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Abstract  Climate Hazards Group Infrared Precipitation with Stations data (CHIRPS) 
rainfall dataset was early evaluated and compared with 29 meteorological stations over the 
Haihe River basin in China, for the period 1981–2015. Seven statistical and categorical 
metrics were applied to evaluate the performance of CHIRPS with gauge measurements 
at multi-time scales (monthly, seasonally and annually). Using the Standardized Precipita-
tion Index (SPI) as the drought indicator, the applicability of this new long-term satellite 
precipitation product for drought monitoring was investigated in this study. Results indi-
cate that the good performances were performed at multiple temporal scales (monthly, sea-
sonally and annually). Although it tends to overestimate the higher precipitation in this 
region, CHIRPS demonstrated good agreement (R2  >  0.70) with gauge observations at 
monthly scale and greater agreements (R2 > 0.78) at seasonal and annual scales. Mean-
while, CHIRPS performed a good score of BIAS and lower error in a majority of months at 
multi-time scales. Because of its good performance at multi-time scales and the advantages 
of high spatial resolution and long-time record, CHIRPS was applied to derive the SPI over 
the Haihe River basin. It is evaluated and compared with stations observations to derive 
SPI at time scale of 1, 3 and 6 months. The results indicate that it performed good abil-
ity to monitor drought (R2 > 0.70) and successfully captured the historical drought years 
(1981, 1999, 2001 and 2012). Overall, this study concludes that CHIRPS can be a valuable 
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complement to gauge precipitation data for estimating precipitation and drought monitor-
ing in this region.

Keywords  CHIRPS · Precipitation · Drought monitoring · Standardized Precipitation 
Index (SPI)

1  Introduction

Precipitation is an essential component of global water and energy cycles and has been 
widely used for various applications in hydrology and meteorology (Behrangi et al. 2012; 
Loucks and Jia 2012; Vergara et  al. 2014). Accurate precipitation data are essential for 
drought monitoring and prediction (Sahoo et al. 2015; Toté et al. 2015; Zheng and Bas-
tiaanssen 2013). With the decreasing trends of annual precipitation and potential evapo-
transpiration, in the past decades, drought became more frequent and serious in the Haihe 
River basin (He et al. 2015; Qin et al. 2015). Due to the gathered population and cities, the 
accurate precipitation is vital to the water resource management and the drought monitor-
ing in this region.

Traditionally, rain gauges provided the direct and accurate rainfall around the gauge 
locations. However, rain gauges had bad performance in detecting spatial precipitation dis-
tribution and were often relatively sparse in some regions of the world (Tang et al. 2016). 
Rain gauges had the obvious queries such as the density of site networks, the continuous 
time series and the financial limitation. Notably, it should be pointed out that satellite pre-
cipitation products provide a practical and alternative way to obtain accurate rainfall data 
with high spatial and temporal resolutions (Li et al. 2013; Xie and Xiong 2011; Zhang and 
Jia 2013; Zhang et al. 2016). Over the past decades, a great number of quasi-global satellite 
precipitation products have been produced and used worldwide for hydrometeorological 
applications (Pan et  al. 2010; Sahoo et  al. 2015; Vergara et  al. 2014; Yong et  al. 2015), 
such as the TRMM Multi-satellite Precipitation Analysis (TMPA), the Climate Prediction 
Center morphing technique (CMOPRH) satellite-based rainfall product and Precipitation 
Estimation from Remotely Sensed Information using Artificial Neural Networks (PER-
SIANN). Those precipitation products can provide accurate estimation of precipitation 
with high spatiotemporal resolution and show good performance in drought and other natu-
ral hazards (Bayissa et al. 2017).

Although satellite-based products could be valuable options for precipitation informa-
tion, it subjects to a variety of errors and uncertainties (Tong et al. 2014). Evaluation of 
satellite precipitation products with ground rainfall measurements is significant for specific 
applications in study area. The performance of satellite precipitation products also varies 
from region to region. In previous studies, a large number of studies have been done to 
evaluate the accuracy of satellite rainfall products regionally and globally (Aghakouchak 
et al. 2011; Long et al. 2015; Yong et al. 2015). In summary, great efforts were devoted to 
validate and evaluate the accuracy of satellite precipitations products. Unfortunately, most 
of previous satellite precipitation products had short historical record (less than 30 year) 
and lower spatial resolution (0.25° or 0.1°). Under the climate change, accurate long-record 
(at least 30 years) precipitation data are helpful to deal with natural studies like droughts 
and flooding. The Standard Precipitation Index (SPI) was a usefully meteorological 
drought index and widely applied in drought monitoring and forecasting (Hao and Agha-
kouchak 2013; Zhang et al. 2012, 2017). SPI was proposed by (Mckee et al. 1993, 1995) 
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and computed by continuous time series of monthly precipitation data for at least 30 years 
(Zhang et al. 2015b). Fortunately, CHIRPS offers a viable option for estimating precipita-
tion and drought monitoring. It was an useful rainfall dataset for trend analysis and sea-
sonal drought monitoring (Chris et al. 2015) and had long time-series records (more than 
30 years) and high spatial resolution (0.05°). Compared to PERSIANN-CDR and TRMM 
3B43 monthly satellite precipitation products, the CHIRPS 2.0 showed the highest agree-
ment with gauges observations (Zambrano et al. 2017). It has been shown to be a useful 
substitute for gauge data in Northeast Brazil and the Upper Blue Nile Basin, Ethiopia (Bay-
issa et al. 2017; Paredes-Trejo et al. 2017). To date, there is little evaluation focusing on 
the accuracy and application over the Haihe River basin of this newly satellite precipitation 
dataset. Accurate precipitation data would be valuable for this region to deal with drought 
and water resource crisis. Thus, it is urgent and significant to evaluate the performance of 
this newly satellite rainfall dataset and its applicability for drought monitoring in the Haihe 
River basin.

The objectives of this study were to (1) evaluate the performance of CHIRPS at multiple 
time scales over the Haihe River basin with the seven statistic and categorical metrics; (2) 
explore the applicability of this dataset for drought monitoring over the Haihe River basin. 
This study proceeds as follows. Section  2 introduces the study area and data. Section  3 
introduces the methodology and SPI. The evaluations and comparisons of the CHIRPS 
with gauge observations at multiple temporal scales (monthly, seasonally and annually) are 
provided in Sect. 4, followed by the evaluation of the CHIRPS for drought monitoring. The 
conclusions are provided in Sect. 5.

2 � Study area and data

2.1 � Study area

The study area is the Haihe River basin, with an area of 0.32 million square kilometers, 
located between 35°–43°N and 112°–120°E in the east of China. The study area belongs 
to the East Asian monsoon climate with the average annual temperature of 10.4 °C, aver-
age annual precipitation and evaporation of approximately 541.6 and 470 mm, respectively 
(Jia et al. 2012). The main character of this climate is hot and wet in summer. However, it 
is cold and dry in winter (Yang et al. 2016). The distribution of rainfall is characterized by 
strong spatial and temporal variability with precipitation decreasing from west and north-
east low hills to southeast plain. The rain season spans from July through August, with 
about 60% of the annual rainfall. The main evapotranspiration season spans from March 
through June, with about 55% of the annual evapotranspiration. Drought often occurs in 
spring (Cai et al. 2015b), but sometimes may be delayed to summer.

The combination of the uncertain monsoon climate and the huge demands of the dense 
people caused water shortage and drought disaster (Xia et al. 2007). Inaccurate precipita-
tion information across the Haihe River basin may be led to tremendous economic and 
societal losses, causing it vital and urgent to obtain accurate rainfall data in this region. 
Therefore, it is meaningful to quantitatively evaluate this new rainfall dataset and its appli-
cation in this area.
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2.2 � Meteorological stations data

A total of 29 monthly precipitation meteorological stations data from 1981 to 2015 were 
used (Fig. 1), which could be downloaded for free on the official Web site of China Mete-
orological Data Network (http://data.cma.cn). The brief description of 29 meteorologi-
cal stations, including geographical characteristics (latitude, longitude and elevation) and 
annual average precipitation, is illustrated in Table 1. The names of 29 meteorological sta-
tions were expressed by the number from 1 to 29. If the meteorological stations data are 
missing, the average value from the near station was used to calculate.

2.3 � CHIRPS

At present, there is an obvious query existed in current precipitation products. There are 
some precipitation datasets based on the stations measurements with the long-time record, 
but most of them were uneven distribution or sparse in the world. Satellite precipitation 
products offer an ideal way to capture the accurate precipitation on a quasi-global scale 
with high spatial and temporal resolution, such as: TRMM 3B43, CMORPH, PERSIANN 
and the like. Unfortunately, most of satellite precipitation products fall short of the time 
series for a historical record. Thus, it is challenging for scientists and analysts to research 
the spatial and temporal variations for precipitation patterns and better monitoring and pre-
dicting the future trend of climate change in a region even to the world.

Nowadays, CHIRPS is an IR-based quasi-global satellite precipitation dataset and 
will be the useful and ideal precipitation dataset for drought monitoring and warning 
(Chris et  al. 2015). CHIRPS which has a relatively long-term records (> 30 years) than 
other satellite precipitation products is developed to support the United States Agency 

Fig. 1   The distribution of meteorological stations and the elevation of this region

http://data.cma.cn
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for International Development Famine Early Warning System Network (FEWS NET) 
and combined through the ‘smart’ interpolation techniques with high spatial resolution 
(0.05°  ×  0.05°). It is a blended product which combined the precipitation climatology, 
quasi-global satellite estimates and in  situ measurements. The latest version of CHIRPS 
(CHIRPS v2.0) is available from 1981 to near present at different temporal resolution 
(daily, monthly and annually) from the Web site (http://chg.geog.ucsb.edu/data/chirp​s/).

3 � Method

3.1 � Evaluation method

This study is a typical evaluation between satellite precipitation product and ground obser-
vation. In order to evaluate the performance of satellite precipitation products, 29 gauges 

Table 1   The detail information of 29 meteorological stations

No Site name Latitude Longitude Elevation (m) Mean (mm)

1 Datong 40.10 113.33 1067.20 376.44
2 Wutaishan 38.95 113.52 2208.30 675.53
3 Weixian 39.83 114.57 909.50 403.21
4 Yuanping 38.73 112.72 828.20 412.25
5 Shijiazhuang 38.03 114.42 81.00 518.51
6 Yushe 37.07 112.98 1041.40 519.72
7 Xingtai 37.07 114.50 77.30 497.31
8 Anyang 36.05 114.40 62.90 451.39
9 Xinxiang 35.32 113.88 73.20 547.10
10 Duolun 42.18 116.47 1245.40 377.08
11 Fengning 41.22 116.63 661.20 447.18
12 Weichang 41.93 117.75 842.80 439.82
13 Zhangjiakou 40.78 114.88 724.20 391.62
14 Huailai 40.40 115.50 536.80 372.65
15 Chengde 40.98 117.95 385.90 505.72
16 Zunhua 40.20 117.95 54.90 668.54
17 Qinglong 40.40 118.95 227.50 656.87
18 Beijing 39.80 116.47 31.30 538.10
19 Bazhou 39.12 116.38 9.00 484.33
20 Tianjin 39.08 117.07 2.50 514.63
21 Tangshan 39.67 118.15 27.80 593.65
22 Laoting 39.43 118.88 10.50 578.36
23 Baoding 38.85 115.52 17.20 499.07
24 Raoyang 38.23 115.73 19.00 500.25
25 Tianjintanggu 39.05 117.72 4.80 548.65
26 Huanghua 38.37 117.35 6.60 545.14
27 Nangong 37.37 115.38 27.40 464.42
28 Huimin 37.48 117.53 11.70 557.95
29 Xinxian 36.23 115.67 37.80 502.87

http://chg.geog.ucsb.edu/data/chirps/
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rainfall data were used in this study (in Fig. 1). The gauge monthly rainfall data were accu-
mulated by daily rainfall data. The satellite rainfall data were extracted by the point-based 
station locations instead of interpolating the gauge data into the gridded product to reduce 
the systematic error. Corresponding to the 29 stations locations, monthly satellite rainfall 
data were extracted from the grid cell locations. In order to comprehensively evaluate the 
performance of CHIRPS monthly rainfall data, this study was divided into two parts. The 
first part was to evaluate the performance of CHIRPS at multi-time scales with seven sta-
tistical and categorical metrics. Meanwhile, the IDW method was used to compare the spa-
tial distribution of precipitation. IDW method was relatively easy to implement and widely 
applied in former studies (Duan et al. 2016). In order to better compare the spatial distribu-
tion of precipitation, the inverse distance weighting (IDW) method was used to interpo-
late the rainfall data into the gridded datasets to reflect the spatial distribution characteris-
tics. Using SPI as the drought indicator, the second part was to detect the applicability of 
CHIRPS for drought monitoring.

To further evaluate and compare the long precipitation product, a set of widely used 
statistic metrics were used in this study to comprehensively evaluate the performance of 
the satellite precipitation product (Table 2). The first statistic metric is the correlation coef-
ficient (CC), which was used to assess the agreement between satellite estimate and ground 
observations. In addition, three representative metrics were used to describe the error and 
bias of satellite estimates compared with ground observations, including the root mean 
square error (RMSE), the relative bias (BIAS) and the mean error (ME). Additionally, 
three categorical statistics, including probability of detection (POD), false alarm ration 
(FAR) and the critical success index (CSI), were used to describe the contingency of satel-
lite precipitation estimates.

Table 2   List of the metrics used in this study

Gi means observed gauge precipitation; Ci means the precipitation estimates from CHIRPS; n refers to the 
number of samples; A means the number of precipitation observed by the gauge and CHIRPS; B represents 
the number of precipitation observed by the gauge but not detected by CHIRPS; C means the number of 
precipitation detected by CHIRPS not observed by the gauge

Statistic metrics Formula Values range Optimal value
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3.2 � The Standardized Precipitation Index

The Standardized Precipitation Index (SPI) is recommended by the World Meteorological 
Organization (WMO) as index to characterize droughts (Hayes et al. 2011). It is based on 
precipitation data alone and can be calculated to describe drought on multiple time scale 
(Cai et al. 2015a; Hao and Singh 2015; Liu et al. 2011; Zhang et al. 2015a). Diverse time 
scales reflect the soil moisture conditions (small time scale) or the underground water, river 
flows and lake water levels (large time scales) (Livada and Assimakopoulos 2007). SPI 
can be used to distinguish the drought beginning and ending times by setting application-
specific thresholds (Belayneh et  al. 2014). In this study, it was calculated on 1-, 3- and 
6-month time scales to reflect the drought condition. While the former studies indicate that 
precipitation is subject to the law of gamma distribution (Edwards 1997). SPI values can be 
categorized according to classes as followed in Table 3. The parameters of scaling and the 
forms of precipitation probability density function:

where α, β are the form parameter and the scale parameter; x is the quality of precipitation; 
and the expression form of Γ(α) is:

According to the method of maximum probability for a multiyear data sequence, the α and 
β are:

(1)g(x) =
1

𝛽𝛼 ⋅ 𝛤 (𝛼)
x𝛼−1 ⋅ e

−
x

𝛽 , x > 0

(2)� (�) = ∫
+∞

0

x�−1e−xdx

(3)𝛼̂ =
1

4A

(

1 +

√

1 +
4A

3

)

(4)A = ln(x̄) −

∑

ln(x)

n

(5)𝛽 =
x̄

𝛼̂

Table 3   Classification of SPI 
values

SPI Classification SPI values

Extremely dry SPI ≤ − 2
Severely dry − 2.0 < SPI ≤ − 1.5
Moderately dry − 1.5 < SPI ≤ − 1.0
Near normal − 1 < SPI < 1
Moderately wet 1 < SPI ≤ 1.5
Very wet 1.5 < SPI ≤ 2
Extreme wet SPI > 2
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where x̄ is the average value of precipitation quantity; n is number of the precipitation 
measurements; after g(x) is integrated with respect to x, we can obtain the expression for 
cumulative probability G(x):

The cumulative probability becomes:

where q is the probability of no precipitation, which is calculated using the following 
equation:

where m represented the amount of how many times the precipitation was zero in a tempo-
ral sequence of data; n is the precipitation observation number in a sequence of data. The 
calculation of the SPI bases on following equation (Lloyd-Hughes and Saunders 2002):

and the expression form of t is

The values of c0, c1, c2, d1, d2 and d3 were followed: d1  =  1.432788, d2  =  0.189269, 
d3 = 0.001308; c0 = 2.515517, c1 = 0.802853, c2 = 0.010328.

4 � Results and discussion

4.1 � Evaluation of the performance of CHIRPS at multi‑time scales

4.1.1 � Evaluation at monthly scale

A comparison of the average monthly rainfall data between in  situ measurements and 
CHIRPS is presented in Table 4 for the 1981–2015 period. The gauges monthly rainfall 
were accumulated by the daily rainfall data. The number of comparison pairs was 12,180 
for point-based evaluation during the 35-year period, based on the average monthly pre-
cipitation from gauge measurements and CHIRPS. Table 4 shows the R2, ME, BIAS and 
RMSE between the ground-measured and the satellite-estimated. Strong correlation coef-
ficients were observed for CHIRPS in majority of months (R2 mainly over 0.70, p < 0.01). 
It reflected the good agreement between in situ measurements and CHIRPS. Meanwhile, 
the ME varies from 0.19 to 15.40 mm/month. Similarly, the RMSE varies from 1.23 to 
23.91 mm/month and the BIAS varies from − 0.20 to 1.11%. Both of the ME and RMSE 
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were obviously observed that the higher error was concentrated on the months of July and 
August. As is shown in Table 4, the ME in July and August were 15.40 and 8.95 mm which 
is obviously higher than other months (mainly lower than 2.00 mm). Similarly, the RMSE 
in July and August was 23.91 and 16.41 mm which is obviously higher than other months 
(mainly lower than 8.00 mm).

To fairly explain the reason of this result, the average month precipitation in July and 
August is compared in Fig. 2. Compared with other stations, it is interesting to note that 
the Wutaishan station was obviously showed the higher error in July and August. It may be 
the reason of elevation (in Table 1), which was consistent with the former study that satel-
lite is accurately to detect rainfall data in mountains (Yong et al. 2015). CHIRPS should 
be adjusted to improve the performance when estimated the precipitation in mountain 
regions (such as Wutaishan station). This result illustrates that the elevation is one reason 
that affected the performance of CHIRPS. Meanwhile, Xinxiang, Anyang and Qinglong 
stations also were found some random errors in specific time. In addition, some errors of 
overestimation were found in July and August when precipitation over 100 mm. Another 
interesting finding was that the agreement in April is obviously lower than other months. 
April was the month of monsoon alternation and the unstable strength of the monsoon 
caused this error. The better fits are found during the period from October to May in 
Table 4. CHIRPS overestimated the precipitation with BIAS ranging from 0.05 to 1.11% in 
most months. This error may be the reason of the satellite precipitation algorithms and the 
unstable monsoon climate (Shen et al. 2010). The CHIRPS shows high POD (near 0.90) 
and CSI (more than 0.73), and low FAR (lower than 0.28). These results can well illustrate 
that CHIRPS can capture the most precipitation events over Haihe River basin. CHIRPS 
overestimated monthly average precipitation slightly with small BIAS over Haihe River 
basin. The performance of CHIRPS was satisfactory in terms of the mosy metrics except in 
some particular months. Overall, CHIRPS has a good performance over Haihe River basin 
at monthly scale and can be a valuable precipitation product in this region.

Table 4   Summary of statistical 
metrics at monthly scale

Month R2 ME (mm/month) RMSE (mm/
month)

BIAS (%)

January 0.64 0.87 1.47 1.11
February 0.81 0.19 1.23 0.13
March 0.78 0.75 3.07 0.26
April 0.34 − 0.80 5.02 − 0.13
May 0.84 0.72 3.61 0.06
June 0.83 1.02 7.05 0.05
July 0.72 15.40 23.91 0.38
August 0.77 8.95 16.41 0.27
September 0.73 0.82 5.97 0.05
October 0.65 1.60 3.94 0.23
November 0.85 − 0.74 2.48 − 0.20
December 0.71 0.82 1.59 0.87
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4.1.2 � Evaluation at seasonal scale

For this section, the comparisons between in  situ measurements and satellite estimates 
in each season are presented in Fig.  3. The seasonal rainfall data were accumulated by 
the monthly rainfall data from gauge data and CHIRPS. It can be divided by four sea-
sons, including spring (March to May), summer (June to August), autumn (September to 
November) and winter (December to February). The number of comparison pairs was 4060 
for point-based evaluation during the 35-year period. Strong correlations were denoted for 
CHIRPS in each season (R2 > 0.78, p < 0.01, in Fig. 4). But CHIRPS overestimated the 
rainfall values in each season with the small positive BIAS (in Table 5). This overestima-
tion can be the result of the sensor’s inability as their spatial resolution is much larger than 
the point locations of rain gauges (Thiemig et al. 2011). The unstable monsoon climate may 
cause the high values of ME and RMSE in summer which were obviously higher than other 
seasons. As shown in Fig. 5, the similar spatial patterns were observed between the in situ 
measurements and the satellite estimates across the four seasons. It obviously showed that 
the precipitation center of Wutaishan station in all seasons, which may be the reason of 
high elevation (more than 2000 m). caused the orographic precipitation. Consistent with 

Fig. 2   Comparisons of average month precipitation from gauge measurements and CHIRPS in July (a) and 
August (b)
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Fig. 3   Line charts of average seasonal rainfall from gauge measurements and CHIRPS at seasonal scale in 
spring (a), summer (b), autumn (c) and winter (d)
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the result in month scale, CHIRPS overestimated the precipitation in Wutaishan station. It 
was obviously founded a precipitation center in summer, including the Zunhua, Qinglong, 
Tangshan and Laoting stations in Fig. 5. This precipitation center may be the reason that 
these rain gauges located in the windward slope of mountains.

4.1.3 � Evaluation at annual scale

For the third part, the statistics used to compare the different average annual precipita-
tion datasets (1981–2015) were calculated between meteorological station rainfall data 
and satellite precipitation estimate. The number of comparison pairs was 1015 for point-
based evaluation during the 35-year period, based on the average annual precipitation from 
CHIRPS estimate and gauge measurement. Figure 6 illustrates scatter plots of a compari-
son between average annual-estimated and ground-measured precipitation. Strong corre-
lation was denoted for CHIRPS (R2 = 0.8663, p < 0.01). The ME is 29.61 mm/year, the 
RMSE is 48.41  mm/year, and the BIAS is 0.2%. We notice that the CHIRPS exhibited 
an overestimation of the high values, when the precipitation was more than 350 mm. The 
satellite product was compared with station rainfall data to compare the spatial distribution 

Table 5   The list of statistical 
metrics in each season

Season R2 ME RMSE BIAS (%)

Spring 0.79 0.67 9.03 0.03
Summer 0.86 25.38 36.25 0.27
Autumn 0.89 1.69 7.98 0.06
Winter 0.89 1.88 3.16 0.58

Fig. 4   Scatter plots of average seasonal rainfall from gauge measurements and CHIRPS at seasonal scale 
from spring (a), summer (b), autumn (c) to winter (d)
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of precipitation in Fig.  7. As would be expected, CHIRPS captured good agreement in 
precipitation spatial pattern with stations data. The extreme precipitation mainly resided 
in Wutaishan, Zunhua and Qinglong stations (Fig. 8), which form the west and northeast 

Fig. 5   Spatial comparisons of average seasonal precipitation for gauge measurements and CHIRPS in each 
season. a Gauge-spring, b  gauge-summer, c gauge-autumn, d gauge-winter, e CHIRPS-spring, f CHIRPS-
summer, g CHIRPS-autumn and h CHIRPS-winter
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precipitation center. Precipitation is relatively less in northern area, which including the 
Datong, Weixian, Huailai, Zhangjiakou, Duolun and Fengning stations. The spatial distri-
bution of precipitation was consistent with the analysis in seasonal scale. In general, these 
results indicate that CHIRPS has a good performance at multi-time scale over Haihe River 

Fig. 6   The scatter plot of aver-
age annual rainfall from meteoro-
logical stations and CHIRPS

Fig. 7   Spatial comparison of average annual precipitation for gauge measurements and CHIRPS at annual 
scale. a Gauge, b CHIRPS

Fig. 8   Comparison between rain gauge measurements and CHIRPS of average annual rainfall at annual 
scale
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basin. Overall, these three parts indicate that CHIRPS is good at reflecting the precipitation 
patterns and will be a very useful precipitation dataset for drought monitoring.

4.2 � Drought monitoring with CHIRPS

CHIRPS was selected here because it has a higher spatial resolution and relatively satisfac-
tory performance in the precipitation estimates with in situ observations over Haihe River 
basin at the multi-time scales (in Sect.  4.1). For these reasons, we attempt to assess the 
applicability of CHIRPS for drought monitoring in this section. The number of comparison 
pairs was 12,873 for point-based evaluation during the 35-year period. The SPI was com-
puted by gauge precipitation and CHIRPS separately at 1-, 3- and 6-month scales. In order 
to better assess the applicability of CHIRPS, R2 between station SPI and CHIRPS SPI was 
computed at times scales of one, three and six months. The results indicate that the good 
agreement (R2 mainly over 0.70, p  <  0.01) of SPI between in gauge measurements and 
CHIRPS at multi-time scales. The good agreements indicated that CHIRPS was a good 
dataset for drought monitoring in this region.

Another founding is that the R2 of SPI-3 was higher than SPI-1 and SPI-6. To further 
assess how well the CHIRPS for drought monitoring, we have compared the average SPI 
between in  situ measurements and satellite measurements in the long time-series com-
parison in Fig. 9. From the results in former studies, SPI-3 had the best correlation over 
cropland areas and applied for agricultural drought monitoring. The historical drought 
events can be reflected with the values of SPI, including 1981, 1986, 1989, 1999, 2001, 
2002 and 2012. These years were consistent with the former studies (Qin et  al. 2015). 
Although CHIRPS shows good performance in most stations, it also has some slightly 
errors. Figure 9 demonstrates that CHIRPS often overestimated the degree of drought in 
some specific time (such as in 1996, 2006 and 2012  years) over the Haihe River basin. 
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CHIRPS
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The mismatch in spatial scale can be used to express the reason for this error. In addition, 
it is need to improve the algorithm combined with the local characteristics. Overall, good 
agreements of SPI between CHIRPS and gauge rainfall data at multi-time scales responded 
that CHIRPS has good applicability for drought monitoring.

5 � Conclusions

In this study, CHIRPS was comprehensively evaluated by the gauge observations from 29 
stations during 1981–2015. Seven statistical and categorical metrics were used to evaluate 
and compare CHIRPS with gauge measurements over Haihe River basin, China. CHIRPS 
was in excellent to good agreement with gauge rainfall data at multi-time scales, with the 
higher R2 (mainly over 0.70), lower BIAS (mainly under 0.01), ME and RMSE. The good 
agreement of CHIPRS was increased from monthly scale to annual scale. Based on the 
IDW methods, the analysis revealed that CHIRPS which has the highly spatial resolution 
attributes well the spatial distribution over Haihe River basin at multi-time scale. Based 
on the high values of R2 at multi-time scale of SPI, CHIRPS shows better applicability for 
drought monitoring. But it generally shows overestimation of the values of precipitation 
in Wutaishan station, especially in the region which closed to the mountains. Similarly, 
CHIRPS overestimated the drought condition. These errors may due to the mismatch in 
spatial scale. Overall, the good performance of CHIRPS demonstrated that it is a valuable 
dataset for drought monitoring in this monsoon climate region and also could be worth of 
the spatial and temporal variability in this region for historical records.

However, some errors still existed which may be caused by the complex terrain and 
the sparse data observations at mountainous regions. The effects of different terrains were 
ignored in this study, which may cause additional uncertainties. Although CHIRPS has 
an mean delay about 3  weeks, it is still capable of providing invaluable information for 
drought monitoring and climate change with high spatial resolution. The evaluation of tem-
poral and spatial patterns for CHIRPS can better be further improved if more ground sta-
tions could be obtained. Investigating characteristics of drought over the past decades in 
Haihe River basin based on this dataset will be conducted in the future.
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