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Abstract Landslides are natural disasters often activated by interaction of different con-

trolling environmental factors, especially in mountainous terrains. In this research, the

landslide susceptibility map was developed for the Sarkhoun catchment using Index of

Entropy (IoE) and Dempster–Shafer (DS) models. For this purpose, 344 landslides were

mapped in GIS environment. 241 (70%) out of the landslides were selected for the modeling

and the remaining (30%) were employed for validation of the models. Afterward, 10 landslide

conditioning factor layers were prepared including land use, distance to drainage, slope

gradient, altitude, lithology, distance to roads, distance to faults, slope aspect, Topography

Wetness Index, and Stream Power Index. The relationship between the landslide condi-

tioning factors and landslide inventory maps was determined using the IoE and DS models. In

order to verify the models, the results were compared with validation landslide data not

employed in training process of the models. Accordingly, Receiver Operating Characteristic

(ROC) curves were applied, and Area Under the Curve (AUC) was calculated for the

obtained susceptibility maps using the success (training data) and prediction (validation data)

rate curves. The land use was found to be the most important factor in the study area. The AUC

are 0.82, and 0.81 for success rates of the IoE, and DS models, respectively, while the

prediction rates are 0.76 and 0.75. Therefore, the results of the IoE model are more accurate

than the DS model. Furthermore, a satisfactory agreement is observed between the generated

susceptibility maps by the models and true location of the landslides.
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1 Introduction

Mass movement and landslide are considered significant potential damaging natural haz-

ards (Lee and Oh 2012). These movements occur under influence of natural and anthro-

pogenic factors and their study is considered significantly important for assessment,

prediction and zonation of potential landslides (Chen et al. 2016a, b). Landslide cause

damage to various engineering structures, residential areas, vital resources, power lines,

forests, rangelands, agricultural lands, mines and in consequence produces sediments and

muddy floods resulting in filling of dams. In addition to economic and environmental

effects created by occurrence of this phenomenon, social effects such as immigration and

unemployment should not also be ignored (Conforti et al. 2014; Nourani et al. 2014; Friedl

et al. 2015; Shirani 2017).

Landslide occurs annually in many countries such as Iran (Shirani 2017). Mountainous

regions cover extensive parts of Iran and accordingly landslide is considered a natural

hazard causing abundant life and property damages (ILWP 2007). Damages caused by

mass movements in Iran were studied and expenses were estimated to be 10 billion dollars

according to 4900 landslides occurred till September 2007 (ILWP 2007). According to

adverse effects of landslides on natural resources, rural/urban residential areas and struc-

tures and also erosion of significant volume of soil, thus detection and zonation of potential

lands and prediction of landslides are necessary to avoid this geohazard and also to develop

controlling and inhibition methods (Tien Bui et al. 2015, 2016). Employing GIS as a

principle interpretation tool associated with appropriate statistical models are very effec-

tive in landslide susceptibility zonation (van Westen 2000; Dai and Lee 2002). Generation

of landslide susceptibility map is one of the main activities during this process (Ngadisih

et al. 2016; Pourghasemi and Rossi 2017). Usage of data driven models for landslide

susceptibility zonation and prediction with appropriate accuracy require three main basics.

These principles are governed by three assumptions as follows (Guzzetti et al. 2005, 2012):

(1) Landslide inventory map (according to this fact that past and present events are keys or

guides for generalization and prediction of the future) (Varnes 1984; Guzzetti et al.

2005, 2012). (2) Appropriate selection of data or factors affecting the landslide (the data or

factors must have significant effect on landslide occurrence and meanwhile, they should be

independent of each other without any information overlap. and finally (3) selection of

appropriate models for generation of landslide susceptibility zonation map (Cruden and

Varnes 1996; Malamud et al. 2004; Gokceoglu and Sezer 2009; Guzzetti et al. 2005, 2012).

Of course, in spite of great progresses made in landslide hazard mapping, there still exist

some limitations (van Westen et al. 2006). So far, different data driven approaches have

been proposed for landslide susceptibility and hazard zonation. The methods are catego-

rized into definitive (deterministic) and probabilistic (non-deterministic) (Yilmaz 2009).

The non-deterministic methods are based on various heuristic, bivariate (Süzen and

Doyuran 2004b; Yalcin 2008) and multivariate (Süzen and Doyuran 2004a; Akgun and

Bulut 2007) statistical analyses and also probabilistic (Lee and Talib 2005; Lee and Pradhan

2007; Akgun et al. 2008) and knowledge based (Yesilnacar and Topal 2005; Falaschi et al.

2009) methods. Certainty Factor (CF) function (Lan et al. 2004) and Weight of Evidence

(WoE) (Bonham-Carter 1994; Lee and Choi 2004; Zhu and Wang 2009; Pradhan et al.

2010; Pourghasemi et al. 2012a) are examples of bivariate methods, while Dempster–Shafer

(DS) (governed by Bayesian theory) (Tangestani 2009; Park 2011; Althuwaynee et al. 2012;

Mohammady et al. 2012; Pourghasemi et al. 2012b) and also Index of Entropy (IoE) Shanon

model (Vlcko et al. 1980; Bednarik et al. 2010; Lee et al. 2012; Pourghasemi et al. 2012a;

Sharma et al. 2012) are considered as probabilistic methods.
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Nowadays, capability of various bivariate (Chen et al. 2014, 2015, 2017d; Rahmati et al.

2016; Ding et al. 2017; Hong et al. 2016, 2017), multivariate (Youssef et al. 2015; Chen

et al. 2017d, f, h, i), probabilistic (Regmi et al. 2014a, b; Chen et al. 2015, 2016b, 2017b, c;

Wang et al. 2015, 2016; Youssef et al. 2016), knowledge based (Chen et al. 2017a, e, g),

IoE (Wang et al. 2015; Chen et al. 2017b, c; Hong et al. 2017; Naghibi et al. 2015;

Tsangaratos et al. 2017) and DS methods (Chen et al. 2016b, 2017f; Hosseinpour et al.

2016; Wang et al. 2016; Jirousek and Shenoy 2017) for generation of landslide suscepti-

bility maps are still assessed and compared with each other by the researchers.

DS and IoE theories are both important for uncertainty quantification of informational

systems. DS theory was initially developed by Dempster employing upper and lower

probabilistic concepts and then Shafer introduced it as a hypothesis. Existence of uncer-

tainty makes evident differences of assessment and comparison between IoE and DS

theories in natural systems. Reason for usage of DS model is its advantage for analysis of

uncertainties with respect to conventional theories (Pourghasemi et al. 2012a; Chen et al.

2017f). Moreover, frequent examples of encounter with uncertainties in natural systems

and also representation and combination of various evidences obtained from multiple

sources are other advantages of this method (Pourghasemi et al. 2012a; Chen et al. 2017f).

On the other hand, IoE approach is one of the significant means of uncertainty measure-

ment in finite series of evidences by their probability distribution function. The incon-

sistency between the possible distribution of evidence sources can be determined through

this model (Park 2011; Liu et al. 2015; Wang et al. 2016). According to the mentioned

various advantages of the models, comparison between these models still needs to be

studied. Assessment and comparison of the models can provide advantageous and valid

results for the landslide susceptibility zonation of natural systems.

The Sarkhoon basin located in Chaharmahal and Bakhtiari province and the Zagros

structural zone, holds specific environmental and active geological characteristics (Dar-

vishzadeh 1991) make it susceptible to landslide occurrence. Different landslide suscep-

tibility analysis methods examined in Iran have been mainly concentrated in north of the

country associated with the Alborz structural zone. Therefore, the Sarkhoon basin was

selected for the analysis and comparison of the statistical models according to different

environmental and geological characteristics of the Zagros region with respect to the

Alborz mountainous area. No zonation of landslides has been carried out for the basin and

comparison between DS and IoE models were not also fully examined. Accordingly, the

main objectives of this research are development, assessment and validation of landslide

susceptibility map for the Sarkhoon basin through DS and IoE models employing landslide

conditioning factors. The relative importance of the landslide conditioning factors was also

examined.

2 Materials and methods

2.1 Study area

The study area with an approximate areal extent of 3293 km2 is located in the southwest of

the Chaharmahal and Bakhtiari Province (N31�370–31�510; E50�250–50�430), Iran (Fig. 1).

The main population center of the basin is Sarkhoun village located in central part of the

basin. The area is heterogeneous regarding various climatic regimes and terrain com-

plexity. The rainfall regime is inhomogeneous, with less frequent long periods of heavy
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rainfalls. The disastrous river flooding and abundant landslides occurring on slopes were

resulted from very intense precipitation. The annual precipitation of the catchment is

600 mm, and the distribution of monthly precipitation is homogenous (Shirani 2017).

According to 30 years of climatic measurements in the Sarkhoun catchment, February and

Fig. 1 Landslides location on hill shaded map of the study area
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August are, respectively, the coldest and hottest months with average temperatures of 2.3

and 27.6 �C, respectively (http://www.irimo.ir).

The study area structurally occurs in High Zagros structural zone within the Zagros

mountain range. The region mainly includes high mountains and deep valleys (with north-

northwest and south-southwest trends). Relatively smooth morphology with relatively

extensive plains only extend from central to southern part of the basin. Several secondary

faults are distributed in the area created by action of the Zagros main thrust fault. The faults

are mainly reverse or strike-slip. An irregular and rare folding influenced by the faulting is

observed in the area. The basin is considered sub-basin of the Karoon basin with main

stream of Sarkhoun river. The river is 35 km long and height of its upstream and down-

stream are 3383 and 1015 meters, respectively. The river route is northwest-southeast in

trend (Shirani 2017).

The basin is relatively a residential (rural and nomadic) area and the main connection

road between two important cities (Shahrekord and Ahwaz) also passes through this basin.

Landslide occurrence is currently considered the main natural hazard in the basin due to its

specific geological, climatological and geomorphological conditions and also human

effects.

2.2 Methodology

As indicated in the flowchart (Fig. 2), the research was carried out in 5 stages: (1) col-

lection and preparation of the required data including selection of the landslide condi-

tioning factors (10 factors were selected), preparation of the landslides inventory map and

Fig. 2 Flowchart of the research methodology
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division of the data into two groups (70% for training and 30% for validation) (2) pro-

viding a database containing generation and classification of landslide conditioning factor

maps, preparation of geodatabase including landslide conditioning factors and the landslide

inventory map (3) testing of conditional independence of the landslide conditioning factors

by overlay of every landslide conditioning factor map on the landslide inventory map,

calculation of CF approach, testing of conditional independence the landslide conditioning

factors and multi-collinearity between the data (4) preparation of weighted maps by

implementation of the models (DS and IoE) and generation of the landslide susceptibility

map based on the models employing the landslide inventory map (70% of the data) (5)

validation of the models and their comparison by means of the landside inventory map

(30% of the data) and selection of the most appropriate landslide susceptibility map based

on the Area Under Curve (AUC) related to curve of the Receiver Operating Characteristic

(ROC).

2.2.1 Data collection and interpretation

The required data of the research was partly provided by existing information and maps

prepared by organizations and another part was generated according to field investigations.

The lithology and distance to fault factor maps were derived from the 1:100,000 geological

map prepared by Geological Society of Iran (GSI) (http://www.gsi.ir/). The land use factor

was extracted from the land use map prepared by Iranian Soil Conservation and Watershed

Management Research Institute (https://www.scwmri.ac.ir). The LANDSAT-7 image

archived by USGS with 30 meters spatial resolution for visual and 15 meters for

panchromatic bands (https://earthexplorer.usgs.gov/) and also aerial photographs taken by

Iranian National Cartographic Center (http://www.ncc.org.ir) were employed to generate

precise maps of lithology, fault and land use factors. DEM-SRTM with 30 meters spatial

resolution (http://dwtkns.com/srtm30m/) was used to derive altitude, slope gradient, slope

aspect, drainage, TWI and SPI factor maps. The road factor map with 1:50,000 scale was

obtained from National Geographic Organization of Iran (www.ngo-org.ir). The archive of

landslides inventory map of Isfahan Agricultural and Natural Resources, Research and

Education Center (http://esfahan.areeo.ac.ir/) associated with the Google Earth satellite

images were used to prepare and complete the landslide inventory map. Google Earth pro

7.8, ENVI�5.3, ArcGIS�10.4 and also the ArcHydro�10.4 toolbox were employed to

prepare and process the required data of the factors for landslide susceptibility assessment.

SPSS�24 and Microsoft Excel�2016 were also used for the exploratory, statistical and

validation analyses.

2.2.2 The landslide inventory map

Accuracy of the landslide occurrence data is very important for landslide susceptibility,

hazard, and risk assessments. Accordingly, the first step in these analyses is landslide

inventory mapping (Chen et al. 2016a, 2017c, d). The landslide inventory map displays

characteristics and locations of landslides associated with past movements. Landslides are

controlled by geological, topographical and climatic factors. Therefore, location and

condition of future landslides can be predicted based on these factors. For this purpose,

determination of accurate location and areal extent of landslides is prominent for prepa-

ration of landslide susceptibility maps (Yalcin 2008). Variety of sources, instruments and

methods have been suggested for landslide mapping (van Westen et al. 2008) and the

landslide susceptibility assessment is carried out in various phases as well. Identification
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and evaluation of landslide prone areas is an initial phase for preparation of an inventory

landslide map. Various approaches such as field studies, interpretation of aerial pho-

tographs/satellite images, and also historical landslide records are used for landslide

inventory mapping. Widespread mass movements occurred in the study area play a sig-

nificant role in the landslide assessment.

344 landslides were identified and analyzed by field surveys, aerial photographs, and

satellite images and then boundaries of the landslides were mapped. The research uses the

landslide classification developed by Varnes (1978) and Hungr et al. (2014). Landslide

types of the study area include 109 (32%) transitional slides, 99 (29%) rotational slides, 46

(13%) complex, 48 (14%) debris flows, and 41 (12%) surface landslide with a total areal

extent of 17,699,977 m2 (Figs. 1 and 3). Transitional and rotational landslides are very

common in the study area (Fig. 3a, b). The analysis on sizes of landslides shows that areal

Fig. 3 Photographs of different landslide types occurred in the study area, a the rotational, b the complex,
c the surface, d the rockfall, e the debris flow, f the transitional
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extents of the smallest and largest landslides are about 72.58 and 1,064,370 m2, respec-

tively, with an average about 26,572.7 m2. Most landslides are shallow-seated. The areal

extent of landslides was used to map the landslide susceptibility.

Geo-environmental features can be used as landslide conditioning factors to predict

landslides occurrence in the future (van Westen et al. 2008). The conditioning factors are

selected based on study area characteristics, analysis scale and type of landslides. The most

common mentioned conditioning factors in the literature were used in the study to assess

the landslide susceptibility. The dates of landslide occurrences are almost unknown. 241

landslides (70%) were randomly selected for implementation and 30% (103 landslides)

were employed for validation of the model. The non-landslide points were randomly

selected using ArcGIS�10.4 software. The number of non-landslide points is equal to that

of landslide points, and they were randomly divided into two parts (70/30) for verification

of the models. Afterward, the landslide susceptibility map of the Sarkhoun catchment was

produced through the IoE and DS models and then it was validated by the ROC curve

analysis.

2.2.3 Landslide conditioning factors

Different and various factors are decisive in landslide occurrence and subsequently

preparation of landslide susceptibility map (Varnes 1984; Youssef et al. 2015). Some

factors have triggering effect. These factors are classified into two major and secondary or

subsequent groups (Varnes 1984; Guzzetti et al. 2005). According to the literature, these

groups fall into 4 categories of geomorphological, geological, hydrological and anthro-

pogenic (Varnes 1984; Youssef et al. 2015; Pourghasemi and Rossi 2017). Selection of

landslide conditioning factors is a fundamental step in zonation and assessment of land-

slide susceptibility (Hong et al. 2017). In the literature, intrinsic factors of slope, slope

aspect and lithology have been usually considered consistent with landslide susceptibility,

while selection of other factors such as land use, road and drainage is under debate yet.

Selection of landslide conditioning factors for every region depends on type of occurred

landslides, geographical characteristics and the analysis techniques (Tien Bui et al.

2015, 2016; Hong et al. 2017). In various landslide susceptibility assessments, number of

employed conditioning factors varies from few (Pradhan et al. 2010; Akgun et al. 2012;

Tien Bui et al. 2015) to several (Catani et al. 2013; Dou et al. 2015; Meinhardt et al. 2015).

Anyhow, consideration of several factors in a landslide susceptibility zonation model will

not necessarily lead to high quality prediction results (Pradhan and Lee 2010; Hong et al.

2017). Sometimes, quality of results of models reduces with inclusion of noise factors

(Tien Bui et al. 2015; Hong et al. 2017).

10 landslide conditioning factors were selected according to the literature, conditional

independence test (Lee and Talib 2005; Xu et al. 2012a, b; Pradhan 2013; Jebur et al. 2014;

Tien Bui et al. 2015; Chen et al. 2014, 2015, 2016b, 2017d; Hong et al. 2016, 2017;

Kornejady et al. 2017; Pourghasemi and Rossi 2017), analysis of the recorded landslide

inventory map and also geographical condition of the study area. The selected conditioning

factors are frequently used for landslide susceptibility assessments (Pourghasemi and Rossi

2017). These factors include altitude, lithology, distance to fault, slope aspect, distance to

road, distance to drainage, land use, slope gradient, TWI and SPI. The landslide condi-

tioning factors (independent variables) are either categorical or numerical variables. Cat-

egorical variables (lithology and land use) were reclassified based on the related thematic

information (Calvello and Ciurleo 2016; Chen et al. 2017c). The numerical variables with

normal (altitude, slope aspect and TWI) and non-normal (slope gradient, distance to fault,
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distance to road, distance to drainage and SPI) distributions of pixel frequency were

classified based on Natural Breaks and Geometrical Intervals classification methods,

respectively (Pourghasemi et al. 2012b; Calvello and Ciurleo 2016; Chen et al. 2017c;

Pourghasemi and Rossi 2017; Tsangaratos et al. 2017) through ArcGIS�10.4 environment.

Natural Breaks algorithm of pixel frequency was used for the landslide susceptibility map

generation because of normal distribution of the data.

Slope instability is directly affected by geomorphometric parameters and geomorpho-

logical processes. Therefore, six parameters (altitude, slope aspect, distance to drainage,

slope gradient, TWI and SPI) out of all parameters were generated from the DEM map.

DEM map of the study area was extracted from SRTM data (http://dwtkns.com/srtm30m)

with 30 meters spatial resolution. The maps were prepared in the ArcGIS�10.4

environment.

Altitude is another parameter commonly employed in the landslide susceptibility

analysis (Pachauri and Pant 1992). Landslides can situate within a specific relief range and

the relative relief can be obtained from the altitude map. The altitude map was categorized

into five categories of\ 1500, 1500–2000, 2000–2500, 2500–3000 and[ 3000 m

(Fig. 4A).

Slope aspect is also a significant parameter for landslide susceptibility mapping (Yalcin

2008). This parameter actually implements some microclimatic factors such as sunlight

exposure, wet or dry winds and rainfall intensity which all control material properties of

slope aspect and cause difference in soil moisture and subsequently prepare suitable con-

dition for slope instability (Yalcin 2008; Pourghasemi et al. 2012a; Pourghasemi and Rossi

2017). The slope aspect map was reclassified into 8 categories (Jebur et al., 2014; Wen and

He 2012; Hong et al. 2017) including north (0�–22.5� and 337.5�–360�), northeast (22.5�–
67.5�), east (67.5�–112.5�), southeast (112.5�–157.5�), south (157.5�–202.5�), southwest

(202.5�–247.5�), west (247.5�–292.5�) and northwest (292.5�–337.5�) (Fig. 4D).

Slope gradient is a highly important factor affecting slope instability (Lee and Min

2001) and this parameter is often employed in assessment of landslide susceptibility

(Anbalagan 1992; Yalcin 2008), because whatever slope gradient increases, shear stress

increases too (Guillard and Zezere 2012). Slope gradient correlates with gravity. Therefore,

landslide occurrence probability basically increases with increase in slope (He et al. 2012;

Chen et al. 2015; Youssef et al. 2015). The slope gradient (in percentage) map was

reclassified into 5 categories of 0–12, 12–25, 25–40, 40–70 and[ 70% (Fig. 4H).

The drainages and rivers have significant role in slope instability especially in moun-

tainous regions due to water flow and consequently outwash of embankments (Yalcin

2008; Pourghasemi et al. 2012b; Devkota et al. 2013; Chen et al. 2017c). Therefore, this

factor was extracted from the DEM map through ArcGIS�10.4 environment. The map was

reclassified into 5 category including 0–200, 200–500, 500–700, 700–1000 and[ 1000 m

classes (Fig. 4F).

TWI and SPI are both the most standard indices representing combinational effects of

topography and hydrology of watersheds on either erosion or conservation of soils (Moore

et al. 1991). The erosive power of running water flow is expressed by SPI index. The

discharge is assumed proportional to specific catchment area (As) based on this index

(Moore et al. 1991) and it is calculated as follows:

SPI ¼ As � tan r ð1Þ

In equation, r is slope angle (in degrees). SPI represents gravity force action on sedi-

ments and it is accordingly consistent with solid grains motion. It can increase slope
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Fig. 4 The maps of landslide conditioning factors generated for the analysis of landslide susceptibility:
A altitude; B lithology; C distance to faults; D slope aspect; E distance to road; F distance to drainage;
G land use; H slope gradient; I Topography Wetness Index (TWI); J Stream Power Index (SPI)
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instability in direction of the slope (Pourghasemi et al. 2012a; Regmi et al. 2014a). The SPI

map was reclassified into 5 categories of 0–100, 100–200, 200–300, 300–400 and[ 400

(Fig. 4I) in the ArcGIS�10.4 environment based on Eq. 1.

The Topography Wetness Index (TWI) implements effect of topography on size and

location of saturated source areas of runoff initiation (Moore et al. 1991):

TWI ¼ ln
a

tanr

� �
ð2Þ

Uniform soil properties and steady state conditions are assumed for this index, a is

cumulative upslope area which drains to a point (per unit contour length) and r is slope

angle (in degrees). TWI is function of actions of slope and flow direction. Therefore, this

factor can also be significant in slope instability (Pourghasemi et al. 2012a; Regmi et al.

2014a). The TWI map was categorized into 5 classes of\ 10, 10–15, 15–20, 20–25

and[ 25 based on Eq. 2 in the ArcGIS�10.4 environment (Fig. 4K).

Slope stability is also influenced by changes in land use by human (Van Beek and Van

Asch 2004; Lee and Sambath 2006; Yalcin 2008; Pourghasemi and Rossi 2017), hence,

this parameter was considered in landslide susceptibility assessment. In order to increase

precision of the land use factor map, map of various types of land use was prepared in the

ENVI�5.3 environment by means of LANDSAT 7/ETM ? image of 2002 and unsuper-

vised classification (IsoData). 11 categories with classification precision of 87.5% were

recognized through field visits and employing GPS. The categories include agricultural

usage (agri), orchard and agriculture (orch-agri), orchard (orchard), mixing water farming

(mix(dryfarming_x), mixing thin forest, mix(lowforest_x), thin forest (lowforest), semi-

dense forest (modforest), woodland (woodland), poor rangeland (poorrange), semi-dense

rangeland (midrange), rock outcrop (rock) and residential area (urban) (Fig. 4G).

Construction of roads in mountainous areas is another anthropogenic factor and it

changes equilibrium of hillslopes. According to mountainous condition of the study area,

construction of roads has been considered as another landslide condition factor (Pour-

ghasemi et al. 2012b; Devkota et al. 2013; Chen et al. 2017c). The road map was prepared

by means of the 1:50,000 topographic map produced by National Geographic Organization

of Iran (www.ngo-org.ir). Geometry of the road layer has initially been line vector. The

map was converted to distance to road map and then it was reclassified into 5 categories of

0–700, 700–1500, 1500–3000, 3000–4500 and[ 4500 m in the ArcGIS�10.4 environment

(Fig. 4E).

Various lithological units have different landslide susceptibility degree and lithology is

considered the most significant parameter in landslide susceptibility assessments (Yesil-

nacar and Topal 2005). Geotechnical characteristics of various lithologies can affect slope

instability in mountainous regions due to their mechanical specifications and different

erosional actions (Yesilnacar and Topal 2005; Devkota et al. 2013). The lithological map

was prepared using geological maps of Ardal and Dehdez in 1:100,000 scale provided by

Geological Society of Iran (GSI) (http://www.gsi.ir/). The LANDSAT 7/ETM ? image of

2002 was employed to correct boundaries of the lithological units. The required processing

on the images including construction of false color composite images (7, 4 and 2 bands)

with 2% linear enhancement was performed in ENVI�5.3 environment. The lithological

map was reclassified into 11 categories including Jds (Jurassic dolomite and dolomitic

limestone of Sormeh formation), Kldf (Cretaceous medium thickness limestone layers of

Fahlian-Darian formation), Klk (Cretaceous shale and limestone of Kazhdoumi formation),

Kmg (Cretaceous marl and limestone of Gourpi formation), Ksi (Cretaceous limestone
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with shale intercalations of Sarvak and Ilam formations), Mmm (Tertiary marl of Mishan

formation), Mplsma (Tertiary sandstone and marl of Aghajari formation), Plcb (Tertiary

conglomerate and sandstone), Edj (Tertiary stratified dolomite of Jahrom formation), Mmg

(Tertiary marl and gypsum of Gachsaran formation) and Q (Quaternary alluvial deposits)

(Fig. 4B).

Fault as a trigger factor also causes displacement, change of base level and slope

instability especially in sloping area due to causing rupture in rock mass (Devkota et al.

2013; Conforti et al. 2014). Accordingly, line vector layer of faults was extracted by means

of digital map of active faults of Iran prepared by Geological Society of Iran (GSI) (http://

www.gsi.ir/). As geometry of the map was line vector layer, it was converted to the

distance to fault map and then it was categorized into 5 classes of 0–500, 500–1500,

1500–2500, 2500–3500 and[ 3500 m (Fig. 4C) in the ArcGIS�10.4 environment.

Finally, all the maps including landslide inventory map and layers of the landslide

conditioning factors were converted into raster where necessary and then they were saved

in a personal geodatabase with 30 9 30 pixel size for later processing. The division

thresholds of every class and number of classes in the raster factor maps (distance to fault,

distance to road, distance to drainage, altitude, TWI, SPI, slope gradient and slope aspect)

are based on previous studies, probability distribution of pixel frequency of every map and

considering geographical condition of the study area relative to the distribution of occurred

landslides.

2.2.4 The independence analysis of landslide conditioning factors

Before employing landslide conditioning factors and their combination for the landslide

susceptibility map preparation based on the models, it is required that the conditional

independence between the employed data to be examined. If the data are conditionally

independent, they can be used in the models. Various statistical tests are carried out to

analyze correlation between landslide conditioning factors. Principal Component Analysis,

pairwise comparison and logistic regression are examples of these tests (Lee and Choi

2004; Pradhan et al. 2010; Regmi et al. 2010). As the data or landslide conditioning factors

are normally as well as non-normally distributed, therefore non-parametric statistical

analyses of pairwise comparison (Chi-square) and multi-collinearity were used (Tsan-

garatos and Ilia 2016; Tsangaratos et al. 2017).

2.2.4.1 Chi-square test for conditional independence analysis The non-parametric sta-

tistical analysis determines the conditional independence of conditioning factors based on

pairwise comparison by Chi-square test (Pradhan et al. 2010; Regmi et al. 2010). For this

purpose, all factor maps were initially analyzed and calculated based on the landslide

inventory map, engineering judgement and weights calculated by overlay of the landslide

inventory map on every map of landslide conditioning factors through CF approach (Lee

and Choi 2004; Regmi et al. 2010). The weighted maps resulted from the CF approach

were converted to binary maps (with 0 and 1 codes). For generating the binary patterns,

code of 1 was assigned to classes of the factor maps containing positive weights repre-

senting presence of landslide occurrence and negative weights were assigned code of 0 for

absence of landslide. The Chi-square among every pairwise binary factor (with 0 and 1

codes) was calculated with one freedom degree and 99% confidence level for all 10 factors

with binary pattern through construction of 2 by 2 contingency tables according to pres-

ence (code of 1) and absence (code of 0) of landslide occurrence. The Chi-square values
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greater than the Chi-square theoretical value (6.64) indicate lack of significant difference.

Therefore, the pairwise factors with correlation or absence of conditional independence

should not be used with each other for preparation of landslide susceptibility map. The

Chi-square values between factors were calculated by Eq. 3.

X2 ¼
Xi¼n

i¼0

ðOi � EiÞ2

Ei

ð3Þ

Oi and Ei are the observed and expected landslide frequencies in each class of binary

factors, respectively (Regmi et al. 2010). For calculation of Ei, the marginal observed

frequencies (horizontal and vertical rows of the contingency table) were multiplied by each

other and then divided by the total landslide occurrences.

2.2.4.2 Multi-collinearity analysis Multi-collinearity analysis estimates correlation

between independent variables (Dormann et al. 2013; Tien Bui et al. 2015). Two important

indices of Tolerance (TOL) and Variance Inflation Factor (VIF) are used for multi-

collinearity analysis during implementation of the model (Marquardt 1970; Weisberg and

Fox 2010; Tien Bui et al. 2015; Pourghasemi and Rossi 2017; Tsangaratos et al. 2017).

Although, there is no definite law for thresholds of TOL and VIF values for the analysis

and estimation of multi-collinearity of landslide conditioning factors (Tsangaratos et al.

2017), but according to the literature, if VIF\ 5 or 10 and TOL[ 0.1 or 0.2, then there is

no problem of collinearity and the variables are independent (Menard 2002; O’brien 2007;

Van Den Eeckhaut et al. 2006, 2010; Guns and Vanacker 2012; Schicker and Moon 2012;

Tsangaratos and Ilia 2016; Hong et al. 2017; Pourghasemi and Rossi 2017).

2.2.5 Certainty Factor model

In this research, CF model was used as a bivariate statistical analysis to evaluate corre-

lation between landslides and the different conditioning factors. The calculated weights by

this model were also used for preparation and conversion of landslide conditioning factor

maps into binary maps (0 and 1 for classes with negative and positive weights, respec-

tively) in order to implement conditional independence analysis.

CF is one of the favorable functions for management of input variables uncertainty in rule

based systems and usage of heterogeneous data (Chung and Fabbri 1993; Pourghasemi and

Rossi 2017). Among bivariate statistical methods, CF approach performs more precisely

(Chung and Fabbri 1993; Binaghi et al. 1998; Luzi and Pergalani 1999). This model resolves

combination problem of heterogeneous data layers. The manner of integrating maps into the

model is the main difference between this model and other bivariate models. In this method,

maps are initially classified and then weight of every pixel is obtained from Eq. 4:

F ¼
PPa�PPs

PPa 1�PPsð Þ if ! PPs > PPs

�PPa�PPs

PPs 1�PPað Þ if ! PPa � PPs

2
4

3
5 ð4Þ

PPa is ratio of number of landslide pixels in a class to total pixels of that class. PPs is ratio

of total landslide pixels of the area to total pixels of the map. Each class is quantified

between - 1 and ?1 by means of this formula. If value of the class is positive, it indicates

that landslide occurrence certainty is high while, the value is negative, it means that

certainty of landslide occurrence is low. If value of that class is zero, it means that enough
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information does not exist for the variable and there is uncertainty in landslide occurrence.

The 10 factors were weighted as independent variables for analysis of correlation between

landslide conditioning factors using the CF approach. Then CF is implemented in the

modified linear regression as dependent variable for multi-collinearity test.

2.2.6 Dempster–Shafer model

A discernment frame can be examined according to the DS evidence theory for the

landslide susceptibility analysis (Dempster 1967; Shafer 1976; Mohammady et al. 2012):

m ¼ 2H ¼ /; TP; �TP;H½ � with H ¼ TP; �TP½ � ð5Þ

where TP is the target to be affected by future landslides at pixel P and �TP is opposite target

proposition will not be influenced by future landslides at each pixel P (Park 2011).

This model is a generalized form of Bayesian probabilistic theory (Wang et al. 2016).

Advantage of this model is its capability in combining beliefs from several conditioning

factors and its relative flexibility in consideration of uncertainty (Bui et al. 2012; Wang

et al. 2016).

For landslide susceptibility analysis, the DS theory defines mass functions using rela-

tionships between input conditioning factors and the known landslides. In this study,

susceptibility analysis and likelihood ratio functions were used to calculate the mass

function to distinguish susceptible and non-susceptible regions. The ratio of susceptible

and non-susceptible functions can emphasize on their contrast. When multiple spatial data

layers exist in the region, each data layer is selected as evidence Bi (i = 1, 2, …, l) for the

proposed target TP. The likelihood ratio k TPð ÞBij for verification of the proposed positive

target is as follows (Park 2011; Pourghasemi et al. 2012b):

k TPð ÞBij ¼
N A\Bijð Þ

N Að Þ
N Bijð Þ�N A\Bijð Þ

N Cð Þ�N Að Þ

ð6Þ

where Bij is the jth attribute class of the evidence Bi and N A \ Bij

� �
is the number of

landslide pixels occurred in Bij, N Bij

� �
is density of pixels in Bij, N Að Þ is total number of

landslides happened in the study area, and N Cð Þ is number of pixels in the whole study

area C. The numerator is the ratio of landslides occurred in the attribute Bij and the

denominator is the ratio of non-susceptible areas in this attribute. Consequently, the

likelihood ratio to support proposition of the opposite target is as follow:

k �TPð ÞBij
¼

N Að Þ�N A\Bijð Þ
N Að Þ

N Cð Þ�N Að Þ�N Bijð ÞþN A\Bijð Þ
N Cð Þ�N Að Þ

ð7Þ

The numerator and denominator are ratios of non-susceptible and susceptible regions

for the attribute Bij. All likelihood ratio values of class attributes of the evidence Bi divide

the likelihood ratios to meet the standardization condition (Eq. 7), and also to consider

relative importance within the class attribute (Park 2011):
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m ¼ 2H ! 0; 1½ � m /ð Þ¼0P
T�HM Tð Þ¼1

�
ð8Þ

m TPð ÞBij
¼

k TPð ÞBijP
k TPð ÞBij

Belief functionð Þ ð9Þ

m �TPð ÞBij
¼

k �TPð ÞBijP
k �TPð ÞBij

Disbelief functionð Þ ð10Þ

Uncertainty functionð Þ m Hð Þ ¼ 1 � m TPð ÞBij
� m �TPð ÞBij

ð11Þ

The belief function for supporting the positive target preposition is obtained from the

mass function m TPð ÞBij
based on Eq. 9. 1 � m TPð ÞBij

can be used to compute the plausi-

bility function. The constraints related to occurrence of landslide are applied separately to

define the belief and plausibility functions based on the likelihood ratio functions.

As Dempster–Shafer theory is the basis of evidence function estimation (Liu et al.

2015), therefore this model is a combination of belief, disbelief, uncertainty and plausi-

bility functions and they range from 0 to 1 (Amiri et al. 2014). Upper and lower boundaries

of probability are belief (equivalent to mass function, m �TPð ÞBij
) and plausibility, respec-

tively (Althuwaynee et al. 2012; Wang et al. 2016). Uncertainty function m hð ÞBij
(Eq. 11)

is difference between belief and plausibility. Disbelief function (Eq. 10) is belief to lack of

correctness based on existing evidences (Awasthi and Chauhan 2011; Althuwaynee et al.

2012; Bui et al. 2012) which results from plausibility difference from 1. Therefore,

summation of belief, disbelief and uncertainty function values equals 1 (Wang et al. 2016).

No belief in the proposed target (i.e., mðTPÞBij
¼ 0) is when landslides have not occurred

in the attribute Bij. Anyhow there is uncertainty in the landslide studies and this does not

mean disbelief in its complement m �TPð ÞBij
. Therefore, m �TPð ÞBij

and consequently m hð ÞBij

are set to 0 and 1, respectively. Landslide occurrences are related to the second comple-

mentary constraint. In some cases, such as flat areas, the first constraint cannot be directly

employed. In this situation, landslides cannot occur (zero slope) and there is no belief in

m TPð ÞBij
. The disbelief and m hð ÞBij

are set 0 and 1 based on the first constraint, but the

disbelief should be set to 1 based on the second constraint. Therefore, m TPð ÞBij
and m hð ÞBij

are considered 0, and m �TPð ÞBij
is 1 in flat areas (Park 2011).

As DS model is generalized form of Bayesian theory, therefore natural logarithm of

probability ratio (k TPð ÞBij) and its opposite (k TPð ÞBij) are equivalent to positive and

negative weights, respectively, in Weight of Evidence (WoE) model (another modified

method of Bayesian theory) (Bonham-Carter 1994; Park 2011).

Consequently, the sum of logarithms of the likelihood ratio (Eq. 6) and opposite target

(Eq. 7) is equivalent to the final weight of the WoE model. Therefore, they can be used as

alternatives for verification of weights calculated by this model to prepare and convert the

landslide conditioning factor maps into binary maps (negative and positive weighted

classes equal with 0 and 1, respectively). We can also use them in order to implement the

conditional independence test.

The landslide susceptibility map of the study area was eventually calculated based on

implementation of the DS model and weighting of landslide conditioning factors and also
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algebraic summation of belief function values (Eq. 12). All the landslide conditioning

factors were calculated in the ArcGIS�10.4 environment.

LSIðDSÞ ¼
Xn

j¼1
ðBelÞij ð12Þ

where LSIðDSÞ is landslide susceptibility index for DS model and ðBelÞij is belief value of

class i in parameter j, and n is number of variables.

2.2.7 Index of Entropy model

The entropy computed based on Shannon (1948) considers the frequency of various cat-

egories of each factor and thereby highly reduces their unevenness and provides a practical

and realistic metric of their influence on landslide susceptibility. The entropy based on

Shannon (1948) is an uncertainty measure associated with a random variable, representing

the system information content. Imbalance, disorder, uncertainty and instability of a system

is determined based on entropy (Yufeng and Fengxiang 2009). A one-to-one relationship

exists between the disorder degree of a system and the entropy. Thermodynamic status of a

system is described based on the Boltzmann principle (Yufeng and Fengxiang 2009). The

IoE model for information theory has developed by Shannon (1948) as an improvement

upon the Boltzmann principle. The weight index of natural hazards is mostly determined

on the basis of the information entropy method for the natural processes analysis (Mon

et al. 1994; Yi and Shi 1994). IoE model can be employed to describe and measure

landslide, because it is a complex system exchanging energy and materials with the

environment (Yang and Qiao 2009). The influence of different factors on development of a

landslide is determined by its entropy. Few significant factors create extra entropy in the

index system. Objective weights of the index system can be calculated by entropy value

(Yang and Qiao 2009). The information coefficient Wj (weight of the parameter) is cal-

culated as follows (Bednarik et al. 2010; Constantin et al. 2011):

Pij ¼
b

a
ð13Þ

Pij

� �
¼ PijPSj

j¼1 Pij

ð14Þ

where a is the domain percentage and b is the landslide percentage, Sj is number of classes,

Pij is the probability density.

Hj ¼ �
XSj

i¼1

Pij

� �
log2 Pij

� �
j ¼ 1; . . .; n ð15Þ

Hjmax ¼ log2Sj ð16Þ

In Eqs. 15 and 16, Hj and Hjmax are the entropy values.

Ij ¼
Hjmax � Hj

Hjmax

j ¼ 1; . . .; n ð17Þ

In Eq. 17, Ij represents the information coefficient and varies from 0 to 1.
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Wj ¼ IjPij ð18Þ

where Wj is the resultant weight value of the parameter.

The major advantage of the theory by Shannon (1948) is its non-parametric nature. No

assumption is required for distribution of variables or conditioning factors (Chen et al.

2017c). It does not also presume a linear model for relationship between independent and

dependent variables. Hence, most landslide conditioning factors are selectable by the

model and also their relative prominence can be determined for landslide susceptibility

assessment (Pourghasemi et al. 2012a).

The landslide susceptibility map of the study area was calculated based on imple-

mentation of the IoE model through weighting of factor classes and algebraic summation

of weight values (Eq. 19) of all the landslide conditioning factors in the ArcGIS�10.4

environment.

LSIðIoEÞ ¼
XSj

j¼1

ðRCLSij � WjÞ ð19Þ

where LSIðIoEÞ is landslide susceptibility index for IoE model; i is the number of landslide

conditioning factor maps; RCLSij is the weight value of class i in factor j after reclassi-

fication; and Wj is the weight of factor j (Devkota et al. 2013).

2.2.8 Validation of the models

Validation of the employed models is necessary for landslide susceptibility map analysis.

The spatial landslide data of training (for implementation of the model and analysis of

success rate) and testing (for validation and analysis of prediction rate) are the basis of

validation of landslide susceptibility zonation maps (Chung and Fabbri 2003, 2008; Akgun

et al. 2012; Ozdemir and Altural 2013; Youssef et al. 2015; Su et al. 2015; Chen et al.

2016a, b; Fabbri and Chung 2016; Tien Bui et al. 2016; Chen et al. 2017c, d, g, h). More

landslides are used for implementation and validation, the better results are obtained

(Chung and Fabbri 2003, 2008; Fabbri and Chung 2016).

The Relative (Receiver) Operation Characteristic (ROC) Curve is a useful tool for

displaying definite and probable identification quality as well as system forecasting (Swets

1998; Maier and Dandy 2000; Fawcett 2006; Akgun et al. 2012; Ozdemir and Altural

2013). The area under the curve (AUC) indicates predictive quality of the system by

describing its ability to accurately predict the presence or absence of predetermined events

(Youssef et al. 2015b; Tien Bui et al. 2015, 2016). ROC curve represents sensitivity of the

model to percentage of cells. Unstable units are correctly predicted by the model versus the

percentage of predicted unstable cells relative to the total (Fabbri and Chung 2016; Tien

Bui et al. 2016; Chen et al. 2017a, c, d). The values express the model ability to correctly

distinguish between positive and negative observations in the validation sample. In the

AUC, false (1 - Specificity) (Eq. 20) and true (Sensitivity) (Eq. 21) positive rates are

displayed (Komac 2006; Constantin et al. 2011; Youssef et al. 2015).

1 � Specificity ¼ 1 � TN

TN þ FP

� �
ð20Þ
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Sensitivity ¼ TP

TP þ FN

� �
ð21Þ

In Eqs. 20 and 21, TP and TN stand for true positive and negative rates, respectively,

while FP and FN represent false positive and negative rates. Qualitative-quantitative

correlation between the curve and estimation assessment is as follows: excellent (0.9–1),

very good (0.8–0.9), good (0.7–0.8), moderate (0.6–0.7), and poor (0.5–0.6) (Yesilnacar

and Topal 2005; Zhu and Wang 2009). The AUC of ROC reliably determines quality of

probabilistic model for either presence or absence of landslide (Youssef et al. 2015; Chen

et al. 2017c).

241 (70%) out of 344 landslides were randomly selected as training data for imple-

mentation of the models and 103 (%30) remaining landslides were used for the validation.

In order to calculate the ROC curve, the absence (stable) points were extracted equivalent

to presence (unstable) points (testing and training landslides). The extraction has been

carried out through Random Points algorithm in the ArcGIS�10.4 environment. The Area

Under Curve was calculated for the success and prediction rates by both IoE and DS

models.

3 Results and discussion

3.1 Results of independence test and multi-collinearity between landslide
conditioning factors

3.1.1 Chi-square test

Pairwise comparison for determination of conditional independence between landslide

conditioning factors (independent variables) was examined based on the Chi-square test

(Table 1). 45 possible pairs of the landslide conditioning factors were tested for pairwise

comparison. The Chi-square values of all pairs (Table 1) are lower than the theoretical

Chi-square value (6.64) tabulated in standard Chi-square tables. The conditional inde-

pendence between every conditioning pair was determined in 0.01 confidence level and

one freedom degree. The highest Chi-square pair values are 6.35, 6.01, 4.07, 3.79, 3.78,

2.83 and 2.55 for Alt–Rod, Asp–Lus, Slp–Spi, Lus–Rod, Alt–Lus, Asp–Slp, Alt–Flt,

respectively, and the remaining pairs are lower than 2. All values are lower than the

theoretical standard Chi-square value (6.64) with one degree of freedom. Therefore, the

selected landslide conditioning factors are independent of each other and they can be

employed for preparation of landslide susceptibility maps by DS and IoE models.

3.1.2 Multi-collinearity test

Results of the multi-collinearity test between landslide conditioning factors with 99%

confidence level are mentioned in Table 2. There is no collinearity between independent

factors based on the maximum VIF (1.831) and the minimum of TOL (0.546). All VIF

values of the independent factors are lower than the theoretical critical value (5 or 10) and

all the TOL values of independent factors were also calculated greater than the theoretical

critical value (0.1 or 0.2). The maximum and minimum values of VIF are 1.8 and 1.01,
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respectively, and subsequently the lowest and highest tolerances are 0.546 and 0.989

pertinent to altitude and TWI factors, respectively.

3.2 Results of CF approach and the spatial correlation between landslides
and landslide conditioning factors

Identification of effective factors on landslide occurrence is the most important step in the

landslide susceptibility zonation. 10 landslide conditioning factors were used for landslide

susceptibility assessment in the study area namely altitude, slope aspect, distance to

drainage, distance to fault, distance to road, slope gradient, lithology, land use, TWI and

SPI. The spatial correlation between landslide occurrence density and every landslide

conditioning factor categories was calculated using CF approach (Table 3 and Fig. 5).

According to Table 3 and Fig. 5, CF is 0.37 and 0.04 for the altitude categories of\ 1500

and 2000–2500 m based on landslide occurrence density and it is negative for other

Table 1 Pairwise correlation matrix between the landslide conditioning factors for conditional indepen-
dence test

Variable alt asp drn flt lit lus rod slp spi twi

alt 1 0.04 0.02 2.55 1.35 3.78 6.35 1.01 0.02 0.08

asp 1 0.69 1.12 0.33 6.01 0.27 2.83 1.02 0.03

drn 1 0.96 0.14 1.59 0.31 0.12 0.08 0.01

flt 1 0.60 0.00 0.00 0.31 0.22 0.22

lit 1 0.19 0.82 0.64 0.02 0.00

lus 1 3.79 0.75 0.27 0.09

rod 1 3.19 1.00 0.53

slp 1 4.07 0.13

spi 1 0.08

twi 1

alt altitude, asp slope aspect, drn distance to drainage, flt distance to fault, lit lithology, lus land use, rod
distance to road, slp slope gradient, spi SPI, twi TWI

Table 2 Multi-collinearity anal-
ysis for the independence factors

Variables Sig. Collinearity statistics

Tolerance VIF

Altitude 0.001 0.546 1.831

Slope aspect 0.004 0.913 1.096

Distance to drainage 0.003 0.845 1.183

distance to fault 0.001 0.688 1.454

Lithology 0.003 0.972 1.029

Land use 0.004 0.762 1.312

Distance to road 0.002 0.563 1.775

Slope gradient 0.007 0.600 1.667

SPI 0.002 0.598 1.672

TWI 0.002 0.989 1.011
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altitude categories. For slope aspect, the northwest, west, southwest and north with CF

values of 0.37, 0.26, 0.21, and 0.08 have positive correlation and subsequently the highest

frequency of landslide occurence. While the remaining categories show negative corre-

lation. The analysis of relationship between distance to drainage and landslide density

indicates inverse correlation with the CF values. This means that the CF decreases with

increase in distance to drainage. The highest CF values for distance to drainage are related

to 0–200 m (0.19) and 200–500 m (0.14) categories. Similar to trend of distance to fault,

the highest CF value is for\ 500 m category. This means that the CF with 0.2 value is

positively correlated with\ 500 m category of distance to fault and it is negatively cor-

related with distance to fault for the other classes. For distance to road categories, the
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highest CF values are for 0–700 and 700–1500 m categories with 0.1 and 0.07 values,

respectively. The CF value generally decreases with distance to road and this factor is

negatively correlated with the CF values the same as distance to drainage and distance to

fault factors. In other words, the landslide frequency decreases with increase in distance to

the linear features. For the slope gradient higher then 40%, the CF value is positive (0.17,

and 0.41 for 40–70, and[ 70% categories, respectively) representing a high probability of

landslide occurrence. In contrast, the other classes have negative CF values indicating a

lower landslide probability. For lithology, categories of Mmm, Kmg, and Mplasma have Cf

values of 0.066, 0.17, and 0.12, respectively, and they have the highest landslide fre-

quency. The remaining categories have lower frequency or negative values. Among the 12

land use categories, the highest CF values are for poorrange (poor rangelands with 0.64

value), agri (water agricultural lands with 0.47 value) and rock (rock outcrops with 0.44

value) and the remaining categories have lower frequency or are negatively correlated. The

CF values of hydro-geomorphometric factors (TWI and SPI) are negatively correlated with

similar trends. The highest value of CF for TWI factor is for\ 10 (0.17) and 10–15 (0.09)

categories and they are negatively correlated. The CF value is negative for[ 15 category.

The CF values of SPI factor for categories lower than 300 (0–100, 100–200 and 200–300)

are 0.23, 0.22 and 0.03, respectively, with positive correlation but reversal trend. The CF

values are negative for the SPI greater than 300 keeping reversal trend. In general, the

altitude categories of\ 1500 and 2000–2500 m, geographical azimuthal direction cate-

gories of southwest, west, northwest and north, for distance to drainage categories lower

than 500 m (0–200 and 200–500 m),\ 500 m category of distance to fault, distance to

road categories lower than 1500 m (0–700 m, 700–1500 m), slope gradient categories

higher than 40% (40–70 and[ 70%), lithology categories of Mmm, Kmg, Mplasma, Plcb

and Jds, land use categories of poorrange, agri, rock and mix (lowforest-x), TWI categories

lower than 15 (0–10, 10–15) and SPI categories lower than 300 (0–100, 100–200 and

200–300) have positive effect on the landslide frequency and remaining categories of the

factors have negative effect. The relative importance of landslide conditioning factor

categories is also verified after implementation of IoE and DS models (Table 3).

3.3 Index of Entropy application

Every class of the landslide conditioning factors was represented by a specific landslide

occurrence density (Pij) according to the result of the bivariate analysis (Eq. 13 and

Table 3). The prominent factors influencing the distribution of landslides were extracted

and presented in Table 3. The results of IoE model indicate that land use, and distance to

drainage are the most significant landslide conditioning factors.

The landslide susceptibility map has been generated using IoE model (Fig. 6b). As the

most important advantage of IoE model is determination of the most effective variables in

landslide occurrence, accordingly the relative prominence of landslide conditioning factors

was determined through implementation of IoE model. The calculated weights (Wj)

(Table 3) indicate that the most significant landslide conditioning factors are land use

(0.326) and distance to drainage (0.269). The other influencing factors including slope

gradient (0.254), altitude (0.248), SPI (0.225), lithology (0.222), TWI (0.195), distance to

road (0.186), distance to fault (0.185) and slope aspect (0.012) are of lower importance,

respectively. According to the landslide frequency of every category (Pij), the altitude

categories of\ 1500 and 2000–2500 m are the most susceptible to landslide, respectively.

Slope aspect categories of northwest, west, southwest and north have the most landslide
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frequency, respectively. According to Table 3, the landslide frequency decreases with

getting away from linear features (drainage, fault and road). The highest landslide fre-

quency is for Mmm, Kmg and Mplsma lithologies, respectively. For land use, the poor

rangeland is the most susceptible to landslide category (landslide frequency of 3.115) and

agricultural land use (2.007) and then rock outcrops (1.85) categories are in the next orders.

The landslide frequency increases with slope gradient. Eventually, the susceptibility to

landslide decreases with increase in the landslide frequency of TWI and SPI factors. The

results of class weights of the landslide conditioning factors produced by the implemen-

tation of IoE model are completely consistent with the results of the CF approach.

Weighted products of the secondary parametric maps were summed to generate the

eventual landslide susceptibility map (Fig. 4). Applying the IoE model, the final landslide

susceptibility map was generated using the following equation:

YIoE ¼ ðAltitude � 0:248Þ þ ðSlope aspect � 0:012Þ þ ðDistance to drainage � 0:269Þ
þ ðDistance to fault � 0:185Þ þ ðLithology � 0:222Þ þ ðLand use � 0:326Þ
þ ðDistance to road � 0:186Þ þ ðSlope gradient � 0:254Þ þ ðTWI � 0:195Þ
þ ðSPI � 0:225Þ

ð22Þ

where YIoE is the landslide susceptibility employing the IoE model.

The final calculated LSM of the IoE model ranges from 3.187 to 13.931. These values

were normalized between 0 and 1. The interval was reclassified into five classes (very low,

low, moderate, high and very high susceptibility classes) by the Natural Breaks classifi-

cation method and the susceptibility map was generated (Fig. 6a).

3.4 Dempster–Shafer model application

DS model was employed to calculate the Landslide Susceptibility Index (LSI). The

occurrence of pixels was used to calculate DS values. The results of DS analysis to

examine spatial relationship between landslides and the conditioning factors are presented

in Table 3. Mass functions m TPð Þ, M �TPð Þ and m Hð Þ were calculated for belief, disbelief,

and plausibility functions, respectively, based on Eqs. 9, 10, and 11 (Table 3).

The correlation between landslide conditioning factor categories and landslide occur-

rence depends on belief function. Whatever the belief function is higher, relationship

Fig. 6 The generated landslide susceptibility maps by a IoE and b DS models
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between categories of landslide conditioning factors with the landslide occurrence is

stronger and subsequently probability of the landslide occurrence would be higher too

(Wang et al. 2016). The higher belief function in the class results in the lower amounts of

disbelief and plausibility functions. As it is observable in Table 3, the altitude factor

categories of\ 1500 and 2000–2500 m have the highest belief and subsequently the

lowest disbelief with respect to other categories. The slope aspect categories of northwest,

west, southwest and north have the most belief value and thus the lowest disbelief,

respectively. For distance to linear features (drainage, fault and road), the belief function

reduces and subsequently the disbelief function increases with increase of distance to these

features. The Mmm, Mplsma, and Kmg lithological units have the highest belief (the

lowest disbelief), respectively. For land use, the poor rangeland, agricultural land use and

then rock outcrops have the highest belief function values (the least disbelief values)

among other land use factor categories. If the slope gradient increases, amount of the belief

function increases too and the disbelief function conversely decreases. With increase in

TWI and SPI, the belief function decreases and the disbelief function increases. In general,

the results of weighting functions produced by implementation of the DS model as well as

IoE model are completely associated with the theoretical results of correlation between the

categories of landslide conditioning factors and also the true landslide occurrences.

Employing the DS model (Table 3), the final landslide susceptibility map was generated

using the following equation:

YDS ¼ ððAltitude � mðhÞBij
Þ þ ðSlope aspect � mðhÞBij

Þ þ ðDistance to drainage

� mðhÞBij
Þ þ ðDistance to fault � mðhÞBij

Þ þ ðLithology � mðhÞBij
Þ þ ðLand use

� mðhÞBij
Þ þ ðDistance to road � mðhÞBij

Þ þ ðSlope gradient � mðhÞBij
Þ þ ðTWI

� mðhÞBij
Þ þ ðSPI � mðhÞBij

Þ
ð23Þ

YDS is the landslide susceptibility calculated by the DS model.

The final calculated LSM of the DS model varies from 0.9 to 2.79. These values were

normalized between 0 and 1. The interval was reclassified into five classes (very low, low,

moderate, high and very high susceptibility classes) by the Natural Breaks classification

method and the susceptibility map was generated (Fig. 6b).

3.5 Landslide susceptibility mapping

The estimated landslide susceptibility map relies on scale, completeness and accuracy of

the landslide inventory map and also maps of different landslide conditioning factors. The

higher accuracy is usually dependent on larger scale (i.e., 1:50,000 scale). The landslide

susceptibility maps were produced by the IoE and DS models (Fig. 6a, b) employing

limited input conditioning factors such as land use, lithology, altitude, slope gradient, slope

aspect, TWI and SPI, and proximity to lineaments (drainage, fault and road). The maps

include very low, low, moderate, high, and very high classes. The areal extents of the

classes were found to be 12.39, 27.24, 30.32, 23.21 and 6.84% for the IoE model, whereas

8.55% of the study area is very low susceptible to landslide and 24.03, 33.11, 25.54 and

8.77% of the study area are covered by the low, moderate, high, and very high landslide

susceptibility zones, respectively, based on the DS model.

The low landslide occurrence areas are located in north to northwest of the basin and its

surrounding parts conform with very low to low susceptible zones distinguished by both
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DS and IoE models (Fig. 6a, b). The zones have very low to low landslide susceptibility

despite relatively high slope gradient (15–40%) and high altitude of greater than 2500 m.

But the central to southern regions and margin of the main river of the basin (Sarkhoun

river) which have high landslide occurrence, relatively low slope gradient (lower than

25%) and also altitude lower than 2500 m, conform with high to very high susceptible

zones. The both results can be interpreted according to linear features (drainage, road and

fault) density and type of lithological units. Surrounding the basin especially the northern

part which adapts with relatively high altitude and slopes gradient, fall into very low to low

susceptible to landslide zone because of rocky outcrops and being away to linear features

and also occurrence of dense forests and rangelands. The high to very high susceptible

zones were developed in central and southern parts which conform with very dense linear

features and loose rock units (Mmm, Mplasma and Kmg with marl and shale lithologies).

3.6 The susceptibility maps verification

Models of landslide prediction are not valid without verification of their results (Chung and

Fabbri 2003, 2008; Beguerı́a 2006; Chen et al. 2017c). The landslide susceptibility model

should be verified using information not employed for construction of the model.

Accordingly, the landslide susceptibility maps generated by IoE and DS models were

validated by ROC and SCAI curves (Figs. 7, 8, 9). The success and prediction rates were

obtained for the models based on the training (70% of landslides) and testing (30% of

landslides) data (Fig. 1). The AUC-ROC curves were calculated as 0.75 and 0.81 for

prediction rates of the DS and IoE models, respectively. In addition, they were also

calculated as 0.76 and 0.82 for success rates of the models, respectively. The success and

prediction rates indicate that both landslide susceptibility zonation models are valid at good

and very good levels (Table 4) (Yesilnacar and Topal 2005). The ROC curve of the IoE

model indicates a more rapid increase at the initial stages compared to the DS model

(Fig. 7). This reveals relatively high sensitivity of the IoE model. The prediction rates
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(0.01) are slightly lower than success rate values of the models (Table 4). It indicates that

probability of the expected is lower than the observed. But effect of landslide frequencies

of training and testing datasets should not be ignored (Fabbri and Chung 2003, 2016).

Other researchers have also concluded higher capability of IoE model with respect to

other models such as WoE, logistic regression, Frequency Ratio (FR) and CF (Pour-

ghasemi et al. 2012a; Devkota et al., 2013; Wang et al. 2015; Hong et al. 2016; Youssef

et al. 2016; Chen et al. 2017c). Youssef et al. (2016) have calculated success and prediction

rates of 0.80 and 0.95, respectively, for their IoE model. While their DS model has success

and prediction rates of 0.78 rate of 0.93, respectively. The results of AUC-ROC curve

produced from success and prediction rates of both models also agree with investigations

by others (Althuwaynee et al. 2012; Mohammady et al. 2012; Regmi et al. 2014a; Wang

et al. 2016; Youssef et al. 2016; Chen et al. 2017b, c, d; Hong et al. 2017). Results of the
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models also show good agreement with the results of Youssef et al. (2016), especially in

priority of the success and prediction rates.

The IoE model was evaluated suitable for prediction of landslide susceptibility map

because the success and prediction rates of the AUC-ROC are both higher than 0.8 and

they are also 0.06 higher than the success and prediction rates of the DS model (Table 4).

In the second stage, the generated susceptibility maps were compared on the basis of the

landslide susceptibility zones. FR (Fig. 8; Table 5) and Seed Cell Area Index (SCAI)

(Fig. 9; Table 5) analyses (Süzen and Doyuran 2004a, b; Bui et al. 2011a, b) were per-

formed on the classification results (Figs. 8, 9; Table 5).

FR of every class can be obtained through dividing the occurred landslide areal extent in

every susceptibility class by landslide susceptibility class area. SCAI is landslide density in

every landslide susceptibility class and it is calculated by dividing percentage of every

landslide susceptibility class area by seed cell percentage. SCAI and FR of each landslide

class can also confirm the ROC results. The FR increases and subsequently SCAI decreases

according to the existing logical relationship between landslide area and susceptibility

zones from very low to very high susceptibility potentials (Akgun et al. 2012; Pourghasemi

et al. 2012a; Sdao et al. 2013; Conforti et al. 2014). In order to evaluate precision of

landslide susceptibility classification by the models, the FR was calculated (Table 5;

Table 4 The AUC of the models for verification based on success and prediction rates

Rates Model Area Under
Curve (AUC)

SE Asymptotic sig. Asymptotic 95% confidence
interval

Lower bound Upper bound

Success rate Index of Entropy 0.82 0.03 0.00 0.75 0.89

Dempster–
Shafer

0.76 0.04 0.00 0.69 0.82

Prediction rate Index of Entropy 0.81 0.03 0.00 0.75 0.87

Dempster–
Shafer

0.75 0.04 0.00 0.68 0.84

Table 5 FR and Seed Cell Area Index (SCAI) of the landslide susceptibility zonation

Models Landslide
susceptibility
zones

Landslide
area (m2)

Landslide
area (%)

Area of
zones (m2)

Area
of
zones
(%)

Frequency
ratio (FR)
(%)

Seed
(%)

SCAI

Index of
Entropy

Very low 255,600 1.45 40,788,101 12.39 0.63 1.89 6.57

Low 2,188,800 12.38 89,679,855 27.24 2.44 7.34 3.71

Moderate 4,347,900 24.59 99,822,055 30.32 4.36 13.10 2.31

High 7,190,100 40.67 76,430,253 23.21 9.41 28.30 0.82

very high 3,697,200 20.91 22,532,713 6.84 16.41 49.36 0.14

Dempster–
Shafer

Very low 110,828 0.63 28,162,077 8.55 0.39 1.27 6.73

Low 1,702,960 9.62 79,125,750 24.03 2.15 6.96 3.46

Moderate 4,435,807 25.06 108,999,330 33.11 4.07 13.15 2.52

High 6,741,561 38.09 84,101,025 25.54 8.02 25.90 0.99

Very high 4,708,821 26.60 28,864,794 8.77 16.31 52.72 0.17
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Fig. 8). The FR values of susceptibility classes for the IoE and DS models are very low

(0.63 and 0.39), low (2.44 and 2.15), moderate (4.36 and 4.07), high (9.41 and 8.02) and

very high (16.41 and 16.31) susceptible zones.

Results of comparison of the models indicate that with increase in landslide suscepti-

bility from very low to very high, the FR shows an increasing trend (Fig. 5). But for the

IoE model, gradient of the FR curve is higher than the DS model from the medium to very

high susceptibility classes. In fact, separation of landslide susceptibility classes based on

the IoE model is better than the DS model. According to Table 5, the SCAI values for IoE

and DS models are very low (6.57 and 6.73), low (3.71 and 3.46), moderate (2.31 and

2.52), high (0.82 and 0.99) and very high (0.14 and 0.17) susceptible zones. The results of

assessment and comparison of the models indicate that with increase in landslide sus-

ceptibility from very low to very high, the SCAI values show decreasing trend (Fig. 9). But

in the IoE model, the SCAI values show a specific regular decreasing trend from very low

to very high, while for the DS model, they show irregular decreasing trend (between low to

high susceptibilities). Accordingly, the SCAI diagram of the IoE model shows more

uniform decreasing trend with respect to the DS model. Hence, the landslide susceptibility

classification by the IoE model is more reliable (Figs. 9). If trend of the FR curve is only

considered for classification of landslide susceptibility, no obvious difference is observed

between the models (Table 5; Fig. 8). But separation of the IoE classification was found to

be more suitable with respect to the DS model according to the trends of both SCAI and FR

curves (Table 5; Figs. 8 and 9). Therefore, it is required to use both SCAI and FR to obtain

better separation for the models classification.

4 Conclusion

Nowadays, assessment of landslide susceptibility is highly important for planning and

management of potentially susceptible areas. Researchers try to find and apply easy, user

friendly and understandable models capable of generating results more compatible with

landslide occurrences. The models should provide predictions close to reality for landslide

susceptible zones.

In this research, applicability of IoE and DS models were evaluated for landslide

susceptibility prediction in the Sarkhoun basin. According to high occurrence of landslides

in southwest part of Iran and especially in the study area, generation of landslide sus-

ceptibility map by models with the above mentioned capabilities is necessary. For this

purpose, 10 landslide conditioning factors were selected for the analysis. The CF approach

was employed to analyze correlation of the conditioning factors with landslide occur-

rences. According to Chi-square test, no pairwise was higher than the standard Chi-square

value with 99% confidence level and one degree of freedom. In addition, the landslide

conditioning factors were significantly estimated lower than the reported thresholds based

on multi-collinearity. Therefore, the selected factors are conditionally independent and

applicable as conditioning factors in the IoE and DS models.

344 landslides were identified which 70% out of them were used for the modeling and

30% were selected for the validation procedure. Accuracy of the landslide inventory map is

highly important for evaluating the susceptibility maps. Results of the ROC analysis

indicate very good agreement of the recorded landslide inventory map with the landslide

susceptibility zonation maps generated through IoE and DS models. Similarity in trend and

closeness of AUC values of prediction and success rates in the ROC curve indicate that
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both models have favorably valid. The IoE model shows better capability (higher success

and prediction rates) with respect to the DS model. Therefore, application of IoE model is

advised for areas with similar characteristics to the study area.

According to the IoE model, prominence of the landslide conditioning factors is in order

of land use, distance to drainage, slope gradient, altitude, SPI, lithology, TWI, distance to

road, distance to fault, and slope aspect, respectively. In this study, both IoE and DS

models have determined priority of classes of landslide conditioning factors with a similar

trend. Land use has been found to be the most important landslide conditioning factor in

the study area. Every factor (especially anthropogenic and triggering factors) which

changes land use in the study area, it will increase landslide occurrence too. According to

the geomorphological conditions of the study area, distance to drainage and slope gradient

factors which fall into second and third priority of effect on landslide occurrence, have

significant influence on landslide occurrence.

The landslide susceptibility maps generated based on the IoE and DS models, divide the

study area into five zones with very low to very high susceptibility to landslide. In general,

about more than 30% of the study area are high to very high susceptible to landslide.

According to the FR and SCAI, the susceptibility map produced by the IoE model benefits

from higher separation in comparison to the map by DS model.
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Süzen ML, Doyuran V (2004a) A comparison of the GIS based landslide susceptibility assessment methods:
multivariate versus bivariate. Environ Geol 45(5):665–679
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