It indicated that the convergence of carbon intensity was

affected by spatial interaction across areas, including the labor and capital flows across

provinces, the liquidity of architecture production, the diffusion of knowledge and technol-

ogy, and the demonstration and incentive effect of policy on the geographical space.

Second, different regional backgrounds have different effects on the transition of carbon

intensity types. In the provinces that interact with neighbors located in high carbon

emissions groups, it can be appreciated that the probability to move upward will increase

and the probability to move downward will decrease. Contrarily, the probability to move

upward will decrease and the probability to move downward will increase when provinces

interact with neighbors in the lower classes. From 2005 to 2014, the probability of a

province with average carbon intensity to move upward is 0.140 and the probability to

move downward is 0.246, regardless of their neighbors. When a province with average

carbon intensity is adjacent to provinces with very high carbon intensity, the probability of

an upward transition increases to 0.75 and the probability of a downward transition
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decreases to 0. Meanwhile, if a province is adjacent to provinces with very low carbon

intensity, the probability to move upward decreases to 0.125 and the probability to move

downward increases to 0.625. As Anselin (1998) and LeSage and Pace (2009) pointed out,

the characteristics of a local region may rely on its neighbors. Some factors such as

technology, economic structure, and energy structure of a province have an obvious effect

on neighboring provinces, and these factors appeared as the main factor that influences

carbon emissions. This phenomenon could be interpreted as spatial spillover, which can

fully explain why the carbon emission of a province is influenced by its neighbors.

Third, the probability that the construction industry carbon intensity of a province is

moving upward or downward is not proportional to the degree of difference between the

region and the adjacent regions. Although carbon intensity class transitions of a region will

be significantly influenced by the carbon intensity of its neighbors, this effect does not

increase proportionately as the difference increases. During the period of 2005–2014, the

probability of a province with low carbon intensity to move upward is 0.053 when

Table 4 Spatial Markov matrix
for carbon intensity in China’s
construction industry, 2005–2014

Space lag t/t ? 1 2005–2014

n VL L A H VH

VL VL 28 0.929 0.036 0.036 0.000 0.000

L 18 0.000 0.833 0.167 0.000 0.000

A 8 0.125 0.500 0.250 0.125 0.000

H 4 0.000 0.000 0.000 0.750 0.250

VH 3 0.000 0.000 0.000 0.000 1.000

L VL 17 0.824 0.176 0.000 0.000 0.000

L 19 0.053 0.895 0.053 0.000 0.000

A 1 0.000 0.000 1.000 0.000 0.000

H 9 0.000 0.000 0.000 1.000 0.000

VH 2 0.000 0.000 0.000 0.000 1.000

A VL 3 0.667 0.333 0.000 0.000 0.000

L 20 0.150 0.750 0.100 0.000 0.000

A 23 0.000 0.261 0.696 0.043 0.000

H 23 0.000 0.000 0.087 0.870 0.043

VH 3 0.000 0.000 0.000 0.000 1.000

H VL 0 0.000 0.000 0.000 0.000 0.000

L 15 0.000 0.800 0.200 0.000 0.000

A 21 0.143 0.000 0.714 0.143 0.000

H 17 0.000 0.000 0.235 0.765 0.000

VH 4 0.000 0.000 0.000 0.250 0.750

VH VL 0 0.000 0.000 0.000 0.000 0.000

L 0 0.000 0.000 0.000 0.000 0.000

A 4 0.000 0.000 0.250 0.750 0.000

H 10 0.000 0.000 0.000 1.000 0.000

VH 18 0.000 0.000 0.000 0.000 1.000

Bold values emphasize the probability to maintain its original state and
show the convergence characteristics more clearly
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interacting with neighbors with low carbon intensity. If a province is adjacent to provinces

with average carbon intensity, the probability of an upward transition increases by 0.1. If it

is adjacent to provinces with high carbon intensity, the probability could be more greatly

increased (i.e., 0.2). The results indicate that the provinces with high carbon intensity are

limited in their economic power and the technical level of the construction industry is

relatively backward, which have a great effect on the surrounding area. Provinces with
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Fig. 4 Carbon intensity transitions probability with different spatial lags in China’s construction industry,
2005–2014. a Carbon intensity class: VL, b Carbon intensity class: L, c Carbon intensity class: A, d Carbon
intensity class: H, and e Carbon intensity class: VH
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high and low carbon intensity may lead to a more pronounced high-level and low-level

club convergence.

Fourth, the spatial Markov transition matrix could provide a spatial interpretation for the

phenomenon of club convergence. A province could be positively influenced by an

adjacent area with very low carbon intensity, and the probability to move downward will

increase. This may lead to club convergence of the lower carbon intensity level in China’s

construction industry. From 2005 to 2014, the probability of a province to maintain a very

low class of carbon intensity is 0.929, if it interacts spatially with the neighboring regions

initially located in the very low class. This probability is greater than the 0.875 probability

to remain in the very low class, irrespective of their neighbors. Likewise, a province could

be negatively influenced by an adjacent area with a very high carbon intensity and have a

greater probability to move upward, which may result in club convergence of the higher

carbon intensity level. The probability of a province with very high carbon intensity to

maintain its original state is 1 when interacting with regions also in the very high class.

This probability clashes with the 0.967 probability in Table 3 in the same period. The

spatial Markov matrix illustrates that the provinces have a greater probability to move

upward when interacting with neighbors in the higher classes, whereas the provinces have

a greater probability to move downward when interacting with neighbors in the lower

classes. This further explains the convergence phenomenon.

4 Conclusion

This paper investigates the club convergence and spatial distribution dynamics of pro-

vince-level carbon intensity in China’s construction industry during the period of

2005–2014, based on a classic Markov matrix and spatial Markov matrix.

From the global aspect, provincial carbon intensity in China’s construction industry is

characterized by convergence clubs from 2005 to 2014. The classic Markov matrix shows

that the levels of convergence clubs are very low, low, average, high, and very high. The

very low-level and very high-level convergence clubs have stronger stability than other

levels. In addition, the carbon intensity of a province rarely achieves a leaping transfer

toward a non-adjacent level in a short time. Through the spatial distribution, there are

significant spatial clustering and regional convergence characteristics in the provincial

construction industry carbon intensity. The provinces with an upward transition for carbon

intensity are clustered in northwest and north China, whereas the provinces with a

downward transition are located in the northeast and south China. Furthermore, the carbon

intensity class transitions of provinces tend to be consistent with the class transitions of

their neighbors. In terms of the spatial Markov matrix, the transition of carbon intensity

type in China is significantly influenced by their regional backgrounds. Provinces have a

greater probability to move toward higher carbon intensity classes when there is a spatial

association with the regions in the high classes, while the provinces have a greater

probability to move toward lower classes when interacting with neighbors in the lower

classes. However, the transition probability of carbon intensity is not proportional to the

difference between the province and its adjacent regions. These analyses provide a spatial

interpretation for the phenomenon of club convergence.

The empirical results indicated that considering spatial interaction and spatial distri-

bution is necessary for making and implementing emission reduction policies. The gov-

ernment should promote the communication and cooperation of information, technology,

experience, and resources among provinces, enhance the radiation effect of provinces with
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low carbon intensity through measures such as a trans-province green supply chain,

realizing the reduction of carbon emission inequality, accelerating collaborative emission

reduction. The provinces should undertake common but differentiated responsibilities.

In the less developed regions of China, heavy industry is the main impetus of economic

development, and energy efficiency in these regions is lower. Rapid economic develop-

ment and lower energy efficiency will cause carbon emissions to increase in rigidity, while

these less developed regions will suffer the mitigation of industrialization and urbanization

when cutting down carbon emissions because of their limited technologies and funds.

Favorable policies and measures should be implemented in these regions to enhance the

opening degree, thus accelerating the industrial structure adjustment and the reduction of

carbon intensity in these areas.

In more developed regions, the correlation between carbon emissions growth and

economic growth is relatively weak, which implies that the effect of emission reduction on

economic growth in these regions is smaller than that in less developed regions. More

developed regions should take more responsibility in energy conservation and emission

mitigation in the construction industry and help less developed regions to reduce carbon

emissions by providing them with experience and technologies. In addition, these regions

should also do more for cutting down their own carbon emissions.

Furthermore, in the methods section, this paper emphasizes the prospect of using spatial

analytical methods such as a spatial Markov chain and GIS in investigating the conver-

gence and spatial distribution dynamics of carbon emissions. The research method used in

this paper is not only confined to a specific country or industry. This method can also be

used in other countries, industries, and even the world for understanding the dynamics and

mechanisms of carbon emission disparity. Besides the energy economics field, other fields

such as education and health could consider this method to investigate inequality and

disparity in future studies.
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Appendix

See Table 5.

Table 5 Average low-order calorific value (NCV), carbon content per unit heat (A) and oxidation rate
(O) for different energy

Coal Coke Crude
oil

Gasoline Kerosene Diesel
oil

Liquefied
petroleum gas

Natural
gas

NCV (TJ/
104t)

209.08 284.35 418.16 430.70 430.70 426.52 501.79 3893.10

A(t/TJ) 26.37 29.50 20.10 18.90 19.50 20.20 17.20 15.30

O 0.94 0.93 0.98 0.98 0.98 0.98 0.98 0.99
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