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Abstract Hidden Markov Model (HMM) has been developed for avalanche warning on 10

different road sectors in Pir-Panjal and Great Himalayan mountain ranges of North-West

Himalaya. The model uses a data set of nine snow and meteorological variables—average

air temperature, snow temperature index, snow drift index, snowfall in 24 h, snowfall in

48 h, snow water equivalent, snowfall intensity, standing snow and snowpack settlement

collected during past 20 winters (1992–2012). The HMM is composed of four observations

derived from the model input variables and four state variables. The state variables of the

model are four levels of avalanche danger (No, Low, Medium and High). Single HMM has

been developed to provide avalanche warning for both direct and delayed/wet avalanches

with a lead time of two days. The HMM has been validated with (Case-1) and without

(Case-2) incorporating delayed/wet avalanches using data collected during four winters

(2012–2016) and compared with official Avalanche Warning Bulletin issued by Snow and

Avalanche Study Establishment during these winters. The model has been validated

through computation of accuracy measures such as percent correct (PC), bias, false alarm

rate, probability of detection and Heidke Skill Score. The PC of the HMM for different

stations for Case-1 varies from 80.1 to 98.6% for day-1 and 81.2 to 98.3% for day-2 and

that for Case-2 from 82.2 to 98.6% for day-1 and 83.3 to 98.3% for day-2.
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1 Introduction

Avalanche forecasting over complex terrain of Himalaya has been a challenging task for

snow and avalanche researchers in India. Ganju and Sharma (2000) discussed the com-

plexities of avalanche forecasting over Himalaya. They classified Indian Himalaya into

three climatic zones (Lower, Middle and Upper Himalayan climatic zones) based on

precipitation regime, temperature and topographic elevation. Different regions in these

climatic zones receive differential snowfall that result in a spatially variable snow pack

making spatially variable pattern of avalanche occurrences. There are many road axes

lying on these climatic zones, affected badly due to heavy snow fall and frequent avalanche

activities during winter. As on today, avalanche forecasting for these road axes is done

mainly with the help of numerical and conventional techniques. The numerical techniques

used involve nearest neighbour and expert system approaches. The output of these

numerical models in combination with avalanche forecaster’s interpretation of snow pack

stability is used to deliver operational avalanche forecast.

In the present study, the HMM has been developed for ten different road sectors in

North-West Himalaya using combination of meteorological (Class III) and snowpack

(Class II) data (McClung and Scherer 2006) of past 20 winters (1992–2012). For avalanche

forecasting, Class I (snowpack stability tests) and Class II data (snowpack parameters) are

more relevant than class III data (meteorological variables). In the present work, snow

temperature index representing of snowpack layer hardness has been incorporated as class

II data in the model input variables. As snowpack is highly spatially variable and climatic

conditions of different regions vary, a separate HMM has been developed for each of the

sectors. Unlike other operational models running at SASE, the HMM is independent of

historical database for operational use of the model. Since most of the avalanche activities

took place at the time of or immediate after snowfall, the HMM has mainly been developed

for forecasting of direct action avalanches only. However, the model has been validated

with and without incorporating delayed/wet avalanches. The model has also been com-

pared with the official Avalanche Warning Bulletin (AWB) issued by SASE during winters

from 2012 to 2016.

Avalanche forecasting models have been developed worldwide using various techniques

such as nearest neighbour analysis, discriminant analysis, cluster analysis, classification

and regression trees. Obled and Good (1980) tested different statistical methods to address

the challenging problem of avalanche forecasting and compared their respective potential

in operational forecast. They concluded that nearest neighbour and discriminant analysis

appear more promising than cluster analysis but require further developments. Buser

(1983, 1989) worked on the development of multivariate ‘nearest neighbours’ technique

and used it for operational avalanche forecasting in the ski area of the Parsenn region for

operational purpose. Following the suggestions of Obled and Good (1980) and Buser et al.

(1987), McClung and Tweedy (1994) derived a numerical avalanche prediction scheme for

avalanche forecasting on Kootenay Pass, British Columbia, Canada. They used parametric

discriminant analysis (incorporating Bayesian statistics), cluster analysis and nearest

neighbour analysis using the Mahalanobis distance as the distance metric. Boyne and

Williams (1992) used classification and regression trees for avalanche classification for the

region of Berthoud Pass, Colorado by taking number of avalanches per day as classification

variable. Fromm (2009) used k-mean cluster analysis for grouping of weather conditions

and discriminant analysis for classification of avalanche and non-avalanche days in the

groups. Besides these attempts, many researchers worked on nearest neighbour method for

short-term avalanche forecasting, e.g. Gassner et al. (2000), Brabec and Meister (2001),
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Purves et al. (2003), McCollister et al. (2003) and Singh et al. (2005). Pozdnoukhov et al.

(2011) used support vector machine for spatio-temporal forecasting of snow avalanches.

In recent years, researchers have worked on the prediction of wet avalanches. Helbig

et al. (2015) predicted wet snow avalanche pattern over complex topography using com-

bination of weather forecast data and terrain parameters. Bellaire et al. (2017) used

physical-based snow cover model SNOWPACK and high-resolution NWP model for

forecasting regional pattern of the onset of wet snow avalanches. In the beginning of winter

season during snow storms mainly loose snow avalanches take place and depending on

terrain it may convert to a gliding snow avalanche. Peitzsch et al. (2015) used classification

tree analysis for distinguishing between glide and non-glide snow avalanches. In mid-

winter due to accumulated layered snowpack, slab avalanche formation is a common

feature. Marienthal et al. (2015) examined the usefulness of meteorological variables for

predicting deep slab avalanche days. Vernay et al. (2015) introduced approach of ensemble

avalanche forecasting to explicitly incorporate uncertainty to avalanche hazard forecasting.

Avalanche forecasting over Indian Himalaya was initiated by Agrawal and Ganju

(1994) and Bhatnagar et al. (1994). The avalanche forecasting approach used by Agrawal

and Ganju (1994) was based on the basic understanding of the physical processes affecting

snow pack stability and use of avalanche forecaster’s experience. Bhatnagar et al. (1994)

used nearest neighbourhood criterion using snow and meteorological data. Naresh and Pant

(1999) developed a knowledge-based system for forecasting snow avalanches of Chowk-

ibal-Tangdhar Axis (J&K). Singh et al. (2005) coupled nearest neighbour technique and

meso-scale model (MM5) output for prediction of avalanches 3 days in advance. Singh and

Ganju (2008) developed a rule-based expert system for operational avalanche forecast over

Himalaya. Joshi et al. (2010) used Avalanche Activity Index to categorize the levels of

avalanche danger on different road axes over Himalayas. Joshi and Srivastava (2014)

developed HMM for avalanche warning on Chowkibal-Tangdhar road axis (C-T road axis)

in Indian Himalaya.

2 Study area and data

The study area falls in Lower and Middle Himalayan climatic zones of the Himalaya. The

sectors in Lower Himalayan zone are characterized by warm temperatures, high precipi-

tation, deep snowpack and short winter period of 3–4 months. The average height of

mountains in this climatic zone varies from 2000 to 4000 m. The regions falling in Middle

Himalayan zone are characterized by cold temperature, moderate precipitation, relatively

shallow snow pack and longer winter period of 6 months. Winter climatology of different

sectors and their geographic altitude of their representative meteorological station have

been given in Table 1. Snow and avalanche characteristics of each of these regions are

represented by meteorological data of a representative station of SASE in that region. The

geographic location of different meteorological stations of SASE has been shown in Fig. 1.

The HMM has been developed using three types of data—snow and meteorological

data, avalanche occurrence data and avalanche warning bulletins (AWB). The snow and

meteorological data in each of these regions are recorded manually twice daily at 08:30

and 17:30 h at a representative meteorological station of Snow and Avalanche Study

Establishment (SASE) since last more than four decades. Snow and meteorological data

recorded during past 20 winters (1992–2012) at these meteorological stations have been

used for development of the HMM. In the North-West Himalaya, winter persists from
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November to April. However, the data collected during December, January, February and

March have been used in the model because of less number of records of avalanche

activities in November and April. The variables used in the development of model include

average air temperature, Snow Temperature Index (STI), Snow Drift Index (SDI), snowfall

Table 1 Climatology of different sectors in Indian Himalaya (1992–2016)

Sectors/
stations

Altitude
(m)

Average
lowest
minimum
temp (�C)

Average
highest
minimum
temp (�C)

Average
seasonal
snowfall
(cm)

Average
lowest
maximum
temp (�C)

Average
highest
maximum
temp (�C)

Average
snowpack
depth
(cm)

Station-
1

3050 - 10.8 7.2 1120 - 3.0 18.8 272

Station-
2

3800 - 23.7 .1 445 - 8.5 12.7 184

Station-
3

3200 - 1.6 7.7 613 - 6.5 17.9 235

Station-
4

2800 - 15.4 4.6 702 - 3.4 17.8 181

Station-
5

3080 - 17.2 5.6 924 - 5.8 14.7 261

Station-
6

2650 - 12.8 7.7 950 - 3.2 19.4 229

Station-
7

2960 - 13.2 6.1 953 - 5.2 16.3 260

Station-
8

3192 - 16.0 3.0 956 - 6.8 13.0 253

Station-
9

2440 - 18.3 - 4.0 922 - 3.0 19.6 196

Station-
10

3250 - 28.3 2.7 354 - 9.8 16.3 130

Fig. 1 Meteorological stations of SASE in Pir-Panjal and Great Himalayan mountain ranges of North-West
Himalaya (Google Earth Image)
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in 24 h, snowfall in 48 h, snow water equivalent, snowfall intensity, snow settlement and

standing snow. The derived variable-STI attempts to summarize a physical effect that

occurs in a snowpack over a period of time due to change in temperature (Kozak et al.

2002). The STI has been computed using degree-day method. For a day when maximum

temperature exceeds a base temperature (- 10 �C), it is summed for each day within the

temperature index period. The base temperature of - 10 �C chosen for the temperature

index is based on the finding that sintering increases rapidly above - 10 �C (Gubler 1982).

The STI of a layer exposed for ‘D’ days is given by

STI ¼
X

DðTmax þ 10 �CÞ; when Tmax [ � 10

The model input variable-snow drift index (SDI) has been defined as the ratio of the

friction velocity and threshold shear velocity of snow near snowpack surface. The friction

velocity and threshold shear velocity have been defined by Campbell (1977) and Kind

(1981), respectively. The SDI has been computed using the following relation:

SDI ¼ u�=uth ¼ 0:226 � u

where u*, uth and u represent friction velocity, threshold shear stress and average wind

speed respectively. When u* exceeds uth, snow drift is initiated.

In addition to snow and meteorological data, avalanche occurrence and avalanche

warning bulletins (AWB) of the same duration have also been taken in the analysis. The

AWB data consist of the record of avalanche warning bulletins issued by SASE during

winter for different regions of the Himalaya in the form of different levels of avalanche

danger (No, Low, Medium and High). The qualitative interpretation of these danger levels

has been given in Table 2.

Table 2 Scales of avalanche danger and their interpretation (SASE Publication)

Scales of avalanche
danger

Interpretation

No Generally safe conditions. Avalanches may not trigger

Low Generally favourable condition. Triggering is generally possible only with high
additional loads and on very few extreme slops. Only sloughs possible and reach
valley in small sizes. Valley movements are safe. Movements can be done on
slopes with care (All safety measures shall be taken while crossing suspected
avalanche paths)

Medium Partly unfavourable condition. Triggering possible from the most avalanche prone
slopes with low additional loads and may reach the valley in medium size. Avoid
steep slopes. Routes should be selected with care. Valley movements with caution.
Movements on slopes with extreme care (Rescue party shall stand by)

High Unfavourable condition. Triggering possible from all avalanche prone slopes even
with low additional loads and reach valley in large size. Suspend all movements.
Airborne avalanche likely
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3 Methodology

The HMM is an extension of Markov Chain model. The Markov chain model makes use of

the property of Markov chain. According to the property of Markov chain, the probability

of transition from one state to the next state depends only on the preceding state. The first-

order Markov property (Rabiner 1989) is defined as follows:

Pðqt ¼ jjqt�1 ¼ i; qt�2 ¼ k. . .Þ ¼ Pðqt ¼ jjqt�1 ¼ iÞ

where t denotes the time instance of a state, qt is the state corresponding to time t, P is the

probability of state transition and i, j, k are the state indexes.

In the HMM, there are two embedded stochastic processes in which the hidden process

can only be observed through another stochastic process that produces the sequence of

observations. The HMM is characterized by the number of observations, states and the

model parameters. The model parameters include initial state probabilities, state transition

probabilities and probabilities of observations in different states.

The flow chart of the methodology has been shown in Fig. 2. The HMM has been

developed using four observations and four states variables. To define observations of the

HMM, the meteorological variables have been categorized into different ranges and cal-

culated index of avalanche (IA) for each range of all the variables. The IA of a range of a

variable is an indicator of the probability of avalanche in that range. It is defined as the

ratio of number of avalanche days in a range of a variable and total number of days in that

range. The weather variables have been correlated with corresponding IA and the square of

the correlation used as the weight of the variable. The weighted sum of the IA’s of all the

model input variables has been categorized into four categories representing four obser-

vations of the model. The categorization of observations is based on the database of past

avalanche warnings. Four levels of avalanche danger—No, Low, Medium and High rep-

resent four states of the model.

The HMM parameters (Initial state probability, state transition probability and proba-

bility of observations in different states) have been computed using data of past 20 winters

from 1992 to 2012 after the states and observations of the model have been defined. The

probability of transition from one state to the other has been computed as the ratio of

number of transitions from one state to the other and the total number of transitions taking

Fig. 2 Flow chart of HMM methodology for forecasting of avalanche danger sequence
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place from that state. The initial state probability of a state has been defined as the ratio of

the number of that states and total number of states. Similarly, the probability of an

observation for a given state is defined as the ratio of the number of observations in that

state and the total number of observations in that state. In the present study, a sequence of

two observations has been used to predict the corresponding sequence of two states. The

most probable observation and state sequences have been computed using Forward algo-

rithm and Viterbi algorithms (Viterbi 1967), respectively.

4 Forward algorithm

Computation of most probable observation sequence is based on the computation of for-

ward or backward variables. The direct computation of these variables is infeasible because

of exponential growth of computation as a function of sequence length. For an observation

sequence of length T and number of states N, it needs (2T - 1) NT multiplications and

NT - 1 additions. The forward algorithm on the other hand minimizes the computation

cost to linear relative to T. It needs N (N ? 1) (T - 1) ? N multiplications and N (N - 1)

(T - 1) additions. In this algorithm, a forward variable is defined that accounts for the

probability of partial observation sequence, O1, O2, …, Ot (up to time t), given state Si at

time t and model k. The forward variable at (i) defined as:

atðiÞ ¼ PðO1O2 � � �Ot; qt ¼ SijkÞ

The forward variable can be obtained inductively using initial state probability, pi and

probability of observation in a state, bi (O1) as follows:

Step 1 Initialization

ai ¼ pi � biðOiÞ; 1� i�N

Step 2 Induction

atþ1ðjÞ ¼
XN

i¼1

atðiÞ � aij

" #
� bjðOtþ1Þ; 1� t�T � 1; 1� j�N

Step 3 Termination

PðOjkÞ ¼
XN

i¼1

aTðiÞ

The initialization step represents forward probabilities as the joint probability of state Si
and initial observation O1. The induction step as illustrated in Fig. 3 shows how state Sj can

be reached at time t ? 1 from N possible states, Si, 1 B i B N, at time t. The product at
(i) 9 aij in the induction step represents the probability of the joint event that O1, O2, … Ot

are observed, and state Sj is reached at time t ? 1 via state Si at time t. This product when

summed over all the states, Si, at time t results in the probability of Sj at time t ? 1 with all

the accompanying previous observations. The termination step computes probability of
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most probable observation sequence, P(O|k), as the sum of the terminal forward variable aT
(i).

5 Viterbi algorithm

The Viterbi algorithm (Viterbi 1967) is named after Andrew Viterbi, who proposed it in

1967 as a decoding algorithm for convolutional codes over noisy digital communication

links. The Viterbi algorithm is a dynamic programming algorithm for finding the most

likely sequence of hidden states called the Viterbi path that results in a sequence of

observed events. To find the single best state sequence S = {S1, S2,… SN} for given

observation sequence O = {O1, O2, …OT}, a probability function dt(i) is defined that gives

highest probability along a single path, at time t, which accounts for the first t observations

that end in state Si.

dtðiÞ ¼ max
S1S2...St�1

PðS1S2. . .St�1; St ¼ i;O1O2. . .OtjkÞ

Using induction dt?1(i) can be found as:

dtþ1ðjÞ ¼ max
1� i�N

½dtðiÞ � aij� � bjðOtþ1Þ

To retrieve the state sequence, it is necessary to keep track of the argument that

maximizes dt?1(j), for each t and j. This is done by saving the argument in an array wt(j).

The complete procedure to find out the best state sequence can be stated as follows:

Step 1 Initialization

d1ðiÞ ¼ pi � biðO1Þ; 1� i�N

W1ðiÞ ¼ 0

Step 2 Induction

Fig. 3 Illustration of the
computation of forward variable
at?1 (j)
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dtþ1ðjÞ ¼ max
1� i�N

½dt�1ðiÞ � aij� � bjðOtþ1Þ; 2� t�T ; 1� j�N

W1ðiÞ ¼ arg max
1� i�N

½dt�1ðiÞ � aij�; 2� t�T ; 1� j�N

Step 3 Termination

P� ¼ max
1� i�N

½dTðiÞ�

ST� ¼ arg max
1� i�N

½dTðiÞ�

Step 4 State sequence backtracking

St� ¼ max
1� i�N

½Wtþ1ðjÞ � Stþ1�; t ¼ T � 1; T � 2; . . .1

The Viterbi algorithm is similar to the Forward algorithm. The main difference is that

the Forward algorithm uses sum over previous states, whereas the Viterbi algorithm uses

maximization.

In the present work, forecasting of avalanche danger is based on a sequence of two

observations and corresponding states for forecasting with a lead time of 2 days. The

complexity involved in the forecasting of observation sequence is of the order of N2-

T where N represents number of observations and T number of states. The computation

involves N (N ? 1) (T - 1) ? N multiplications and N (N - 1) (T - 1) additions

(Rabiner 1989). Thus, for increasing the lead time of forecast, length of the sequence of

observations and states will be increased and consequently more computation will be

involved.

6 Results and discussion

In Pir-Panjal and Great Himalayan mountain ranges, winter persists mainly for 6 months

(November–April). During November and December months, snowcover just starts

building up and due to shallow snowpack a very small number of avalanche activities take

place. In January and February months, most of the direct action avalanches have been

reported due to frequent snowfall and good snowcover build-up. In the months of March

and April because of infrequent snowfall, rising temperature and snowpack settlement,

direct as well as delayed/wet avalanches have been reported. The number of delayed/wet

avalanches in the complete data set of all the sectors is limited. Therefore, the HMM has

mainly been developed for direct action avalanches. However, the performance of the

model during winters 2012–2014 has been discussed with and without inclusion of the

delayed/wet avalanches.

The HMM has been developed for forecasting of avalanche danger on 10 different road

sectors of Indian Himalaya with a lead time of 2 days. The weather variables used for the

development of HMM have been categorized into different ranges and calculated index of

avalanche for each range of all the variables. The plots of IA for all the model input

variables for one representative station in both Pir-Panjal and Great Himalayan mountain

ranges have been shown in Figs. 4 and 5, respectively.
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Fig. 4 Index of Avalanche for different categories of model input variables for station-2 in Great
Himalayan range of Indian Himalaya
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Fig. 5 Index of Avalanche for different categories of model input variables for station-6 in Pir-Panjal range
of Indian Himalaya
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The IA in both Pir-Panjal and Great Himalayan mountain ranges has been found higher

for lower average air temperature. Since most of the avalanches in Indian Himalaya take

place during or immediate after snowfall when temperatures remain sub-zero. Hence, the

IA has been found higher for average temperature near zero or sub-zero. Moreover, for air

temperatures below - 10 �C, the metamorphic process called sintering is slow and above

this temperature it increases rapidly (Gubler 1982). Therefore, lower air temperatures lead

to unstable snow pack and may result in an avalanche. For average air temperature above

0 �C, snowpack depletion takes place and relatively less avalanche activities take place

resulting in smaller Index of Avalanche at higher air temperature.

Wind drifted snow plays an important role in avalanche formation. Snow drift is

dependent on wind speed. Higher wind speed accelerates the process of snow drift. In Pir-

Panjal mountain range for Station-6, avalanches triggered equally for smaller values of

wind speed. For higher wind speeds, the IA first increases and then decreases. The ava-

lanche activities during smaller wind speeds are mainly attributed to the overloading of

snowpack due to snowfall. At higher wind speeds, snow is eroded from wind ward slopes

and deposited on lee ward slopes, thus overloading the leeward slopes and triggering

avalanches. For further higher wind speeds, either due to compaction of snowpack or due

to already triggered avalanches, the IA has been found relatively smaller. In Great

Himalayan mountain range for Station-2, the IA has been found high for lower as well as

higher ranges of snow drift index and relatively low for intermediate ranges. For Station-2,

high value of the IA for lower ranges of SDI is attributed both to the overloading of

snowpack due to snowfall and drift deposition. The decrease in the value of IA for

intermediate ranges of the SDI can be attributed to already triggered avalanches in previous

snowfall. For higher ranges of the SDI, the slopes are re-loaded with snowfall and snow

drift, thus triggering avalanches.

The STI represents duration of exposure of snowpack layer to solar radiation. It is an

indicator of snow layer hardness. The IA has been found high for smaller STI and low for

larger STI both in Pir-Panjal and Great Himalayan ranges. Smaller STI represents less

exposure of the snow layer to solar radiation. Because of less exposer of the snow layer to

solar radiation, the metamorphic changes are small and snowpack could not be stabilized

and hence avalanches triggered. Larger exposure of the snow layers to solar radiation leads

to larger number of melt-freeze cycles, thus hardening the snow layer and gaining strength

to reduce avalanche activities.

Fresh snow fall can trigger avalanches in two ways. (1) It exerts stress on the snowpack

layers beneath that may fail causing slab avalanches. (2) Fresh snow grains are not bonded

well resulting in failure of fresh snow layer on a slope under the influence of gravity

causing loose snow avalanches. All the variables related to fresh snowfall in both the

mountain ranges (snowfall in 24 h, snowfall in 48 h and snow water equivalent) indicate

that the IA increases with increase in the amount of these variables. For station-2 in Great

Himalayan range, the smaller value of IA for higher range of snowfall in 48 h is attributed

to the avalanches triggered during the previous snowfall and slopes are not loaded enough

to re-initiate the avalanches.

The plot of IA and standing snow for both station-2 and 6 indicates that the IA increases

with increase in snow depth. The standing snow represents stress generated by the

snowpack on underlying layers. On a mountain slope, a threshold stress is required to

trigger avalanche. As the standing snow increases, the stress on different layers increases

leading to the failure of weakest snow layer and triggering avalanche. On some of the

slopes after triggering of avalanches, further avalanches can occur only after sufficient

accumulation of snow on that slope. Due to this, the IA decreased even for higher values of
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standing snow on the slopes. Snow settlement is directly related to the amount of fresh

snowfall and snowpack depth. Hence, the IA for snow settlement follows the similar

pattern as that of snowfall and snowpack depth, i.e. the avalanche activities increase with

increase in snow settlement.

The plot of IA and snowfall intensity indicates that the avalanche activities increase

with snowfall intensity in both the mountain ranges. The rate of snowfall contributes

towards strengthening or weakening of the snowpack. When the intensity of snowfall is

low, snow pack stabilizes well, leading to stable snowpack and less avalanche activities. As

the intensity increases, the snow pack does not get sufficient time in comparison to loading

to stabilize and result in unstable snowpack and triggering of avalanches.

Forecasting of state sequence, i.e. avalanche danger depends on the most probable

observation sequence corresponding to the initial observation. The most probable state

sequence, i.e. day-1 and day-2 forecast for different stations in Pir-Panjal and Great

Himalayan mountain ranges for different months during winter have been summarized in

Table 3. The HMM forecast for day-1 and day-2 has been validated for four winters from

2012–2016 for all 10 road sectors in Indian Himalaya. Since avalanche database is

dominated by non-occurrence cases of avalanche, the performance of avalanche fore-

casting model cannot solely be assessed through computation of percent correct only.

Hence, other accuracy measures such as bias, probability of detection, false alarm rate and

Heidke skill score have also been analysed to assess performance of the HMM. The model

has been validated separately for the cases with (Case-1) and without (Case-2) delayed/wet

avalanches. The HMM forecast has also been compared with the official avalanche

warning bulletin issued by SASE during the same winters (2012-16). The validation results

for both the cases and AWB have been summarized in Table 4.

The AWB is issued by SASE with a lead time of 1 day only after analysis of different

avalanche forecasting models running at SASE and snowpack stability assessment based

on field data. The percent correct (PC) or overall accuracy of an avalanche forecasting

model is a measure of correctness of the forecast for both occurrence and non-occurrence

cases of avalanches. The PC of the HMM for different stations for Case-1 varies from 80.1

to 98.6% for day-1 and 81.2 to 98.3% for day-2 and that for Case-2 from 82.2 to 98.6% for

day-1 and 83.3 to 98.3% for day-2. In the case of AWB, it varies from 73 to 89% for day-1.

The PC of the HMM for both the cases for all the sectors has been found better than that of

AWB. The HMM has shown better accuracy for Case-2 (excluding delayed/wet ava-

lanches) than that for Case-1 (including delayed/wet avalanches) for all the road sectors in

North-West Himalaya. Though the accuracy of HMM for both the cases has been found

better than the AWB, the probability of detection (POD) of AWB has been found better

than the HMM for all the stations. However, higher value of POD of the AWB is asso-

ciated with highly biased forecast in favour of avalanche occurrence and higher false

alarms. The POD tells about the capability of the model for correct prediction of avalanche

occurrence cases. In avalanche forecasting, cost of type-II error (No avalanche danger

warning when an avalanche actually occurred) is extremely high (life of human beings

involved) as compared to type-I error (avalanche danger warning issued when actually

avalanche did not occur) and, therefore, it is preferred to have type-II error as small as

possible (Joshi and Srivastava 2014). The smaller value of type-II error of the model

corresponds to over forecasting, i.e. higher bias. Therefore, higher bias with high POD and

HSS can be considered as good forecast.

The Heidke Skill Score (HSS) greater than zero shows superiority of the model forecast

over random forecast. The HSS of HMM has been found better than that of AWB for 5

stations where good avalanche feedback has been reported. For rest 5 stations where less
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avalanche feedback has been received, the HSS and POD of AWB have been found better

than the HMM due to over forecasting and associated higher bias. For some of the stations

(Station-3 and 4) for day-2, the HSS of the model has shown negative values with high

false alarm (1.0) implying that the model lacks forecasting skill. However, the higher bias

of the HMM and AWB for these regions can be attributed to limited or delayed avalanche

feedback from these regions. The bias occurred due to limited or delayed avalanche

feedback can be reduced and the POD can be increased by employing suitable avalanche

Table 3 State sequences corresponding to different initial observations in different months during winter in
different sectors of North-West Himalaya

Stations Months State Sequence for different initial observations

Observation-1
(O1)

Observation-2
(O2)

Observation-3 (O3) Observation-4 (O4)

Day-1 Day-2 Day-1 Day-2 Day-1 Day-2 Day-1 Day-2

Station-1 December No No Low No Medium Low High Medium

Jan and Feb No No Low No Medium Medium High Medium

March No No Low Low Medium Low High Medium

Station-2 December No No Low No Medium Low Medium Medium

Jan and Feb No No Low No Medium Medium High Medium

March No No Low No Medium Medium Medium Medium

Station-3 December No No Low No Medium Low High Medium

Jan and Feb No No Low No Medium Low High High

March No No Low Low Medium Low High Medium

Station-4 December No No Low No Medium Low Medium Low

Jan and Feb No No Low No Medium Low High Medium

March No No No No Medium Low Medium Medium

Station-5 December No No Low No Medium Low Medium Low

Jan and Feb No No Low No Medium Low High Medium

March No No No No Medium Low Medium Medium

Station-6 December No No Low No Medium Medium Medium Medium

Jan and Feb No No Low Low Medium Low High Medium

March No No No No Medium Low High Medium

Station-7 December No No Low Low Low Low Medium Medium

Jan and Feb No No Low No Medium Low High High

March No No No No Medium Medium High Medium

Station-8 December No No Low No Medium Low Medium Low

Jan and Feb No No Low No Medium Low High Medium

March No No Low Low Medium No Medium Medium

Station-9 December No No No No Medium No High Medium

Jan and Feb No No Low No Medium Low High High

March No No No No Medium Low High Medium

Station-10 December No No No No Medium No High Medium

Jan and Feb No No Low No Medium Low High High

March No No No No Medium Low High Medium
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Table 4 Forecast validation scores of HMM and official Avalanche Warning Bulletin (AWB) of SASE for
different sectors in North-West Himalaya with (case-1) and without (case-2) delayed avalanches

Percent Correct
(PC)

Heidke Skill
Score (HSS)

Probability of
Detection (POD)

Bias False Alarm Rate
(FAR)

Day-1 Day-2 Day-1 Day-2 Day-1 Day-2 Day-1 Day-2 Day-1 Day-2

Station-1

Case-1 97.5 98.1 .17 .35 .14 .29 .57 .57 .75 .5

Case-2 97.8 98.3 .19 .4 .18 .33 .67 .67 .75 .5

AWB 84.4 – .133 – .785 – 8.64 – .909 –

Station-2

Case-1 92 90.9 .26 .15 .42 .29 1.92 1.92 .77 .85

Case-2 92.4 91.3 .27 .16 .48 .32 2.16 2.16 .77 .85

AWB 86.9 – .261 – .75 – 3.9 – .807 –

Station-3

Case-1 98.1 97.8 .115 - .11 .142 0 1.3 1.3 .89 1

Case-2 98.2 98.1 .125 - .01 .2 0 2 1.8 .9 1

AWB 89 – .095 – .714 – 11.85 – .94 –

Station-4

Case-1 98.6 98.3 .16 - .08 .167 0 1 1 .833 1

Case-2 98.6 98.3 .16 - .08 .167 0 1 1 .833 1

AWB 75 – .037 – .833 – 31 – .97 –

Station-5

Case-1 86.3 85 .36 .296 .54 .47 1.5 1.5 .63 .685

Case-2 87 85.7 .375 .315 .58 .51 1.65 1.64 .644 .685

AWB 85.8 – .43 – .74 – 1.95 – .62 –

Station-6

Case-1 83.9 83.9 .256 .256 .547 .547 2.3 2.3 .76 .76

Case-2 84.8 84.7 .28 .27 .64 .62 2.7 2.7 .76 .76

AWB 81 – .318 – .85 – 3.3 – .742 –

Station-7

Case-1 84.6 83.7 .205 .163 .32 .28 1.22 1.22 .73 .77

Case-2 86.8 86 .263 .215 .44 .384 1.67 1.67 .73 .77

AWB 81.5 – .357 – .76 – 2.41 – .684 –

Station-8

Case-1 86.8 87.9 .22 .286 .29 .34 .97 .97 .701 .641

Case-2 87.5 88.6 .24 .307 .31 .38 1.06 1.06 .701 .641

AWB 78.9 – .342 – .855 – 2.92 – .708 –

Station-9

Case-1 80.1 81.2 .33 .37 .56 .60 1.52 1.52 .63 .605

Case-2 82.2 83.3 .38 .42 .68 .73 1.84 1.84 .63 .605

AWB 73 – .307 – .767 – 2.77 – .685 –

Station-10

Case-1 82.2 81.9 .017 .002 .016 .008 .04 .04 .6 .8

Case-2 86.3 86 .027 .007 .021 .01 .053 .053 .6 .8

AWB 74.3 – .375 – .8 – 2.05 – .61 –

Nat Hazards (2018) 93:1127–1143 1141

123



feedback mechanism in avalanche prone regions of North-West Himalaya and the same

can be done in future for improvement in avalanche forecasting.

7 Conclusion

The HMM has been developed for avalanche forecasting in 10 different regions over

North-West Himalaya with a lead time of 2 days. It has been developed using data of past

20 winters (1992–2012) and validated for four winters (2012–2014). The model perfor-

mance has been validated for the cases with and without delayed/wet avalanches and

compared with official Avalanche Warning Bulletin issued by SASE for North-West

Himalaya. The accuracy of HMM for both the cases for all the sectors has been found

better than that of the AWB. The HMM has shown better accuracy for Case-2 (excluding

delayed/wet avalanches) than that for Case-1 (including delayed/wet avalanches) for all the

road sectors in North-West Himalaya. The avalanche forecasting accuracy measures are

affected either by delayed/wet avalanches or inaccurate avalanche feedback. Therefore, to

improve avalanche forecasting in future separate studies should be carried out for fore-

casting of direct and delayed/wet avalanches. Moreover, the avalanche feedback mecha-

nism should be improved for accurate avalanche feedback. The model performance can

further be improved by including more snow pack parameters into the model. The lead

time of avalanche forecast can be improved by coupling HMM with appropriate weather

prediction model. Currently, the avalanche forecast for larger region in the HMM is based

on the data of a single representative station in that region. For high-resolution/site-specific

avalanche forecast, numerical weather prediction model output at a high-spatial resolution

can be coupled with the HMM in future.
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