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Abstract Frequent occurrence of fire events will have severe impact on Victoria’s water

supply catchments. Hence, it is important to perform fire frequency analysis to obtain fire

frequency curves (FFC) on fire intensity using Forest Fire Danger Index (FFDI) at different

parts of Victoria. FFDI is a measure of fire initiation, spreading speed and containment

difficulty. FFC will guide water harvesting by providing information with regard to future

fire events and the subsequent impact on catchment yield. Five probability distributions,

namely normal, Log Pearson Type III (LPIII), gamma, log-normal and Weibull distribu-

tions were used for the development of FFCs at ten selected meteorological stations spread

all over Victoria. LPIII distribution was identified as the best fit distribution for Victoria

and subsequently applied for an additional 30 more stations to show spatial variability for

the entire Victoria.
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1 Introduction

Bushfires are a consequence of severe weather conditions and the presence of combustible

fuel. The natural ecosystem in Victoria, Australia, represented by the vegetation cover and

landscape, has been shaped by both historic and recent fires. Many of Australia’s native

plants are fire-prone and very combustible, and they may or may not regenerate after a fire.

Frequent occurrence of fire events will have severe impact on Victoria’s water supply

catchments. Forest Fire Danger Index (FFDI) is a measure of fire initiation, spreading

speed and containment difficulty. The fire danger rating system was revised in 2009 to

include a new category ‘catastrophic’ (code black), as shown in Fig. 1, to warn
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communities of the extreme risk of the spread of fires that are predictable, uncontrollable

and fast moving (National Fire Warning System 2009).

Fire frequency analysis (FFA) determines the probability of exceedance of FFDI values

to identify the fire intensity of a given location. FFDI values are obtained from past

climatic conditions. The statistical analysis of past fire regimes is important to understand

both the dynamic nature of forest ecology and the management of fire-prone ecosystems.

The analysis will be primarily applicable to yearly peak FFDI values. As a result of global

warming and climate change, Australia is experiencing unprecedented high temperature

and changing rainfall pattern and, quite often, prolonged droughts. Karoly (2009) noted

that climate change played a pivotal role in increasing the frequency of fire events.

According to Karoly (2009), the FFDI for a number of sites in Victoria on 7 February 2009

(Black Saturday) reached unprecedented levels, ranging from 120 to 190, much higher than

the fire weather conditions on 13 January 1939 (Black Friday) or 16 February 1983 (Ash

Wednesday), and well above the ‘‘catastrophic’’ fire danger rating. Recently in October

2013, there were a series of bushfires in Australia across the State of New South Wales

(NSW). High fuel loads, coupled with warm and windy weather, provided conditions

dangerous for fires. Around 250 bushfires and more than 118,000 ha of bushland were

burnt across the state, concentrated around the eastern seaboards and highlands (Khastagir

2013). Fire is an unavoidable event, particularly in the State of Victoria, because of the

fire-prone vegetation types in the forests. Past bushfires in Victoria have damaged land,

farm animals and property of the communities and in some instances killed people.

Cheney and Gould (1995) noted that fire and land management authorities widely used

the fire danger indices to issue public warnings as well as provide appropriate levels of land

management advices. There are a number of parameters, such as climatic characteristics,

vegetation, fuel characteristics and topography, which combine to influence the impact of

fires. Chandler et al. (1983) noted that fire danger rating is a type of fire management

system that incorporates all the factors that are directly related to the risk of a fire occurring

and converts them into one numerical index. Furthermore, it is important to determine the

probability of the fire index values exceeding a given threshold value (probability of

exceedance) within a year to determine fire season severity. Several indices have been

developed both in Australia and overseas to convert qualitative fire danger into a numerical

index. The fire danger indices that are in common use in different parts of the world are as

follows: Fire Weather Index (FWI) in Canada (Van Wagner 1987); Nesterov Index in

Russia (Nesterov 1949); WBKZ-M68 in north-eastern Germany (Alexander et al. 2010);

Angström Index in Sweden (Skvarenina et al. 2003) and Forest Fire Danger Index in

Australia (McArthur 1966, 1967).

Fig. 1 Fire danger rating based on Forest Fire Danger Index (FFDI)

788 Nat Hazards (2018) 93:787–802

123



In FFA, a probability distribution is fitted mathematically to the observed FFDI data,

enabling the probability of a specified magnitude to be calculated. Several studies have

used the different fire danger indices as a means of representing the probability of an

intensity of fire occurrence in a certain period of time. Dayananda (1977) developed a

model for forest fires with the given environmental conditions represented by the Keetch–

Bryam drought index (Keetch and Bryam 1968). Mandallaz and Ye (1997) used a Poisson

distribution model to evaluate the relationship between various European dryness indices

and climatic variables. Landres et al. (1999) and Allen et al. (2002) reported that the

understanding of the relationship between past fire occurrence and fire intensity should be

the focus of fire-related analysis and research. Schoenberg et al. (2003) provided a non-

parametric estimation of the probability of fire versus the age of fuels, in addition to

estimates for other variables (i.e. temperature, fuel moisture and precipitation) at a par-

ticular location. Cox (1962) reported that the Weibull distribution also played a role in fire

models based on renewal theory and survival analysis. In most of the above studies,

emphasis was placed to obtain a best fit distribution of the interval of fire occurrence.

Several studies (e.g. Peng and Schoenberg 2001; Grissino-Mayer 1999) have considered

the frequencies of forest fire as a function of time since the last fire. Chou et al. (1993) used

stepwise logistic regression with different climatic variables (precipitation, temperature)

and neighbourhood effects (vegetation, human structures and transportation) to construct a

probability model of wildland fire occurrence. Xiaowei et al. (2012) established fire risk

probability models based on fire indices over different climatic regions in China. The

above authors developed semi-parametric logistic (SPL) regression models between the

indices adopted in Canada, USA and Australia, and location, time, altitude, vegetation and

fire characteristics.

Johnson (1979) and Schoennagel et al. (2004) noted that the probability of burning due

to extreme fire events is not primarily driven by the time since the last fire, but due to

extreme weather conditions which favour fire initiation. Bessie and Johnson (1995)

revealed that the age and spatial variation of vegetation are not constraints to fire ignition

and its spread under certain climatic conditions. Hence, the present study focuses on FFA,

taking into consideration the weather conditions (e.g. temperature, relative humidity, wind

speed and drought factor) to estimate FFDI to the frequency of fire occurrences.

The main objective of the study is to carry out an FFA using the FFDI at a number of

locations in Victoria with a view to select the best fit probability distribution. Five prob-

ability distributions, namely normal, Log Pearson Type III (LPIII), gamma, log-normal and

Weibull distributions were selected for the analysis. A best fit probability distribution for

all selected locations will be used to identify the variation of FFDI values in different parts

of Victoria for different average recurrence interval (ARI).

2 Methodology

2.1 Data used in the study

The study area consists of 40 stations spread all over Victoria as shown in Fig. 2. Figure 3

depicts the frequency of the number of years of daily data available for the stations used in

this study. It shows that the number of years of available daily data varied between 9 and

51 years. The climatic data that were obtained from the Bureau of Meteorology website
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(www.bom.gov.au) are temperature (T—9 am and 3 pm), relative humidity (RH—9 am

and 3 pm) and wind speed (U—9 am and 3 pm).

In this study, Forest Fire Danger Index (FFDI) developed by McArthur (McArthur

1966, 1967) was used as an indicator to identify the risk of occurrence of fire in different

parts of Victoria. This index has been especially designed for determining fire danger in

south-east Australia. Furthermore, FFDI is widely used in Victoria to categorize the

severity of bushfires. Fire danger can be determined using McArthur’s forest and grassland

fire danger meters. The McArthur forest fire danger meter first appeared operationally in

1967. Several researchers (e.g. Noble et al. 1980; Sneeuwjagt and Peet 1985; Catchpole

et al. 1999) carried out investigations to obtain relationships with fire danger indices and

climatic parameters such as: temperature, fuel moisture content, relative humidity, wind
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Fig. 2 Locations of the meteorological stations selected for the study
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Fig. 3 Frequency of the number of years of data available for the stations selected for this study
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speed and drought factor. In this study, Eq. (1) derived by Noble et al. (1980) was used to

estimate daily FFDI for all 40 stations.

FFDI ¼ 2 exp � 0:45þ 0:987 lnDFþ 0:0338T � 0:0345RHþ 0:0234Uð Þ; ð1Þ

where T is the temperature (�C), RH the relative humidity (%), U the wind speed (km/h)

and DF the drought factor.

FFDI was calculated using daily mean values of T, RH and U. The drought factor (DF)

gives an estimate of the fuel available for combustion. McArthur (1973) developed DF to

predict the amount of fine fuel available which would be consumed by fire. The DF which

ranges between 1 and 10 gives an estimate of the fuel available for combustion (Eq. 2). A

DF = 10 indicates a maximum fuel available for combustion. In Australia, this DF is

derived from either the Keetch–Byram Drought Index (KBDI) (Keetch and Byram 1968)

or Mount’s Soil Dryness Index (MSDI) (Mount 1972) depending on the agreed practices in

Australian states (Finkele et al. 2006). Current KBDI (mm) considers the topmost layers of

soil such that their field capacity is 200 mm of available water. The index estimates how

much effective rainfall is needed to saturate this depth of soil at any given time. It is

assumed that the moisture is lost from the soil only by evaporation due to temperature. A

DF value of 10 is taken for this study, which means a maximum fuel load was available for

combustion during bushfires.

DF ¼ 0:191 I þ 104ð Þ N þ 1ð Þ1:5

3:52 N þ 1ð Þ1:5þP� 1
If DF[ 10; DF ¼ 10; ð2Þ

where I is the the Keetch–Byram drought index in millimetre equivalent, N is the time

since the last rain in days and P is the the last recorded daily precipitation in millimetres.

2.2 Fire frequency analysis (FFA)

FFA illustrates the probability of the risk of fire occurrence with certain intensity (i.e.

FFDI) at a given location. A probability distribution is fitted mathematically to the

observed data, enabling the probability of FFDI to be calculated. Few studies have used the

FFA as a means of representing a certain magnitude of fire occurring at a place for a given

return period. The selection of data for frequency analysis may be based on the types of

analysis identified. The types of analysis identified are: annual maximum and annual

exceedance. In annual maximum analysis, only the peak FFDI values of each year are

selected. In annual exceedance, the FFDI values that exceed a given threshold value are

selected. In annual exceedance, the ‘N’ highest peaks within the ‘‘n’’ years of data are

selected for the analysis (Gordon et al. 2004). The selection of a threshold value is based on

recognition of the fact that if multiple events occur in a calendar year it would be included

in the data analysis. It is important that the data (i.e. FFDI) in annual exceedance are

independent of each other, and similarly the annual maximum series are also independent

of each other (ARR 1987). In hydrology, the use of annual maximum is more popular

compared to annual exceedance (Cunnane 1973; Takeuchi 1984; Madsen et al. 1997; Lang

et al. 1999).Australian Rainfall and Runoff (ARR 1987) recommends the use of annual

maximum for flood frequency analysis. As both flood and fire are considered to be extreme

events, it was decided to use annual maximum series to ensure consistency with ARR

study. In addition, more than 50% stations used in this study have long data series (ex-

ceeding 30 years).
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2.3 Probability distributions

Extreme value probability distributions can be used effectively for any extreme events. The

concept of extreme value probability distribution was invented by Fisher and Tippett

(1928) and Gumbel (1958). Fisher and Tippett (1928) divided the extreme value distri-

butions into three types: Type I, Type II and Type III. Sivandran (2002) noted that extreme

values normally occur at low probabilities and hence it was necessary to separate these

extreme values from the original distribution. The main goal of FFA is to determine the

frequency and severity of fire danger index exceeding a certain magnitude.

Gordon et al. (2004) reported that Type I and Type III could be effectively used for

flood and low flow studies, respectively. Type I distribution is widely known as the double

exponential distribution and log-normal distribution is a special example of the Type I

distribution (Gordon et al. 2004). Log-normal distribution is one of the frequently selected

techniques for flood frequency analysis and its use is important for the analysis of mul-

tivariate flood studies (Yue 2000). Hence, in this study, log-normal distribution is also

considered for FFA.

Type III distribution is used in annual minimum flow analysis and Weibull distribution

is a very common Type III distribution. Van Wagner (1978), Johnson (1979) and Johnson

and Wagner (1985) have carried out FFA in North American forests based on the

cumulative distribution of forest age classes and found that the Weibull distribution

(Weibull 1951) fitted better than the gamma distribution (Cohen and Whitten 1982). The

Weibull distribution has an exponential distribution similar to the gamma distribution. The

exponential distribution has a constant hazard function, which makes the risk of fire

independent of the time since the last fire. As a result, it is important to check the efficacy

of the Weibull distribution for FFA in Australia.

Blokhinov and Sarmanov (1968) and Moran (1970) have used gamma distribution for

hydrological frequency analysis. Yue (2001) reported that flood peak and flood volume

have skewed distribution. According to Stedinger et al. (1993), gamma distribution is also

an appropriate distribution for flood study. Thus, a similar approach can also be adopted for

FFA. The gamma distribution is frequently a probability model for the time interval study.

For instance, the time interval between extreme events is a random variable that can be

modelled with a gamma distribution.

The Pearson distribution is a family of continuous probability distributions developed

by Pearson in (1895) and subsequently extended in 1901 and 1916 in a series of articles on

biostatistics. Pearson (1895) identified four types of distributions (numbered I to IV) in

addition to the normal distribution. The three-parameter gamma distribution originated

from Pearson’s work (Pearson 1893, 1895) and was later known as the Pearson Type III

distribution. Australian Rainfall and Runoff (ARR 1987) noted that the Log Pearson Type

III (LPIII) distribution fitted best with flood frequency analysis covering the whole of

Australia. Hence, in this study, it was decided to test the LPIII distribution for fire fre-

quency analysis.

Hence, the probability distributions considered for testing in this study are: normal, Log

Pearson Type III (LPIII), gamma, log-normal and Weibull distributions. Two approaches

can be followed for obtaining the best fit probability distribution in a region. It is possible

to fit a number of probability distribution functions to the same set of data and adopt the

best fit distribution for that particular location. In this approach, it can identify different

best fit probability distributions for different locations of a region. In the other approach, it

determines one probability distribution function that fits best all the locations in the region.
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In this study, it was decided to explore the use of the latter approach for carrying out the

FFA. The obtained fire frequency curve can be used to predict vulnerability to fire events

and to identify the fire-prone characteristics of a specific location. These curves will help

planners and designers by providing information for infrastructure with regard to future fire

events.

2.4 Removal of outliers

Before carrying out any frequency analysis, it is important to identify outliers. An outlier is

an observation that is numerically distant from the rest of the data series. In frequency

analysis, outliers are events which are different from the overall trend of the data. Based on

ARR (1987), outliers are classified as high and low outliers. The low outliers in the dataset

can change the fitted probability distribution and hence affect the estimation of high fire

danger event. ARR (1987) noted that high outlier could occur due to error in data, changes

in catchment conditions, occurrence of an event with average recurrence interval (ARI)

much lower than high ranking observed events and occurrence of extreme events due to

unusual type of phenomenon.

Grubbs and Beck (1972) test is an effective test to identify outliers. ARR (1987) has

modified Grubbs and Beck test for 5% significance level considering wide variation in

skewness in Australian climatic parameters. Hence, high and low outliers were identified

using Grubbs and Beck test for 5% significance level (Eqs. 3 and 4) as recommended by

ARR (1987). These outliers were not considered for further frequency analysis.

FFDIH ¼ M þ ðb� KN � SÞ; ð3Þ

FFDIL ¼ M � ðh� KN � SÞ; ð4Þ

where FFDIH is the high outlier threshold in log units, FFDIL the low outlier threshold in

log units, KN the value for 5% significance level from Table 10.6 of ARR (1987), b the

adjustment factor for high outliers obtained from Table 10.7 of ARR (1987), h the

adjustment factor for low outliers obtained from Table 10.10 of ARR (1987) and S the

standard deviation of logs of FFDI.

2.5 Selection of best fit distribution

The five probability distributions selected above were fitted separately to annual maximum

data series. The Anderson–Darling (AD) test (Stephens 1986) was used to obtain the best

fit distribution. The Anderson–Darling test, named after Theodore Anderson and Donald

Darling, is a statistical test carried out to identify whether a data set fits into a specified

distribution. The lowest AD value indicates the best fit distribution. The Anderson–Darling

test is effective for relatively small sample sizes and heavy-tailed distributions, such as

those often encountered in flood frequency analysis (Onoz and Bayazit 1995). Ahmed et al.

(1988) modified the AD test, with an emphasis on the upper or on the lower tail. However,

Arshad et al. (2002) did not find that this modification improved the efficiency of the test.

The AD test result is calculated using Eq. (5). Initially, ten stations were selected to

identify the best probability distribution using the AD test. Later, it was decided to use the

AD test for the remaining stations with the best probability distribution identified from the

preliminary analysis.
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AD ¼
P

2j� 1ð Þ ln Fj

� �
þ 2nþ 1� 2jð Þ ln 1� Fj

� �� �

n
� n

� �

� 1þ 0:2
ffiffiffi
n

p
� �

; ð5Þ

where AD is the AD test statistic, j the position in an ascending order of magnitudes, n the

number of data points and Fj the non-exceedance probability of the jth smallest value in the

data series. If the AD test result is greater than the critical value (ADCr) as shown in

Eq. (6), then the distribution is rejected for the significance level of 0.05. The rejection rule

is:

ADCr ¼
0:752

1þ 0:75
n

þ 2:25
n2

: ð6Þ

3 Results and discussion

As mentioned earlier, the FFDI values in this study were calculated on a daily basis for all

the 40 stations. The annual maximum values from calendar years were selected for cal-

culating four primary moments of the probability distribution (e.g. mean, standard devi-

ation, coefficient of variation and skewness). All these moments of the probability

distribution are shown in Fig. 4.

It can be observed from Fig. 3a that the mean annual maximum series FFDI values of

north-western Victoria were significantly higher than the rest of Victoria. Similar

Fig. 4 Moments of probability distribution of the annual series FFDI values; a mean, b standard deviation,
c coefficient of variation (CV) and d skewness
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variations can be observed in Fig. 3b, which illustrates the standard deviation of FFDI for

different parts of Victoria. Based on Fig. 3c, the percentages of CV across Victoria are

34–42%. Figure 3d reports the spatial variation of skewness of FFDI for Victoria. All the

locations of Victoria show that the positive (?ve) skewness varied between 0.9 and 3.6. It

is interesting to note that all these moments of probability distribution are high in the north-

western corner in general compared to others parts of Victoria.

Ten stations, namely Mildura, Mallacoota, Phillip Island, Warrnambool, Horsham,

Shepparton, Castlemaine, Lakes Entrance, Mangalore and Port Fairy (Fig. 1), were

selected to identify the best fit distribution. These stations were selected based on climatic

variability, catchment characteristics and previous fire history. The locations of these

stations are shown in Fig. 1. Table 2 shows the ADCr and AD values for different distri-

butions obtained for these ten stations. The statistical software Minitab was used to fit the

probability distributions into the annual maximum series. From Table 2, it can be observed

that for the normal distribution, the AD values are higher than the ADCr for Philip Island,

Warrnambool, Horsham, Shepparton, Castlemaine and Lakes Entrance. The AD values for

Mallacoota, Mangalore and Port Fairy are consistently lower than ADCr for all the prob-

ability distributions. It can be noted that the values of the AD are smallest for the LPIII

distribution in all the stations, while the log-normal and gamma distributions are close to

each other but higher than LPIII in general. From Fig. 3d, it can be noted that there is

considerable skewness for the majority of the stations considered for this study.

It is important to choose the correct distribution if all the distributions fit all the data

reasonably well. Cox (1961) reported the effect of choosing the wrong distribution. It can

be observed from Table 2 that both log-normal and gamma distributions show similar

results in AD values for all the stations. Johnson et al. (1995) noted that both log-normal

and gamma distributions can be used efficiently for positively skewed dataset. Wiens

(1999) reported that these two distributions are always interchangeable. Kundu and

Manglick (2005) illustrated that even though these two models may provide similar results

for moderate sample sizes, it is important to identify the more accurate model. Hence, the

study suggested making the best possible decision based on the given observations from

AD values.

Table 1 AD values from five different probability distributions for the selected ten stations

Stations ADCr value AD values

Normal Log-normal Gamma Weibull LPIII

Mildura 0.74 0.61 0.39 0.43 0.82 0.41

Mallacoota 0.71 0.21 0.20 0.63 0.29 0.19

Phillip Island 0.73 0.93 0.25 0.34 0.65 0.29

Warrnambool 0.74 1.3 0.71 0.70 1.1 0.69

Horsham 0.74 0.85 0.64 0.50 0.32 0.49

Shepparton 0.71 0.84 0.69 0.75 0.85 0.62

Castlemaine 0.73 0.87 0.38 0.43 0.84 0.39

Lakes Entrance 0.74 1.3 0.34 0.37 0.76 0.29

Mangalore 0.74 0.58 0.52 0.38 0.45 0.40

Port Fairy 0.73 0.34 0.28 0.26 0.28 0.24
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Table 2 FFDI values using LPIII distribution for different ARI for the study area

Stations FFDI value and category of fire danger

1 in 2 years 1 in 5 years 1 in 10 years 1 in 20 years 1 in 100 years

Horsham 11.3 LM 15.3 HI 17.4 HI 19.1 HI 22.4 HI

Mildura 15 HI 18 HI 22 HI 24 HI 28 VH

Mallacoota 5.3 LM 7.5 LM 8.6 LM 9.4 LM 12.5 HI

Warrnambool 10.5 LM 15 HI 17.7 HI 20.5 HI 25.4 HI

Phillip Island 4.3 LM 6.4 LM 7.8 LM 9 LM 11.8 LM

Tatura 4.3 LM 6.1 LM 7.2 LM 8.2 LM 10.2 LM

Shepparton 11.4 LM 14.3 HI 16 HI 17.5 HI 20.6 HI

Redesdale 11.6 LM 15.1 HI 16.5 HI 17.7 HI 20.2 HI

Nhill 7.8 LM 12.4 HI 15.5 HI 18.5 HI 25 VH

Mangalore 9.3 LM 12.2 HI 14.1 HI 15.6 HI 18.8 HI

Kyabram 6.2 LM 8.7 LM 10.2 LM 11.5 LM 14.4 HI

Echuca 12.1 HI 16.1 HI 18.6 HI 20.7 HI 25.2 VH

Dookie 5.7 LM 7 LM 7.8 LM 8.4 LM 9.8 LM

Castlemaine 8.6 LM 12.9 LM 15.5 HI 18 HI 23 HI

Bendigo 7.3 LM 9.3 LM 10.5 LM 11.5 LM 13.6 HI

Walpeup 12.1 HI 17.6 HI 21.1 HI 24.2 VH 30.8 VH

Cape Nelson 6.1 LM 7.6 LM 8.5 LM 9.3 LM 11 LM

Point Hicks 5.3 LM 7.8 LM 9.3 LM 10.6 LM 13.6 HI

Eildon Fire Tower 8 LM 9.5 LM 10.3 LM 11.2 LM 15.2 HI

Gabo Island 4.3 LM 6.2 LM 7.4 LM 8.5 LM 10.8 LM

Lakes Entrance 10 LM 15.1 HI 18.4 HI 21.4 HI 27.9 VH

Ouyen 13.5 HI 18.8 HI 22.1 HI 24.2 VH 30.8 VH

Port Fairy 7.5 LM 9.2 LM 10.2 LM 11.1 LM 12.8 HI

Benalla 8.7 LM 11.8 LM 12.4 HI 15.4 HI 18.9 HI

Cerberus 4.9 LM 6.7 LM 7.8 LM 8.8 LM 12.8 HI

Dartmouth 5.9 LM 7 LM 7.6 LM 8 LM 9 LM

Dinner Plain 9.4 LM 10.5 LM 11.1 LM 11.7 LM 12.7 HI

EDI Upper 11 LM 16.9 HI 20.6 HI 24.1 VH 31.4 VH

Falls Creek 5 LM 7 LMI 8.3 LM 10 LM 12 HI

Gelantipy 8 LM 10.3 LM 11.6 LM 12.8 HI 15.3 HI

Maryborough 8.6 LM 10.5 LM 11.6 LM 12.5 HI 14.5 HI

Mount Baw Baw 5.8 LM 7.8 LM 9.3 LM 11.5 LM 14.3 HI

Mount Nowa Nowa 5.5 LM 7.6 LM 8.8 LM 10 LM 12.4 HI

Mount Buller 7.2 LM 10.8 LM 13.1 HI 15.3 HI 19.8 HI

Mount Hotham 5.1 LM 7.5 LM 9 LM 10.4 LM 13.4 HI

Noojee 10.3 LM 15 HI 17.6 HI 19.9 HI 25 VH

Omeo 6.6 LM 10.8 LM 13.5 HI 17.1 HI 21.6 HI

Sale 14 HI 16.5 HI 20.1 HI 22.3 HI 30.7 VH

Strathbogie 4.5 LM 6.3 LM 7.5 LM 8.5 LM 10.5 LM

Wangaratta 12 HI 15.1 HI 16.9 HI 18.5 HI 21.8 HI

Italics represents the presence of high fire events for 1 in 100 ARI for different locations
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Cohen and Whitten (1988) and Abernethy (2006) illustrated that the Weibull distri-

bution can be used effectively to describe the distribution of lifetime data. It can be

observed from Table 1 that the AD values obtained using Weibull distribution is different

from others, because it is considered to be a less accurate model in survival analysis among

the other distributions. Nevertheless, from Table 2 it can be observed that LPIII distri-

bution fitted better compared to other distributions. As mentioned earlier, the LPIII dis-

tribution has the advantage of accounting for the skewness of the dataset, whereas the log-

normal distribution does not take skewness into consideration. It was decided to consider

LPIII distribution as the best fit distribution for further FFA in Victoria. This also ensures

consistency between flood as per ARR (1987) and fire frequency analyses.

Figure 5 depicts the variation of AD values for all the remaining 30 stations in the study

area. It can be observed that for all the stations except three, the AD test results using LPIII

distribution are smaller than the critical values (ADCr).

Figure 6 shows the fire frequency curves (FFC) developed for all the 40 stations in the

study area. The relationships of FFDI values and its non-exceedance probabilities calcu-

lated by fitting LPIII distribution are shown in these FFC. To show the numerical variation

of FFDI values at different ARI, Table 2 was obtained from Fig. 6. It clearly shows that a

high fire danger situation (i.e. FFDI 12–24) exists for more than 80% stations every year

for at least 1% probability of occurrence (i.e. 1 in 100 ARI). One-fourth of the stations

have also 1% probability of occurrence of very high fire danger (FFDI 25–49) every year.

Fig. 5 AD values for the remaining 30 stations using LP III distribution
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It is worthy to note that outliers such as Black Saturday, Ash Wednesday along with few

others very high FFDI values were excluded for this FFC analysis.

Based on the FFDI values in Table 2 and comparing these with the fire danger rating

(Fig. 1), it can be concluded that Nhill, Mildura, Warrnambool, Echuca, Noojee, Walpeup,

Ouyen, EDI Upper, Lakes Entrance and Sale are the most fire-prone areas. On the other

hand, Strathbogie, Dartmouth, Gabo Island, Tatura, Cape Nelson, Dookie and Phillip

Island can be considered as low fire-prone areas.

To show the spatial variation of FFDI values in Victoria for different ARI, the FFC

values from Fig. 6 were used to develop Fig. 7. For ARI 1 in 2 of all FFDI values are lower

than 12, except in the north-western corner of Victoria. There is 50% probability (i.e. every

Horsham Warrnambool Mallacoota Mildura Phillip Island

Shepparton Port Fairy Castlemaine Lakes Entrance Mangalore

Benalla Bendigo Cape Nelson Cerberus Dartmouth

Dinner Plain Dookie Echuca EDI Upper Eildon Fire Tower

Noojee Omeo Ouyen Point Hicks Redesdale

Sale Strathbogie Tatura Walpeup Wangaratta

Falls Creek Gabo Island Gelantipy Kyabram Maryborough

Mount Baw Baw Mount Nowa Nowa Mount Buller Mount Hotham Nhill

Fig. 6 Fire frequency curves (FFC) for different locations in Victoria using LPIII distribution
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alternate year) that a risk of high fire danger event could occur in that area. In another

example, the FFDI values represented in Fig. 6d are 12–20, showing that there is a 5%

probability of high fire danger all over Victoria. On the other hand, according to Fig. 6f,

the north-western corner of Victoria would experience a very high fire danger at 1%

probability of occurrence. These curves developed for Victoria will guide government and

private organisations when designing and managing infrastructure by providing informa-

tion with regard to future fire events.

4 Conclusion

Fire frequency analysis illustrates the probability of a fire occurring with certain intensity

at a given location. Based on Anderson–Darling (AD) test results, Log Pearson Type III

(LPIII) distribution fits well to all 40 stations across Victoria. LPIII fire frequency curves

(FFC) that were developed for all the 40 stations can be used effectually to derive prob-

abilistic fire events for each station. The probability of exceedance of a certain intensity of

fire is important in planning and designing infrastructure to mitigate fire incidences.

Furthermore, the FFC can be used to identify the fire-prone nature of an area. As for

example, Nhill, Mildura, Warrnambool, Echuca, Noojee, Walpeup, Ouyen, EDI Upper,

Lakes Entrance and Sale are the most fire-prone areas in Victoria, because using FFC it can

be observed that there is probability of high fire events (FFDI more than 12) on those areas

in the next 5 years.

Based on the results obtained from the 40 stations in the study area, it can be concluded

that north-western Victoria is the most fire-prone area compared to other parts of Victoria.

This result is consistent with that obtained from the Black Saturday bushfire, when Mildura

(north-western Victoria) was severely affected. On the other hand, southern and eastern

Victoria can be considered as low fire-prone areas because there is a low probability of

occurrence of high fire events in the next 10 years due to significantly lower FFDI values

Fig. 7 Variation of FFDI values in different parts of Victoria for different ARI
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compared to north- western Victoria. The figures developed for different ARI for the whole

of Victoria showed that there was 1% probability of very high fire danger (FFDI) and 50%

probability of high fire danger in north-western Victoria. These probability distributions

are useful to government and private organisations in assessing the fire risk when designing

and managing infrastructure.
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