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Abstract Researchers have long attempted to determine the amount of rainfall needed to

trigger slope failures, yet relatively little progress has been reported on the effects of

climate change on landslide initiation. Indeed, some relationships between landslides and

climate change have been highlighted, but sign and magnitude of this correlation remain

uncertain and influenced by the spatial and temporal horizon considered. This work makes

use of statistically adjusted high-resolution regional climate model simulations, to study

the expected changes of landslides frequency in the eastern Esino river basin (Central

Italy). Simulated rainfall was used in comparison with rainfall thresholds for landslide

occurrence derived by two observation-based statistical models (1) the cumulative event

rainfall–rainfall duration model, and (2) the Bayesian probabilistic model. Results show an

overall increase in projected landslide occurrence over the twenty-first century. This is

especially confirmed in the high-emission scenario representative concentration pathway

8.5, where according to the first model, the events above rainfall thresholds frequency shift

from * 0.025 to * 0.05 in the mountainous sector of the study area. Moreover, Bayesian

analysis revealed the possible occurrence of landslide-triggering rainfall with a magnitude

never occurred over the historical period. Landslides frequency change signal presents also

considerable seasonal patterns, with summer displaying the steepest positive trend coupled

to the highest inter-model spread. The methodological chain here proposed aims at rep-

resenting a flexible tool for future landslide-hazard assessment, applicable over different

areas and time horizons (e.g., short-term climate projections or seasonal forecasts).
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1 Introduction

Over the next decades, societies will face massive environmental changes potentially able

to substantially alter life styles and priorities (Lenton et al. 2008). Climate change will

possibly be the major driver of such changes. However, if on the one hand the scientific

community unequivocally recognized over these past decades the connection between the

increase in greenhouse gases (GHGs) concentration and the increase in global temperature

(Bindoff et al. 2013), on the other hand, changes in the rainfall patterns as a second-order

effect of the increased temperature is connoted by higher uncertainty. Such reservations

concern the magnitude and frequency of extreme events, how they will scale across the

globe in response to the increase in temperature (Seneviratne et al. 2012; Scoccimarro et al.

2013; Drobinski et al. 2016). Notwithstanding these uncertainties, a broad consensus

prevails on the acceleration of the hydrological cycle in a warmer atmosphere (Trenberth

1999; Mariotti et al. 2002; Lorenz and DeWeaver 2007; Volosciuk et al. 2016); acceler-

ation appears strongly affected by the local-scale morphological and orographic pecu-

liarities. (Xoplaki et al. 2004; Walsh et al. 2014).

Rainfall is a major trigger of landslides (e.g., De Vita and Reichenbach 1998; Guzzetti

et al. 2007), one of the most widespread geohydrological hazards over the world, and an

increase in rainfall frequency and intensity may directly affect landslides frequency and

magnitude thus increasing ensuing damages and fatalities. Indeed, good progresses have

been made in linking the amount of rainfall needed to trigger slope failures (e.g., Crozier

1996; Aleotti 2004; Guzzetti et al. 2007; Martinotti et al. 2017), yet the nexus between

climate change and landslide initiation appears more complicated and requires further

study (Dikau and Schrott 1999; McInnes et al. 2007; Crozier 2010; Coe and Godt 2012).

The available literature indicates a relationship between landslides and climate change, but

the sign and strength of this correlation remain uncertain and extremely influenced by the

spatial and temporal horizon considered (Seneviratne et al. 2012; Gariano and Guzzetti

2016). Landslides, strictly depending on geological, geomorphological, and land cover

contexts, represent a category of climate change-related impacts (Pisano et al. 2017),

which understanding and management require specific considerations. Moreover, the

implementation of effective landslide adaptation measures depends on the availability of

plausible multi-scale information about future climate trends. Regional climate model

(RCM) simulations are considered primary tools for climate impact studies focusing on

rainfall and other key climate variables (Giorgi 1990; Giorgi and Mearns 1999; Giorgi

et al. 2009; Hawkins and Sutton 2009; Jacob et al. 2014). However, even the newest

generation of RCM is still affected by systematic errors that can deeply bias impact models

results (Boberg and Christensen 2012). Such errors are mainly due to the imperfections on

physical formulation and unpredictability of future natural variability (Christensen et al.

2008; Boberg and Christensen 2012; Bellprat et al. 2013; Casati et al. 2013). Furthermore,

climate simulations are affected by the representativeness error arising not much from

erroneous physical formulation, but rather from the spatial-scale mismatch between sim-

ulated and observed fields (Casati et al. 2013; Tomozeiu et al. 2013). The combination of

these errors contributes to the different statistical properties shown by climate simulations
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and observations. For this reason, nowadays it is a standard procedure to post-process

simulation outputs toward observations.

In this work, we model future trends of landslide occurrence on three representative

sites (Ancona, Jesi, and Apiro) of the eastern Esino river basin, Marche Region, Central

Italy. We connect simulated rainfall from three RCMs (EURO-CORDEX project, Jacob

et al. 2014) to rainfall thresholds for landslide occurrence computed using two different

statistical models. Our simulations are post-processed (i.e., statistically adjusted) through a

quantile mapping (QM) technique necessary to map the statistical properties of the

observations to the simulations (Boé et al. 2007; Themeßl et al. 2011b; Berg et al. 2012;

Gudmundsson et al. 2012). However, because QM is also known for potentially altering

the original climate change signal (CCS) produced by the climate models (Giorgi and

Coppola 2010; Themeßl et al. 2011a; Maraun 2013; Gennaretti et al. 2015; Sangelantoni

et al. 2018), we opted for the configuration proposed by Cannon et al. (2015), quantile delta

mapping (QDM), which preserves the original CCS. Once post-processed, the simulated

temporal evolution of rainfall is juxtaposed to the thresholds computed with two statistical

landslide predictive models: (1) the cumulative event rainfall–rainfall duration (ED)

model, and (2) the Bayesian probabilistic model. In Fig. 1, the entire methodological chain

to define future changes in landslide occurrence frequency is summarized.

2 Study area and materials

2.1 Study area

Data collection was carried out in the eastward section of the Esino river catchment area

(Fig. 2), one of the largest and most inhabited watersheds of the Marche Region in central

Italy (National Institute of Statistics—ISTAT 2016). The high exposure to landslides of

this urbanized area, besides making this study salient, provides for abound information of

past events.

Fig. 1 Reference methodological framework for the definition of future changes in landslide occurrence.
Modified after Gariano and Guzzetti (2016)
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This study area covers about 550 km2 and stretches from the Sub-Apennine hills on the

West to the Adriatic coast on the East (Gentili and Dramis 1997). The outcrop, made of

sedimentary sequences of mainly clay, silt, and sand (Fig. 3), is affected by numerous

shallow landslides. These movements show great variability in size and type (flows and

slides) and affect the transitional layer between the weathered material and the bedrock

(Bisci and Dramis 1991; Cardinali and Guzzetti 2003).

The changing permeability of these terrains plays a very important role in determining

the relationship between landslides and rainfall. Typically, the lithology of this area has

medium–low permeability, allowing moderate rain storage and quick soil saturation. For

this reason, landslide triggering is directly linked to the cumulative values (Peruccacci

et al. 2012) as well as intensity and duration of rainfall (Gioia et al. 2015). Indeed, changes

in the hydrological cycle connected to climate change will plausibly influence landslides

initiation within this considered territory.

2.2 Landslides dataset

Based on the dataset of historical landslides provided by the Marche Region’s Civil

Protection Monitoring and Forecasting Center, the study area was affected by 208 rainfall-

triggered landslides over the period 1990–2012 (Fig. 4). These records mainly consist of

Fig. 2 Study area within the Esino river basin (Marche Region, Central Italy)
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shallow landslides, usually with an average depth of 1 m, triggered near transportation

infrastructures and civil or industrial buildings. Such landslides have been reported to the

authorities and to the press mostly because of the damages caused or the media exposure

reached on the territory. Therefore, the dataset may not be completely exhaustive of the

actual instability conditions of the study area.

According to the lithological map by Folchi Vici D’Arcevia et al. (2008), almost all the

landslides were triggered in clay (100) or sandstone (64) materials, in areas where the land

use is generally agricultural (European Commission 2004). The remaining ones were

activated in alluvium (25), marl (13), colluvium (3) and limestone (3) lithologies.

Using a criterion of proximity, each landslide has been attributed to a triggering rainfall

deriving from the measurements of one of the 11 local weather stations, distributed in the

study area or in the vicinity (Table 1 and Fig. 3). This dataset is provided by the Marche

Region’s Civil Protection Monitoring and Forecasting Center as well.

As a result, the 208 landslides have been related to 68 different rainfall events from

December 1990 to May 2011 (Table 2 and Fig. 4). A rainfall event is here defined, with a

standard procedure (Segoni et al. 2018), as a period of one or more days in which a

continuing rainfall, with intensity C 1 mm/day, is registered. Subsequently, two consec-

utive rainfall events are separated by periods of one or more days with no rainfall or with

Fig. 3 Study area sediments divided by lithology. The circles (yellow and red) represent the rain gauge
stations, while the triangles indicate the georeferenced landslides. Red circles denote the stations selected for
providing rainfall observed time series. Finally, the figure shows a representative RCM grid with light blue
stars indicating the nodes providing rainfall simulations
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rainfall intensity\ 1 mm/day. Each event initiated a certain number of landslides, from

one to a maximum of 19. Table 2 gives an account of: (a) 5 rainfall events that triggered

more than 10 landslides, (b) 16 rainfall events that triggered from 3 to 9 landslides, (c) 9

rainfall events that triggered 2 landslides, and (d) 38 rainfall events that triggered 1

landslide.

Fig. 4 Temporal distributions of the landslides triggered in the study area, per month (a) and per year
(b) (1990–2012)
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2.3 Rainfall datasets

For what concerns the climate analysis, we use two daily rainfall datasets: (1) observed

rainfall, and (2) simulated rainfall.

The observed daily cumulative rainfall dataset covers the period 1971–2000, which is

the temporal segment used as calibration period for the statistical adjustment of rainfall

simulations. This dataset is provided by the Marche Region’s Civil Protection Monitoring

and Forecasting Center. The quality of such database was checked according to ‘‘Guide to

Climatological Data’’ (WMO 2007) as performed in Appiotti et al. (2014). Three rain

gauges stations located in Ancona, Jesi 1—named ‘‘Jesi’’ hereafter—and Apiro (Table 1)

have been chosen to represent the three main climate sectors of the eastward section of the

Esino river catchment area, which includes a hilly mountainous area to the West (the

Apennines range) and a coastal area to the East (the Adriatic seaboard) (Fig. 2). Fur-

thermore, these three stations provide the most complete and long observed datasets among

those reported in Table 1. We refer to Ancona as the coast site, Jesi as the hill site, and

Apiro as the mountain site.

The simulated daily cumulative rainfall dataset covers the period 1971–2099, which is

the temporal segment provided by the three RCMs run (Table 3). These three RCMs

represent a subset of the high-resolution RCM ensemble participating to the EURO-

CORDEX initiative (Jacob et al. 2014) within the WRCP Coordinated Regional Down-

scaling Experiment (CORDEX, http://www.cordex.org/; Giorgi et al. 2009). A detailed

description of the key features of the three RCMs considered in terms of grid configuration,

physical schemes, and model performance can be found in the references reported in

Table 3.

The simulated rainfall has been extracted from the grid point closest to the above-

mentioned stations of Ancona, Jesi, and Apiro. Figure 3 reports the grid cells (for one

representative RCM) distribution over the study area.

Simulations are forced by two different scenarios of atmospheric GHGs concentration,

the representative concentration pathways (RCP) 4.5 and 8.5 (Moss et al. 2010; Mein-

shausen et al. 2011; Riahi et al. 2011). These two RCPs have been chosen as representative

of a wider set of multi-gas emission scenarios (Meinshausen et al. 2011) and provide two

Table 1 List of the rain gauge stations available for the study area

Station Station code Data availability 
(years)

Elevation (m)

Agugliano 1220 2003-nowadays 170
Ancona 2009 1951-2014 6
Apiro 2066 1951-2009 516
Cupramontana 1 2062 1951-2008 506
Cupramontana 2 1263 2003-nowadays 510
Jesi 1 2063 1951-2008 96
Jesi 2 1213 2003-nowadays 100
Moie 2067 1951-2014 110
Poggio San Romualdo 2064 1991-2007 926
Poggio San Vicino 2848 2009-nowadays 580
Fabriano 1413 2001-nowadays 625

Highlighted are the stations selected as reference sites for this work
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Table 2 List of the rainfall events that triggered one or more landslides within the study area during the
period 1990–2012

Rainfall event (ID) Station Landslides D (days) E (mm)

Dec-90 Ancona 3 6 46.2

Jesi 1 8 6 88.0

Moie 19 6 54.8

Sep-91 Jesi 1 1 3 13.6

Nov-91 Ancona 1 3 61.6

Apiro 1 3 87.4

Jesi 1 1 3 63.2

Moie 1 3 60.6

Oct-92 Jesi 1 2 42.0

Jan-94 Ancona 1 2 63.2

Cupramontana 1 1 2 74.0

Jesi 1 3 2 73.6

Moie 3 2 47.0

Jul-94 Cupramontana 1 1 2 62.4

Sep-95 Moie 1 1 24.6

Mar-96 Moie 1 2 16.2

Apr-96 Jesi 1 2 4 55.2

Oct-96 Cupramontana 1 2 3 110.6

Jesi 1 5 3 105.8

Moie 3 3 76.6

Dec-96/Jan-97 Apiro 4 13 191.6

Cupramontana 1 14 13 122.0

Jesi 1 8 13 116.6

Moie 7 13 142.6

Nov/Dec-98 Apiro 14 6 176.8

Cupramontana 1 17 6 135.0

Jesi 1 5 6 125.4

Moie 12 6 128.8

Poggio San Romualdo 2 6 76.4

Dec-99 Apiro 3 2 76.6

Jesi 1 1 2 66.2

Jan-01 Jesi 1 1 5 80.8

Cupramontana 1 1 5 68.8

Feb-04 Cupramontana 1 1 8 53.6

Moie 1 8 44.2

Apr-05 Cupramontana 1 8 5 86.8

Jesi 1 1 5 51.6

Moie 3 5 37.8

May-05 Cupramontana 1 1 3 28.2

Oct-05 Ancona 1 4 49.6

Cupramontana 1 2 4 58.0

Jesi 1 3 4 67.8
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potential future evolution of atmospheric composition. In fact, to different emission sce-

narios correspond different response of the climate system. In this regard, RCP 4.5 con-

ceives a stabilization of the radiative forcing at 4.5 W m-2 thanks to mitigation policies

undertaken to limit GHGs emission. A more ‘‘pessimistic’’ emission scenario is

Table 2 continued

Rainfall event (ID) Station Landslides D (days) E (mm)

Jan-06 Ancona 2 4 49.4

Jesi 1 1 4 35.8

Apr-07 Ancona 1 2 31.6

Jun-07 Poggio San Giovanni 1 3 46.0

May-08 Jesi 2 2 5 70.2

Sep-08 Ancona 1 5 61.4

Jesi 1 5 60.0

Dec-08 Agugliano 1 4 91.8

Apiro 1 4 119.2

Jesi 2 1 4 93.6

Jun-09 Agugliano 1 3 13.0

Jan-10 Agugliano 1 7 48.0

Feb-10 Moie 1 2 14.4

Mar-10 Jesi 2 1 3 33.8

Moie 1 3 39.2

May-10 Agugliano 1 6 67.0

Ancona 1 6 61.2

Dec-10 Agugliano 1 4 40.6

Moie 1 4 55.2

Mar-11 Agugliano 4 11 149.0

Ancona 1 11 164.4

Fabriano 2 11 142.8

Jesi 2 2 11 116.4

Moie 6 11 144.0

Poggio San Vicino 2 11 97.8

May-11 Ancona 1 3 39.6

208

For each rainfall event and rain gauge station, we report the number of triggered landslides, the rainfall
duration (D), and the cumulative event rainfall (E)

Table 3 List of RCMs used in this study. All the RCMs share the same horizontal resolution of 12.5 km

Institute RCM Driving model RCPs References

KNMI RACMO22E EC-EARTH 4.5 8.5 Van Meijgaard et al. (2012)

SMHI RCA4 CM5 4.5 8.5 Samuelsson et al. (2011)

CLMcom CCLM4-8-17 CM5 4.5 8.5 Rockel et al. (2008)
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contemplated by the RCP 8.5, which considers the absence of climate change mitigation

policies leading to a pathway of high GHGs emission and a subsequent higher radiative

forcing of 8.5 W m-2.

We chose 1971–2000 as historical period for calibrating the bias correction and for

computing the climate change signal. This historical segment, different from the period of

documented landslide occurrence (i.e., 1990–2012), has been chosen for the following

reasons:

1. To properly calibrate the QDM correction function we sought for a 30-year time

segment, needed for encompassing climate variability;

2. To filter out the effect of different radiative forcing assumed by the two RCPs we

calibrate the QDM correction function over a period characterized by the same

observed GHGs concentrations (in fact, the two RCP simulations are forced by

observed GHGs concentration up to 2005);

3. To maximize the time span between historical and future period (2070–2099) and

related changes, since we postulate a time-independent relationship between landslide

occurrence and magnitude of triggering rainfall events.

3 Methods

3.1 Statistical post-processing of simulated rainfall

The simulated rainfall time series have been post-processed according to a QDM technique

presented in Cannon et al. (2015). As explained below, QDM advances the traditional post-

processing technique of quantile mapping (QM) (Boé et al. 2007; Dosio and Paruolo 2011;

Berg et al. 2012; Gudmundsson et al. 2012; Casati et al. 2013; Wilcke et al. 2013; Smith

et al. 2014) originally proposed by Panofsky and Brier (1968). Traditional QM aims at

defining a quantile-specific transfer function computed by the mismatch between the

observed and simulated cumulative distribution functions (CDFs) over a common histor-

ical series (i.e., calibration) generally with length C 30 years. The transfer function is

defined on a set of physical values corresponding to discrete quantiles, and then interpo-

lated to correct all simulated physical values. QM is a valuable technique for bias cor-

rection and for downscaling climate simulations (Piani et al. 2010; Themeßl et al. 2011b;

Berg et al. 2012; Gudmundsson et al. 2012), yet QM is also known to alter original

simulated CCS (Themeßl et al. 2011a; Dosio et al. 2012; Maurer and Pierce 2014; Smith

et al. 2014; Cannon et al. 2015; Switanek et al. 2017; Sangelantoni et al. 2018). The

inflation or deflation of the original CCS could be physically plausible only in the case of a

temporal stationarity of the model bias. Temporal stationarity means that the bias affecting

present climate simulations is assumed unvarying in the future climate (Maraun 2013;

Gaitan 2016; Switanek et al. 2017). Since establishing such a condition is beyond the scope

of this work, we used QDM which represents one solution to circumvent artificial CCS

alteration.

The first step of QDM consists of a quantile–quantile detrending of the time series that

must be post-processed. It consists in deriving and then removing the quantile-specific

relative change (i.e., trend). A quantile-specific relative change corresponds to the ratio

between a simulated rainfall value at time t associated to a certain quantile (e.g., 95th) in

the future period and the simulated rainfall value associated to the same quantile in the
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historical period. A simulated detrended value is then obtained by scaling the future

rainfall value by its relative change.

In the second step, a traditional QM application is used to correct detrended simulation

mapping of the statistical properties of the observed time series. Figure 5 shows the

original and statistically adjusted simulations reproducing the statistical intensity of the

observed rainfall over the historical temporal segment used as calibration period

(1971–2000). Finally, the trend extracted in the first step is added back to the corrected

time series derived from the second step, thus preserving the changes produced by the

original simulation. Figure 6 shows a comparison between the CCS obtained with the

original and the statistically adjusted simulations over different statistics. For this study,

because landslide-triggering thresholds are derived from observed rainfall, it is important

superimposing simulated trend to a simulation having the same statistical properties of the

observed rainfall climatology. QDM accurately reproduced original CCS affecting the

right tail of distribution of high to extreme rainfall events (potentially landslides). How-

ever, it was also observed an alteration of the original mean CCS. According to the QDM,

this can be due to the multiplicative approach (i.e., correction factors are multiplied to the

original simulation quantiles) in the case of a substantial difference of dry days frequency

between historical and future time segments (Switanek et al. 2017).

We apply the QDM over two different temporal segments (see Sect. 4). First, the entire

simulated period (1971–2099) for the analysis related to the ED model. Then, the QDM

has been applied to the 1971–2000 and to the 2070–2099 temporal segments, for the

analysis related to the Bayesian probabilistic model.

Finally, differently from Cannon et al. (2015), the QDM transfer functions have been

defined on observations at station scale. In this configuration, the post-processing involves

a simulation bias correction and downscaling to the station scale as well, considering the

representativeness error arising from the spatial-scale mismatch between simulations and

observations (Casati et al. 2013).

Fig. 5 Quantile–quantile mismatch between the original (blue) and statistically adjusted (red) simulated
and observed rainfall over a common historical (i.e., calibration) period 1971–2000. This is exemplary
shown for one RCM (RACMO22E) and one reference site (Ancona)
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3.2 Landslide predictive models

The literature in the subject of rainfall threshold for landslide occurrence is wide and

characterized by different scale of analysis and rainfall-based proxies (Guzzetti et al.

2007, 2008; Segoni et al. 2018). A threshold is a mathematical relationship generally

defined as ‘‘the minimum or maximum level of some quantity needed for a process to take

place or a state to change’’ (White et al. 1996). For rainfall-induced landslides, a threshold

may represent the limit (lower, midst, or upper) of the hydrological condition in which

landslides are likely to occur (Reichenbach et al. 1998).

Among the most used techniques to determine the amount of rainfall needed to trigger

landslides are the statistical rainfall threshold models, which assess the correlation between

rainfall proxies and landslides through statistical analysis of historical records (Guzzetti

et al. 2008). Indeed, the hydrogeological conditions in which our dataset of shallow

landslides has occurred can be reasonably simplified by the statistical rainfall threshold

models because their small dimensions allow to consider such landslides as a point, with

relatively uniform characteristics, on a large scale (Cervi et al. 2010). In the statistical

models, the threshold between rainfall and landslides that happened in the past is assumed

to be also the threshold of future landslides (Martelloni et al. 2011).

In this study, for the definition of statistical rainfall thresholds across the selected study

area, we consider four rainfall proxies [cumulative event rainfall (E), rainfall duration (D),

daily rainfall (R), and 5-day antecedent rainfall (A5)] applied to two different models: (1)

the cumulative event rainfall–rainfall duration model (E–D proxies), and (2) the Bayesian

probabilistic model (E–A5 proxies).

Fig. 6 Simulated rainfall quantile–quantile comparison between future period (2070–2099) and historical
period (1971–2000), considering original (blue) and statistically adjusted (red) simulations. Text in the
upper-left part of the plot reports CCS (percentage difference between the two periods) related to specific
statistics obtained considering original and adjusted simulations. This is exemplary shown for one RCM
(RACMO22E) and one reference site (Ancona)
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3.2.1 The cumulative event rainfall–rainfall duration (ED) model

The cumulative event rainfall–rainfall duration (ED) model (Innes 1983; Sengupta et al.

2010; Vennari et al. 2014; Brunetti et al. 2015; Gariano et al. 2015) assumes that the

threshold curve is a power law:

E ¼ aDb ð1Þ

where E is the cumulative event rainfall measured from the beginning to the end of the

rainfall event in which one or more landslides were activated (mm), D is the duration of the

rainfall event (day), and a and b are constants which control the shape of the curve.

Data of cumulative event rainfall and duration have been computed for the 68 rainfall

events that triggered the 208 landslides considered (Fig. 7). Then, a technique suggested by

Guzzetti et al. (2007) has been adopted to portray percentile estimates of the rainfall ED

conditions. The purpose is to approximate the values at the empty data (i.e., bins) and to

minimize the effect of clustering at specific duration. In fact, the ED chart reveals a bias in

the database, especially for rainfall duration ranging from six to eleven days, possibly due

to the unequal distribution of landslides throughout the analyzed period. Starting from the

minimum value of D and up to the maximum, a sliding window of 11 bins has been

isolated among the rainfall events. Therefore, at the nth duration value, a range of 11 data

centered in the nth value (i.e., five bins to the left and five bins to the right of the central

bin) has been considered. The 10th, 50th, and 95th percentiles of the cumulative rainfall for

the selected events have been computed and attributed to the central point of the 11-bins

moving window along the duration axis. Percentile lines are then drawn by joining equal

percentile points (Fig. 7). Starting from these lines, the 10, 50, and 95% rainfall thresholds

were computed in the form of power law regressions (Fig. 7). Such curves represent,

respectively, the 10, 50, and 95% probability of landslide initiation (10p, 50p, and 95p,

respectively) with determined ED conditions.

Fig. 7 Relation between cumulated rainfall and duration of the 68 rainfall events (blue circles) that
triggered landslides in the study area. Dashed lines portray 10th (green), 50th (orange), and 95th (red)
percentile estimates of rainfall ED conditions, while solid lines represent the 10% (green), 50% (orange),
and 95% (red) probabilistic rainfall thresholds
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In this study, the three landslides probability curves, produced by the observation-based

statistical model, act as the reference thresholds to assess, over the period 1971–2099, the

temporal evolution of the rainfall events with the 10, 50, and 95% probability of landslides

initiation within the study area.

3.2.2 The Bayesian probabilistic model

The statistically based probabilistic models are mathematical models that use historical

records of landslide occurrence to predict the probability of future landslides (Coe et al.

2004). These models incorporate variability and uncertainty, providing a quantitative

assessment of threshold reliability (Bean 2009). One of the most applied approaches is the

statistical Bayesian inference, firstly proposed by Guzzetti et al. (2005). In this work, the

Bayesian probabilistic model is used adopting a two-dimensional application, as proposed

in Berti et al. (2012):

P L _ R;A5ð Þ ¼ P R;A5ð Þ _ Lð Þ � P Lð Þ=P R;A5ð Þ ð2Þ

where the probability P(L|R, A5) is the conditional probability of occurrence of at least one

landslide (L) given a rainfall event of a fixed range of values of daily rainfall (R) and 5-day

antecedent rainfall (A5). P(R, A5|L) is the conditional probability of observing a rainfall

event of magnitude (R, A5) when a landslide occurs. P(L) is the probability that at least one

landslide occurs independently of the rainfall event. Finally, P(R, A5) is the probability of

observing a rainfall event of magnitude (R, A5) independently of the occurrence of a

landslide.

This method is performed in terms of relative frequencies and returns a value of

landslide probability (from 0 to 1) for each combination of the described parameters (R and

A5). To assess P(L|R, A5), we use 3 classes corresponding to 3 level of landslide probability

that could be comparable to the ED thresholds: (1) 0–0.50 for low probability, (2)

0.51–0.95 for medium probability, and (3)[ 0.95 for high probability.

For this model we use the same landslides and rainfall datasets previously described.

Given the importance of non-triggering rainfall events in a probabilistic study, we attempt

to overcome the issue of probability underestimation by visualizing results only for the

years in which at least one landslide has been reported. Furthermore, we interpolate rainfall

data for the entire study area instead of using the punctual information deriving from the

rain gauges. Despite the well-known resulting problems of data flattering, such decision

allows us to consider the totality of landslides in a single analysis thus increasing statistical

reliability. Table 4 shows the results of the interpolation for the landslides-triggering

rainfall events, which are recognizable by the same ID used in Table 2.

Values of P(L|R, A5) have been plotted in a (R, A5) plane delimited by intervals of

0–19.9 mm, 20.0–39.9 mm, 40.0–59.9 mm, and C 60.0 mm (Fig. 8). For example, the

lower-left box of the figure represents the probability of initiating at least one landslide,

given a rainfall event of 0 B R B 19.9 mm and 0 B A5 B 19.9 mm. The colors of the

histograms correspond to levels of landslide probability: low (green), medium (orange),

and high (red). The ‘‘not applicable’’ boxes (NA, gray) indicate rainfall conditions that

never occurred in the study area during the considered period.

In this study, the above-described landslide probability classes (LPCs), assigned to each

combination of (R, A5), have been used to compare the variation in landslide occurrence

over the periods 1971–2000 and 2070–2099.
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Table 4 Results of the interpolation for the rainfall events that triggered at least one landslide within the
study area

Rainfall event (ID) Landslides Date (yyyy/mm/dd) R (mm) A5 (mm)

Dec-90 5 1990/12/14 9.7 74.9

25 1990/12/15 2.4 74.3

Sep-91 1 1991/09/28 0.0 14.1

Nov-91 4 1991/11/24 68.4 29.5

Oct-92 1 1992/10/20 33.6 26.3

Jan-94 8 1994/01/20 50.7 16.5

Jul-94 1 1994/07/20 36.6 0.4

Sep-95 1 1995/09/08 18.0 17.5

Mar-96 1 1996/03/16 18.4 11.9

Apr-96 2 1996/04/03 18.0 23.7

Oct-96 4 1996/10/08 48.2 21.2

4 1996/10/09 22.2 68.0

2 1996/10/10 0.2 90.0

Dec-96/Jan-97 5 1996/12/30 3.2 77.3

13 1996/12/31 1.9 62.5

4 1997/01/01 12.7 50.8

2 1997/01/02 3.0 51.3

7 1997/01/03 3.9 43.6

2 1997/01/04 3.9 24.7

Nov/Dec-98 43 1998/12/01 62.7 26.4

6 1998/12/02 3.2 89.0

1 1998/12/04 32.2 89.3

Dec-99 4 1999/12/15 51.8 10.3

Jan-01 2 2001/01/30 41.5 27.8

Feb-04 2 2004/02/27 8.8 28.4

Apr-05 1 2005/04/10 30.6 5.6

7 2005/04/12 2.3 67.2

4 2005/04/13 0.0 69.5

May-05 1 2005/05/18 7.2 12.4

Oct-05 5 2005/10/08 55.4 22.1

1 2005/10/09 4.7 69.3

Jan-06 3 2006/01/03 29.3 18.2

Apr-07 1 2007/04/05 0.8 31.8

Jun-07 1 2007/06/08 0.4 29.3

May-08 2 2008/05/20 45.7 6.0

Sep-08 1 2008/09/13 11.1 5.5

1 2008/09/14 11.8 16.6

Dec-08 1 2008/12/12 56.9 29.1

2 2008/12/13 0.6 86.0

Jun-09 1 2009/06/01 37.2 52.2

Jan-10 1 2010/01/03 2.5 28.2

Feb-10 1 2010/02/06 4.5 9.2
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4 Analyses

The landslide initiation models and the rainfall simulations explained above were com-

bined to perform two different analyses to highlight future annual and seasonal changes in

landslides occurrence (autumn: October, November, December; winter: January, February,

March; spring: April, May, June; summer: July, August, September).

The first analysis considers the temporal evolution (1971–2099) of the events above

rainfall thresholds (EARTh) for landslide initiation, which represent rainfall events

(rainfall event C 1 mm and duration C 1 day) above the three thresholds derived from the

Table 4 continued

Rainfall event (ID) Landslides Date (yyyy/mm/dd) R (mm) A5 (mm)

Mar-10 1 2010/03/10 19.0 20.7

1 2010/03/11 2.7 36.6

May-10 2 2010/05/16 6.9 75.4

Dec-10 2 2010/12/01 24.0 79.7

Mar-11 4 2011/03/01 53.1 13.3

2 2011/03/02 42.7 66.4

2 2011/03/03 9.5 109.1

1 2011/03/06 0.8 114.5

3 2011/03/08 0 19.5

5 2011/03/09 0 10.0

May-11 1 2011/05/17 0 30.1

208

For each rainfall event, we report the number of triggered landslides, the daily rainfall (R), and the 5-days
antecedent rainfall (A5)

Fig. 8 Histograms of landslide probability for different combinations of (R, A5). Colors represent the
corresponding LPC: low (green), medium (orange), high (red), and NA (gray)
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ED statistical model. The annual (or seasonal) number of EARTh has been normalized to

the total number of annual (or seasonal) rainfall events. In this way, we derive the relative

frequency of potential landslide initiation events. Trends are evaluated applying a linear

regression model to the annual (or seasonal) EARTh time series. The statistical signifi-

cance of these trends is verified with the Mann–Kendall test (Wilks 2006). A further

complementary analysis addresses the change in rainfall probability distribution functions

(PDFs) between the historical (1971–2000) and the future (2070–2099) temporal segments.

Differently from the previous, this complementary analysis considers also smaller rainfall

events not exceeding the landslide initiation thresholds. Rainfall events have been clustered

in equal-sized bins, representing rainfall of a certain cumulative and duration class.

Rainfall events placed above the 10p, 50p, and 95p thresholds signify the PDF of the

EARTh. These results are accessible in the enclosed supplementary materials (Figs. SM

2–4).

The second analysis compares the variation in landslide occurrence between the his-

torical (1971–2000) and future (2070–2099) temporal segments. The number of expected

rainfall events belonging to each LPC derived from the Bayesian model has been computed

for both temporal segments. Finally, seven landslide variation classes (LVCs), from - 3 to

? 3, have been defined to evaluate the increment or decrease in expected landslide

movements (Table 5).

4.1 Trends of the events above rainfall thresholds (EARTh)

The EARTh trends over the three reference sites chosen for the Esino basin are shown in

Figs. 9, 10 and 11. Each subplot includes results from three RCMs forced by the RCP 4.5

(dashed lines) and RCP 8.5 (solid lines), highlighting possible effects of different GHGs

concentration over landslide-triggering rainfall. Here, we discuss the annual and the sea-

sonal trends during winter and summer. The trends for autumn and spring are available in

the supplementary materials (Fig. SM 1).

The trend of every EARTh and their statistical significance are summarized in the

matrix of Table 6. To rate the p values, we use the following symbols: p values C 0.05 not

statistically significant (blank/no asterisk); p values\ 0.05 statistically significant (*);

p values\ 0.01 moderately statistically significant (**); p values\ 0.001 highly statisti-

cally significant (***).

Results show a general increase in the EARTh frequencies over time. Similarly, all the

significant trends show increasing slopes. The RCP 8.5 scenarios produced a larger number

of increasing and significant trends in both the annual and seasonal analyses. However, the

sensitivity to the different GHG emission scenarios varies according to the RCM

Table 5 Class of variation rela-
ted to the different landslide
probability class

LVC Variation (%)

3 [ 100

2 [51:100]

1 [1:50]

0 0

- 1 [- 50:1]

- 2 [- 100:- 51]

- 3 \- 100
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Fig. 9 Temporal evolution (5-year running mean), with the linear regression, of annual events above
rainfall thresholds (EARTh) relative frequency. EARTh are computed in respect to the three thresholds for
each of the three reference sites of the Esino basin (a for Ancona, b for Jesi, and c for Apiro). Each subplot
includes results of three RCMs run with two different radiative forcing represented by the RCP 4.5 (dashed
lines) and RCP 8.5 (solid lines)
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considered. For instance, considering annual analysis, RACMO displays the larger sensi-

tivity to the different RCP considered, because many negative trends in the RCP 4.5

became positive in the RCP 8.5 (Table 6). On the other hand, RCA4 and CCLM reveal a

more comparable RCP-sensitivity because driven by the same global climate model

(GCM; i.e., CNRM-CM5).

Fig. 9 continued
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The analysis of the annual 10p-EARTh (i.e., rainfall events that exceed the 10%

probability to initiate a landslide) highlights relative frequencies lower than 0.3 for the

coast site (Fig. 9a) and lower than 0.4 for the mountain site (Fig. 9c). Increasing trends

with similar magnitude are visible both in the RCMs and on the studied sites. Moreover,

such trends appear of comparable magnitude toward the end of twenty-first century tallying

Fig. 9 continued
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frequency of * 0.3 in the coastal and * 0.4 in mountain sites. However, the results of the

Mann–Kendall test (Table 6) for the RCP 8.5 scenario simulations show larger number of

significant trends compared to those of the RCP 4.5 scenario. The analysis of the annual

50p-EARTh (moving to more intense rainfall events) displays larger differences between

Table 6 Table shows, for each temporal base (Annual (Ann)–Winter (Win)–Summer (Sum)), reference
station, RCM, and RCP, the trend of every ELTEs and their statistical significance

The colors indicate upward (light blue), null (gray), or backward (orange) trends. The asterisk rating system
indicates p values C 0.05 not statistically significant (blank), p values\ 0.05 statistically significant (*),
p values\ 0.01 statistically moderately significant (**), p values\ 0.001 statistically highly significant
(***)
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the RCMs and studied sites. Higher EARTh frequency can be observed in the mountain

site, approximately doubling the coast and hill sites frequency (Fig. 9a, b, respectively).

However, too larger frequency in the mountain site do not correspond to increasing trend in

that same site. Comparable to the 10p-EARTh also the 50p rainfall threshold shows steeper

significant trends with the RCP 8.5-forced simulations when compared to the RCP 4.5

Fig. 10 Same as Fig. 9a–c but for winter season
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scenario. The relative frequency increases from * 0.1 to * 0.15 in the mountain refer-

ence site. The analysis of the annual 95p-EARTh (ranging from severe-to-extreme rainfall)

reveals abundant statistically significant trends (Table 6). The signal is joined by large

discrepancies between the two RCPs. This result indicates larger sensitivity in the 95p-

EARTh to a different GHGs concentration. Another important aspect to stress is the

Fig. 10 continued
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increase in inter-model spread (commonly considered as uncertainty metric in climate

projections) with severe-to-extreme events. Over the three studied climate sectors, the

mountain site shows the larger EARTh frequency, which in the RCP 8.5 scenario increased

from a relative frequency of * 0.025 to * 0.05, over the entire temporal segment

analyzed.

Fig. 10 continued
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Regardless of the considered rainfall threshold (10p, 50p, or 95p), the evolution of the

EARTh appears strongly influenced by seasonal patterns. In winter, we obtained the

smallest absolute number of EARTh especially with the 95p threshold, both in the coast

and hill sites (Fig. 10a, b, respectively). Concerning the temporal evolution, most of the

resulting trends are not significant, except for some instances in the 10p- and 50p-EARTh

Fig. 11 Same as Fig. 9a–c but for summer season
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obtained in the RCP 4.5 scenario in the mountain site of Apiro (Fig. 10c and Table 6). The

same site also projects larger 95p EARTh frequency toward the end of the twenty-first

century (* 0.025). In addition, we notice homogeneous increasing trends in the three

RCMs and no evident alterations of the trends’ magnitude connected to the expected

changes in GHGs concentration considered in scenarios RCP 4.5 and RCP 8.5.

Fig. 11 continued
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Winter rainfall in our area of study is mainly driven by Mediterranean cyclones and

rarely triggered landslides. Changes may be expected in the future, since climate model

projections indicate that Mediterranean cyclones will decrease in frequency but increase in

intensity (Zappa et al. 2014; Scoccimarro et al. 2016). Nevertheless, according to the

Fig. 11 continued
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RCMs considered, these expected changes in rainfall do not entail significant alterations of

landslide-triggering events frequency.

Summer rainfall (Fig. 11), on the contrary, shows the largest relative frequency of

EARTh regardless of the threshold considered. Noticeably, this season is also the most

uncertain in terms of change signal discrepancies among the different thresholds, RCMs,

RCPs, and studied sites. Furthermore, can be observed how summer EARTh trends are

characterized by a large inter-annual variability, particularly over the 95p threshold.

In this context, the RCA4 and CCLM RCP 8.5 scenarios show a substantial increase in

the 95p EARTh, mainly over the coastal and mountainous sites (Fig. 11a, c, respectively)

compared to the hill one (Fig. 11b). In these sites, a relative frequency of * 0.1 (* 10%

of events will exceed the 95p threshold) by the end of the twenty-first century is expected

according to the CCLM RCM. However, consistent 95p EARTh increase is visible only in

the two RCMs forced by the same driving GCM. In fact, much flatter trends result in the

three thresholds for the RACMO RCM.

It is noteworthy that the RCA and CCLM positive trends obtained with the RCP 8.5

scenario are in contrast whit the much flatter trends resulting from the RCP 4.5. This

suggests that, subjected to a larger warming, the atmosphere can hold amounts of moisture

sustaining more intense landslide-triggering rainfall events (Pall et al. 2007; Giorgi et al.

2011; Drobinski et al. 2016; Volosciuk et al. 2016). At the same time, results of summer

season shed light on how the representation of summer intense rainfall events, generally

originated by convective processes, strongly depends on the RCM and RCP considered.

4.2 Future variation of landslide probability (Bayes)

The variation in landslide occurrence, between the historical (1971–2000) and the future

(2070–2099) temporal segments considered in this study, is derived from the Bayesian

model. Figure 12 shows results of the analyses on annual and seasonal (winter-summer)

basis and for all the considered stations (Ancona, Jesi, and Apiro).

The graphs display for every LPC (horizontal axis) the corresponding LVC (vertical

axis), both for RCP 4.5 (blue) and RCP 8.5 (red) scenarios. The number of expected

rainfall events belonging to each (R, A5) combination and the percentage of variation

between the historical and the future periods are highlighted. The plot of each LPC shows

the cumulative minimum, maximum, and median values of the corresponding LVCs

according to all the three RCMs. Figure 12 represents the aggregate projection of increase

or decrease in landslide initiation for each probability class.

Overall, results of the comparison between historical and future periods show a general

increase in the landslide-triggering rainfall events. In fact, as it can be noticed the median

of the cumulative number of rainfall events is expected to increase especially for the

medium and high LPCs and the RCP 8.5. This translates into an intensification of the

rainfall that are most likely to trigger landslides in the study area. Such outcomes are

comparable with the general results of the EARTh analysis and with those of other similar

studies (Jakob and Lambert 2009; Melchiorre and Frattini 2012; Turkington et al. 2016).

Interestingly, this consideration is valid also for the NA class, thus indicating the possible

occurrence of extreme rainfall with a magnitude never occurred during the historical period

of the Bayesian model. Furthermore, the figure shows the most scattered values (highest

spread between the minimum and maximum values) in the coastal site both on annual and

seasonal basis and regardless of the LPC, witnessing the most uncertain change signal. This

result is different from what obtained in the EARTh trends analysis, which did not present

substantial differences across the studied sites.
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Considering the annual analysis, it is readily noticeable that almost all the median and

maximum values of LVCs are positive, while the minima are equally distributed between

negative and zero values. This indicates an overall increment of the rainfall events among

all the considered LPCs. Moreover, the dispersion in the low probability class is identical

for all the stations and RCPs. Differently, in the medium and high probability classes, the

mountain station shows the least data scattering and the highest median change values.

Specifically, the medians of the second LPC are in class 3 (LVC[ 100%) for all stations,

except for Ancona, which presents negative minima. In the third LPC, the coast-hill-

mountain increasing discrepancies are even more emphasized. Such outcomes suggest an

exacerbation of the rainfall events over the future thirty-year period, particularly the

extreme ones which are more likely to trigger one or more landslides, especially in the

mountain area. This result is consistent with the EARTh trends analysis.

The Bayesian probabilistic model points out also a significant seasonal pattern analo-

gous to that found with trends analysis. Results for the winter season show the lowest

spread. This is evident for the second, the third, and the NA probability classes, particularly

in the hill and mountain stations. In most of these cases, the LVCs values coincide with

class 3, thus indicating that all RCMs agree on the[ 100% increase in the rainfall events

with medium–high-extreme probability of landslide initiation. This is in line with the work

of Ciabatta et al. (2016) in Umbria and Gariano et al. (2017) in Calabria (Southern Italy). It

Fig. 12 Cumulative data scattering (minimum, maximum, and median values) of the LVCs (vertical axis)
relative to each LPC (horizontal axis), measured as the percentage difference of the number of expected
rainfall events in the future (2070–2099) and in the historical (1971–2000) periods. The subplots display the
annual and seasonal analyses of all the stations and for both RCP 4.5 (blue) and RCP 8.5 (red)
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is also noteworthy to clarify that the blank spots represent the cases in which the variation

could not be calculated; no rainfall event showed such (R, A5) characteristics over the

historical or future period. Indeed, the winter rainfall regime is characterized by frontal

systems connected to large-scale circulations, generally producing rainfall spread over

prolonged times. These systems should be subjected to minor changes in the future, as

previously mentioned in Sect. 4.1.

Differently from the winter season, summer shows the highest variability over the

LVCs, the LPCs, and across the three stations. The elevated dispersion of data is related to

the uncertainty of the climate models’ outcomes for such season. Interestingly, and dif-

ferently from the other results, summer presents also major differences between RCP 4.5

and RCP 8.5. In fact, most of the minimum and median values of LVCs changes with the

emission scenario; in general, the RCP 8.5 shows higher values than the RCP 4.5 except for

the coastal site of Ancona. This confirms the results of the EARTh trend analysis and the

uncertainty associated to the RCM results in the coastal area (Déqué et al. 2007; Zollo et al.

2014; Ciabatta et al. 2016).

5 Conclusions

In this study, statistically adjusted simulated rainfall was used to assess future landslide

trends in the Esino river basin, Central Italy, through the end of the twenty-first century.

We investigated possible changes in landslide-triggering rainfall patterns by means of three

RCM simulations driven by two different emission scenarios (RCP 4.5 and RCP 8.5), in

coastal, hilly and mountainous sites (Ancona, Jesi, and Apiro, respectively). Then, we

performed landslide occurrence analysis using two statistical models run on four rainfall

proxies. The first model couples cumulative event rainfall and rainfall duration proxies

(EARTh analysis) to determine the projected temporal evolution of rainfall events

exceeding three chosen landslide-triggering thresholds (10p, 50p, and 95p). The considered

time interval was 1971–2099. The second model calculated the percentage variation in

landslide probability between the historical (1971–2000) and a future (2070–2099) time

periods. The model used four thresholds (low, medium, high, and NA) providing specific

intervals of the daily rainfall and 5-day antecedent rainfall proxies (Bayesian analysis).

Both analyses projected an overall increase in landslides occurrence in the Esino river

basin throughout the twenty-first century. This result was particularly marked for the RCP

8.5 scenario. The EARTh analysis showed that all the significant trends are positive, even

if the sensitivity to the different RCPs varied significantly according to the RCMs con-

sidered. Moreover, the Bayesian analysis displayed positive median and maximum values

of LVCs, thus indicating an overall increment of the rainfall events among all the LPCs.

On an annual basis, both statistical models revealed discrepancies among RCPs and

RCMs in correspondence of the higher thresholds, thus shedding uncertainty over future

landslides trends. However, all analyses indicated a larger increasing number of landslides

in the mountain site in respect to the hill and coast sites. Finally, while the Bayesian

investigation showed higher data scattering in the coastal site, the EARTh analysis did not

present substantial differences in the inter-model spread across the studied sites.

Results also showed considerable differences between the summer and the winter

seasons, in terms of RCMs agreement and change signal magnitude. In winter, both

analyses recognized rather uniform increasing landslide-triggering rainfall trends without

evident sensitivity to the RCP considered. However, results showed moderately dissimilar
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change signal magnitude between the landslide models. In fact, we obtained flatter and not

statistically significant EARTh trends, but over 100% increase in the rainfall events with

medium–high probability of landslide initiation in the Bayesian analysis. Furthermore, the

latter revealed the possible occurrence of extreme rainfall with a magnitude never occurred

during the historical period. Differently from the winter season, the summer change signals

exhibit very large variability through the different landslide thresholds, RCMs, RCPs, and

study sites. Indeed, the discrepancies of the RCMs found in the EARTh analysis are visible

also in the Bayesian model. Similarly, in both statistical models’ analysis, the RCP 8.5

scenario shows larger change signal compared to those of RCP 4.5. On the other hand,

concerning the spatial patterns, the major increase in summer landslides occurrence is

expected in the coast and mountain sectors (Ancona and Apiro, respectively) with the ED-

model, while is expected in the hill sector (Jesi) with the Bayesian model.

Besides the projected increase in landslide occurrence in the study area, the results of

this study testify the complexity of defining a comprehensive characterization of possible

changes. Three main sources of uncertainty can be identified: (1) the selection and the

number of the climate simulations considered, which should be possibly maximized to get

more comprehensive representation of the potential evolution of the atmosphere; (2) the

statistical post-processing technique used to reduce climate simulation biases, which

should be carefully evaluated in function of the climate information required for the

specific impact considered; (3) the impact model(s), here generally intended as the (sta-

tistical or deterministic) model which is fed or combined to the climatic forcing. On this

last issue, by using two different landslide initiation models we emphasized the concordant

(i.e., robust) and discordant (i.e., uncertainty) aspects of the changes affecting landslides

frequency provided by the two analyses. Consequently, the choice of the statistical model

which translates climate simulations into the expected impacts should be carefully eval-

uated and chosen in function of the climate service required by the end users.

In the end, we are aware that landslides initiation depends not only on climate, but also

on many other variables belonging to both the natural and the anthropic spheres.

Nonetheless, we believe that feeding climate projections into landslide predictive models

represents a proficient tool for decision makers also applicable on different spatial and

temporal scales. In fact, the methodology here applied to long-term climate projections

could be also used with short-term projections and seasonal forecasts over geologically

uniform regions.
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Appendix

Variables and acronyms used in the text

Variable Description Unit

A5 5-day antecedent rainfall mm

D Rainfall duration day

E Cumulative event rainfall mm

L Landslide event (one or more) –

R Daily rainfall mm

Acronym Description

CCS Climate change signal

EARTh Events above rainfall thresholds

GCM Global circulation model

GHG Greenhouse gas

LPC Landslide probability class

LVC Landslide variation class

PDF Probability density function

QDM Quantile delta mapping

QM Quantile mapping

RCM Regional climate model

RCP Representative concentration pathway
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R, Eva H, Fritz S, Hartley A, Mayaux P, Stibig H-J (eds) Luxembourg Office for Official Publications
of the European Communities, catalogue number LB-55-03-099-ENC

Nat Hazards (2018) 93:849–884 881

123

https://doi.org/10.1038/nclimate1454
https://doi.org/10.1002/joc
https://doi.org/10.1175/JCLI-D-14-00754.1
https://doi.org/10.1175/JCLI-D-14-00754.1
https://doi.org/10.1175/JAMC-D-12-0341.1
https://doi.org/10.1175/JAMC-D-12-0341.1
https://doi.org/10.1007/s10346-010-0207-y
https://doi.org/10.1007/s10346-010-0207-y
https://doi.org/10.1029/2008GL035694
https://doi.org/10.1016/j.jhydrol.2016.02.007
https://doi.org/10.1016/j.geomorph.2010.04.009
https://doi.org/10.1007/s002540050308
https://doi.org/10.1007/s10584-006-9228-x
https://doi.org/10.1016/s0169-555x(99)00040-9
https://doi.org/10.1016/s0169-555x(99)00040-9
https://doi.org/10.1029/2011JD015934
https://doi.org/10.1029/2011JD015934
https://doi.org/10.1029/2012JD017968
https://doi.org/10.1007/s00382-016-3083-x
https://doi.org/10.1007/s00382-016-3083-x


Folchi Vici D’Arcevia C, Nanni T, Palpacelli S, Siciliani A, Vita F, Vivalda P (2008) Schema Idrogeologico
della Regione Marche, Foglio Nord, Scala 1:100.000. Regione Marche—Servizio Ambiente e Pae-
saggio, Ancona

Gaitan CF (2016) Effects of variance adjustment techniques and time- invariant transfer functions on heat
wave duration indices and other metrics derived from downscaled. Nat Hazards 83:1661–1681. https://
doi.org/10.1007/s11069-016-2381-2

Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth Sci Rev 162:227–252. https://doi.
org/10.1016/j.earscirev.2016.08.011

Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari C, Guzzetti F (2015)
Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, Southern
Italy. Geomorphology 228:653–665. https://doi.org/10.1016/j.geomorph.2014.10.019

Gariano SL, Rianna G, Petrucci O, Guzzetti F (2017) Assessing future changes in the occurrence of rainfall-
induced landslides at a regional scale. Sci Total Environ 596–597:417–426. https://doi.org/10.1016/j.
scitotenv.2017.03.103

Gennaretti F, Sangelantoni L, Grenier P (2015) Toward daily climate scenarios for Canadian Arctic coastal
zones with more realistic temperature-precipitation interdependence. J Geophys Res Atmos
120:11,862–11877. https://doi.org/10.1002/2015jd023890

Gentili B, Dramis F (eds) (1997) Geomorphology and Quaternary Evolution of Central Italy—Guide for the
excursion. Suppl Geogr Fis Dinam Quat 3:79–103

Gioia E, Carone T, Marincioni F (2015) Rainfall and land use empirically coupled to forecast landslides in
the Esino river basin, central Italy. Nat Hazards Earth Syst Sci 15:1289–1295. https://doi.org/10.5194/
nhess-15-1289-2015

Giorgi F (1990) Simulation of regional climate using a limited area model nested in a general circulation
model. J Clim 3:941–963

Giorgi F, Coppola E (2010) Does the model regional bias affect the projected regional climate change? An
analysis of global model projections. Clim Change 100:787–795. https://doi.org/10.1007/s10584-010-
9864-z

Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys
Res 104:6335. https://doi.org/10.1029/98JD02072

Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the
CORDEX framework. WMO Bull 58:175–183

Giorgi F, Im ES, Coppola E, Diffembaugh NS, Gao XJ, Mariotti L, Shy Y (2011) Higher hydroclimatic
intensity with global warming. J Clim 24:5309–5324. https://doi.org/10.1175/2011JCLI3979.1

Gudmundsson L, Bremnes JB, Haugen JE, Engen-Skaugen T (2012) Technical note: downscaling RCM
precipitation to the station scale using statistical transformations—a comparison of methods. Hydrol
Earth Syst Sci 16:3383–3390. https://doi.org/10.5194/hess-16-3383-2012

Guzzetti F, Peruccacci S, Rossi M (2005) Definition of critical threshold for different scenarios (WP 1.16).
IRPI-CNR, Perugia

Guzzetti F, Peruccacci S, Rossi M, Stark C (2007) Rainfall thresholds for the initiation of landslides in
central and southern Europe. Meteorol Atmos Phys 98:239–267. https://doi.org/10.1007/s00703-007-
0262-7

Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow
landslides and debris flows: an update. Landslides 5:3–17. https://doi.org/10.1007/s10346-007-0112-1

Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am
Meteorol Soc 90:1095–1107. https://doi.org/10.1175/2009BAMS2607.1

Innes JL (1983) Debris flows. Prog Phys Geogr 7:469–501
Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M,
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