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Abstract Catastrophic tsunami events like those occurred in Papua New Guinea in 1998,
Sumatra in 2004 and Japan in 2011, attracted the attention of the scientific community and
promoted the development of different tools for assessing tsunami hazard. A preliminary
step towards this goal is the knowledge of the events which might affect a specific coastal
zone. In this context, we propose a method to identify the tsunami events possibly
occurring in areas characterized by scarce data and a non-conservative environment.
Accordingly, we propose different indices to summarize the knowledge on tsunami trig-
gering mechanisms (earthquakes, landslides, volcanic eruptions), the characteristics of
those mechanisms (magnitude of earthquakes, volume of landslide, Volcanic Explosivity
Index) and tsunami features (water height, run-up, wave amplitude, propagation time). This
knowledge, considered over a wider area than that of interest, allows for a paramount
vision of possible hazardous events that could affect a particular coastal zone. Moreover,
the tsunami simulation data and the analysis of potentially tsunamigenic slides which
occurred on the Campania continental margins were also considered in the analysis. We
focused our attention on Napoli megacity, because the high population density (about 1
million of people live on a territory of 117 km?), together with the presence of active
volcanic areas (Ischia, Somma-Vesuvio and Campi Flegrei), make this city potentially
exposed to tsunami risk. The main outcome of such an approach shows that in the near
field a tsunami amplitude varying from a few centimetres (30-40 cm) to some metres
(1-4 m) might be expected at the coastline if the tsunami event was triggered by volcanic
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activity, whereas no relevant tsunami event should be expected given the peculiar seis-
micity of the Neapolitan volcanic areas, with earthquakes rarely exceeding 4 Mw, if any
possible cascade effects are overlooked. A morphometric analysis of high-resolution
bathymetry collected between Ventotene Island and the Gulf of Salerno has shown that the
submarine southern sectors of the Ischia Island and the Sorrento Peninsula are charac-
terized by a high density of landslide scars, being thus a potential source area of landslide-
generated tsunamis. However, despite the susceptibility of these areas to recurrent slope
failures, only four submarine landslide scars were found to be potentially tsunamigenic
with estimated tsunami amplitude of few metres at the coastline as predicted by coupling
slide morphometry with tsunami amplitude equations. Concerning the tsunamis generated
by earthquakes in the Western Mediterranean, only those triggered by high magnitude
events (value > 6-7 Mw) might affect the city of Napoli with an amplitude not exceeding
0.5 m, in about 30'.

Keywords Tsunami events - Submarine landslides - Indices - Western
Mediterranean Sea - Gulf of Napoli

1 Introduction

The occurrence of tsunamis in different areas around the world and the intense urban-
ization of the coastal zones (SOER 2015) drew the attention of the scientific community in
the last decades. Scientists have been motivated to develop methodologies to trace the
extension of areas possibly exposed to tsunami risk, as main step to the hazard assessment
along the coasts.

Grezio et al. (2012) define the risk as Risk = Hazard x Exposed elements x Vulner-
ability in accordance with the general definition of UNESCO (1972) and Fournier D’ Albe
(1979); this definition was adopted for evaluating several geophysical risks (Glade 2003;
Pesaresi et al. 2007; Lirer et al. 2001, 2010). Hazard is the probability of occurrence of a
dangerous event in a fixed future time. Exposure measures people, property, systems or
other elements present in hazardous zones that are thereby subject to potential losses.
Vulnerability is the proportion of lives or goods likely to be lost and accounts for the
characteristics of a system or asset that make it susceptible to the damaging effects of a
hazard (Alberico and Petrosino 2015).

The contouring of coastal zones potentially exposed to tsunami waves represents an
important step towards the development of a system able to react and/or to cope with such
an event (i.e. adaptive capacity and/or coping capacity). In the last decade, probabilistic
and deterministic approaches were developed to assess the tsunami hazard taking advan-
tage from computer systems.

The probabilistic method requires data on a significant number of events; therefore, it is
a method used mainly for tsunami triggered by earthquakes. Relationships linking earth-
quakes occurrence and tsunamis incidence were found to identify the probability rate of
tsunamis (Tinti 1991a, b; Tinti and Gavagni 1995; Orfanogiannaki and Papadopoulos
2004; Gonzalez et al. 2009). For tsunamis induced by slides or by volcanic activity,
average recurrence times of the events are much more difficult to identify owing to the
overall lack of data (Ward 2001). In this case, a deterministic approach (Tinti et al.
1999a, 2006a, 2011), possibly joined with the scenario concept, has to be invoked. The
worst-case scenario and the multi-scenario (Papathoma and Dominey-Howes 2003; Tinti
and Armigliato 2003; Tinti et al. 2008; Eckert et al. 2012; Omira et al. 2010; Nguyen et al.
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2014; Dall’Osso et al. 2014; Alberico and Petrosino 2015) are the principal methods used
to delineate the hazard zones. The former considers only the largest event occurred in the
past, while the latter takes into consideration more events with different magnitudes.

In the present work, we have carried out a comprehensive analysis of potential and
historical tsunamigenic events that might have struck the city of Napoli from near (from
Venotene Gulf of Napoli to the Gulf of Salerno) and far (other Italian subregions and
Western Mediterranean Sea) fields. The aim of the paper is to present a methodological
approach useful to identify potential tsunamigenic sources as first step towards the tsunami
hazard assessment in areas characterized by scarce data and a non-conservative environ-
ment as the Gulf of Napoli. Specifically, this approach consists in the integration of results
coming from: (a) a critical review of tsunamigenic sources from the available tsunami
database and scientific literatures; (b) the analysis of scientific literature concerning tsu-
nami simulations in the Western Mediterranean Sea aimed at identifying the possible
exposure of the study area to events generated in the far field; (c) the computation of the
maximum tsunami amplitude that could be generated by submarine landslides through the
coupling of scar morphometry with predictive tsunami amplitude equations (e.g. Watts
2000; McAdoo and Watts 2004; Rahiman and Pettinga 2006).

The main outcome of this integrated analysis is to point out the potential tsunamigenic
sources and associated features that may affect the Gulf of Napoli, providing insights for a
proper tsunami hazard assessment, a fundamental goal for scientific community and land-
planners, mainly in consideration of the intense anthropization and tourist exploitation of
this coastal sector.

2 Materials and method

The identification of tsunami events potentially hazardous for the city of Napoli outcomes
from a multifaceted workflow, made up of four phases: (a) recovery and recording of data
derived from available tsunami database and literature into tables, (b) data analysis,
(c) rough assessment of tsunamigenic potential for submarine landslides, (d) summary of
data. To better link the concept of potential hazard to the territory, the tsunami sources
were grouped and analysed in far- and near-field events. The latter includes the events
occurred in the Gulf of Napoli and in the adjacent areas (from Ventotene Island to the
northern sector of the Gulf of Salerno), whereas the former the events occurred mostly in
the Western and Central Mediterranean Sea.

In the first phase, the tsunami data available in scientific literature and EMTC database,
for a time interval ranging between 2000 years B.C. to present, were collected (Fig. 1a). In
addition, several extreme events out of this time interval were considered. The data were
arranged into tables and managed in a Geographic Information System (GIS) framework,
allowing to link all type of information to the geographical position of the tsunami source
and to use the spatial analysis to draw maps.

In the second phase, five indices (Table 1), useful for the tsunami events classification,
were evaluated for: (a) triggering mechanisms (earthquakes, volcanic eruptions, landslide)
and exposed zones (subregion), (b) characteristics of the trigger mechanisms (earthquake
magnitude, Volcanic Explosivity Index, volume range), (c) tsunami parameters (tsunami
intensity). On this latter point, the scarcity of data prevented the identification of indices
for other tsunami parameters (i.e. water height, run-up, tsunami amplitude and extension of
inland inundation), so that their hazard potential was expressed with a value range,
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Fig. 1 Input data and associated sources used for the tsunami events valuation. The Italian Tsunami
Catalogues (grey ellipses) and scientific works (yellow boxes) are the main source of triggering causes,
exposed zones (subregion), time of occurrence, earthquake magnitude and tsunami intensity data. The data
encircled in the pale yellow rectangle were collected from the scientific works reported in the coloured
boxes on the right side of the image. Abbreviations meaning: CFB (Caputo and Faita Tsunami Catalogue,
1984 updated by Bedosti and Caputo in 1986), TMC (Tinti Maramai Catalogue; Tinti and Maramai 1996),
ITC (Italia Tsunami Catalogue; Tinti et al. 2004), ITC2 (Italian Tsunami Catalogue Two; Tinti et al. 2007),
EMTC (Euro-Mediterranean Tsunami Catalogue; Maramai et al. 2014)

identified from the analysis of 17 events, occurred mainly in the southern Italian
subregions.

The index for the triggering mechanisms was calculated as the ratio of number of
tsunamis triggered by a specific event (e.g. earthquakes) and the total number of tsunamis
recorded into the GIS framework. For the feature of triggering mechanisms (e.g. earth-
quake magnitude), the index was calculated as the ratio between the number of tsunamis
pertaining to the single class of triggering mechanisms (e.g. earthquake magnitude values:
unknown, 3.2-4.2, 4.2-5.2 etc.) and the total events with a specific triggering mechanisms.
In the same way, the tsunami parameters (e.g. tsunami intensity) index was calculated.

Moreover, a brief description of tsunami simulations performed in the Western
Mediterranean Sea and that could propagate in the Tyrrhenian Sea was made. For the
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Table 1 Indicators and indices for triggering causes, subregion, earthquakes, magnitude, Volcanic
Explosivity Index (VEI) and tsunami intensity are shown

Indicator Index Factors
Triggering Ni x 100 N;, number of tsunami events pertaining to each class of triggering
mechanism - mechanisms (earthquake inland, submarine earthquake, volcanic
eruption, gravitational landslides, earthquake and landslide, eruption and
landslides)
Nior, total number of tsunami events
Subregion ]’v"_ x 100 N,., number of tsunami events occurred in each subregion (Aeolian Islands,
ot

Apulia, Campania, Central Adriatic, Eastern Sicily, Gargano, Ionian
Calabria, Latium, Liguria-Cote d’Azur, Messina Straits, North Adriatic,
Northern Sicily, Sicily Channel, Tuscany, Tyrrhenian Calabria) also
ranked by triggering mechanisms (earthquake inland, submarine
earthquake, volcanic eruption, gravitational landslides, earthquake and
landslide, eruption and landslides)

Nio» total number of tsunami events

Earthquake NN7' x 100 N,., number of tsunami events triggered by earthquake, ranked by both
magnitude o= earthquake magnitude classes (3.2—4.2, 4.3-5.2, 5.3-6.2, 6.3-7.4) and
earthquake source (inland, offshore)

Nior_e» total number of tsunami events triggered by earthquake

VEI NNk x 100 N;., number of tsunami events triggered by volcanic eruption, ranked by
o both VEI (1, 2, 3, 4, 5)
Nior_v» total number of tsunami events triggered by volcanic eruption

Tsunami ]{‘/’u % 100 N;., number of tsunami events characterized by a specific level of intensity
intensity - (2, 3,4, 5, 6) and classified by triggering mechanisms (earthquake inland,
submarine earthquake, volcanic eruption, gravitational landslides,
earthquake and landslide, eruption and landslides)
Nior, total number of tsunami events

single simulation, the main feature of triggering causes, exposed zones and tsunami
amplitude were summarized.

In the third phase, a simplified method coupling data on scar morphometry with pre-
dictive tsunami amplitude equations was used off the Latium and Campanian coastline,
similarly to marine geo-hazard studies realized in other marine settings (Locat et al. 2004;
Goldfinger et al. 2000; Bohannon and Gardner 2004; McAdoo and Watts 2004; Rahiman
and Pettinga 2006; Casalbore et al. 2011, 2017; Casas et al. 2016). In detail, the analysis of
high-resolution Digital Terrain Models obtained by swath bathymetric data (D’ Argenio
et al. 2004; Budillon et al. 2011a, b; Casalbore et al. 2014) was carried out to identify the
morphometric parameters of the submarine mass failures identified in the near field. Those
parameters are needed to assess the maximum tsunami amplitude (A) according to the
equation of Rahiman and Pettinga (2006):

). =3.87(bd/ sinc)’?

A = 0.224Tw/(w + 1)] x [(sin )" —0.746(sin 0)**+0.170(sin 0)3‘2"] (b/d)"> M
where A is the tsunami wavelength, b is the length of the scar along the slope, w is the
width of the scar parallel to the slope, d is the water depth at the landslide barycentre, T is
the head scarp height (assumed as a proxy of the maximum initial failure mass thickness
normal to slope), and ¢ is the mean slope of failure scar. Moreover, to take into account the
key role of the volumes of mass failure for the hazard assessment, only the landslide scars
resulting from a unique mass-wasting event were considered in the analysis.
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Despite the potential inaccuracy in using equations with parametric coefficients derived
for a different part of the world and with different conditions, the equation was roughly
calibrated on the basis of the computed maximum amplitude and observed run-up of
tsunami waves generated by the tsunamigenic landslide occurred in 2002 in the relatively
nearby Stromboli Island (Casalbore et al. 2011).

In the fourth phase, a summary of all data (e.g. indices, synthetic descriptions) was
made to identify the potential tsunamigenic sources for the city of Napoli, associated with
events occurred both in far- and near-fields.

3 Tsunami data analysis and hazard index

At the end of eighteenth century, tsunamis were included as secondary events in earth-
quakes (see Mallet 1854; Baratta 1901) or volcanic eruptions catalogues (Mercalli 1883;
Baratta 1897). Since 1947, when a tsunami catalogue regarding all continents was pub-
lished by Heck, several tsunami databases recording new detailed information were
implemented (Fig. 1). The most recent database concerning the European-Mediterranean
and Eastern Atlantic Regions (EMTC—Maramai et al. 2014) records 221 tsunamis in the
Mediterranean Sea, whose 72 occurred in the M2 zone (Central Mediterranean Basin). The
analysis of the events allowed us to define five indices expressing the dangerousness of
tsunami sourcing in both far (Western Mediterranean Sea) and near (Gulf of Napoli and in
the adjacent areas—from Ventotene Island to the northern sector of the Gulf of Salerno)
fields with respect to the city of Napoli.

3.1 Triggering causes and subregions

According to the formula (1), the number of events (VV;.) and the percentage of triggering
causes for the M2 zone were assessed. As reported in Fig. 2a, b, the tsunami events were
triggered for the 75% by earthquakes, 14% by volcanic eruptions and 3% by both land-
slides and combined sources classes (Fig. 2a, b). The same indices, identified for each
Italian subregion, highlight that the Campania, Liguria-Cote d’Azur, Aeolian Islands and
Tyrrhenian Calabria coasts record the highest number of events, whereas the Latium
subregion, the lowest one (Fig. 2c, d).

3.2 Characteristics of triggering events

The data analysis showed that earthquakes with magnitude > 5.3 Mw triggered a large
number of tsunamis and even a different threshold of magnitude for the genesis of tsunamis
occurs between earthquakes generated offshore and on land. The number of events (V;.)
concerning both the single class of earthquake magnitude and of tsunami source (in land
and offshore) is reported in Fig. 3a, b.

The Volcanic Explosivity Index is known for the tsunamis triggered by volcanic
eruptions; 7 out of 10 have a VEI ranging from 2 to 3. Similar to the earthquake magnitude
index, the VEI data were used in the formula (1) to identify the index reported in Fig. 3c, d.
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Fig. 2 Number and percentage of tsunami events classified for triggering causes (a) and graphic
representation of tsunami percentage (b). The same type of data was reported for each Italian subregion in
figures ¢ and d

3.3 Tsunami parameters

The analysis of tsunami intensity pointed out that the greatest part of events (event per-
centage: 58%) has an intensity of 2, whereas only the 16% has an intensity higher than 3
(Fig. 4a). This parameter ranges from 2 to 4 for the events induced by volcanic eruptions,
from 2 to 3 for those triggered by landslides, while a wider range varying from 2 to 6
characterizes the events triggered by earthquakes (Fig. 4b—f). For the latter, the highest
percentage of tsunamis has an intensity of 2 and their percentage decreases of about three
times for tsunami intensity of 3 and only 10 tsunamis have an intensity higher than 3
(Fig. 4b-1).

The analysis of field survey data retrieved from scientific papers, coupled with the
information recorded into EMTC, pointed out that few information on tsunami parameters
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Fig. 3 The number of tsunamis and hazard index are reported for the single earthquake magnitude class and
for source location (on land and offshore). These value was also plotted in the diagram “b”. Similarly, the
number and hazard index of tsunamis triggered by volcanic eruption was shown in figures “c” and “d”,
respectively

(water height, run-up, run down, inland inundation, wave amplitude, wave length, period,
frequency) are available.

The tsunami amplitude, run-up and inland inundation parameters are often available
only for few events. Moreover, these parameters are deeply conditioned by the local
morphology of both sea floor and emerged area that prevent the assessment of experi-
mental laws at regional scale (Szczucinski et al. 2006; Billi et al. 2010; Nakamura et al.
2012). Despite the paucity of information, we tried to summarize the available data in
order to identify, for each parameter, the range of values to better constrain the hazard of
tsunami events (Table 2a, b; for detail see online Appendix 1). The tsunami amplitude
varies from 0.75 to 15 m, with the highest value characterizing the Eastern Sicily followed
by Messina Straits and Aeolian Islands. The run-up ranges between 1 and 11.7 m, with the
maximum value recorded in Messina Straits for the 1908 event. The inland inundation
varies from 5 to 2400 m, with the maximum value still recorded in Messina Straits
subregion.

4 Analysis of tsunami simulations performed in the Mediterranean Sea

The analysis of scientific literature concerning tsunami simulations aimed at identifying the
possible exposure of the study area to events generated in the far field. The simulations of
tsunami occurred in western Mediterranean Sea are widely described in Table 3, where the
information on source area, main feature of triggering causes, exposed zones, tsunami
amplitude and references is recorded. In contrast, we overlooked the tsunamis generated in
the eastern Mediterranean Basin, because the Messina Strait acts as a barrier to their
propagation in the Tyrrhenian Sea (Lorito et al. 2008).
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Fig. 4 The number of tsunamis events and hazard index are reported for each tsunami intensity classes and
triggering causes (a). The figure “a” illustrates the percentage of tsunamis grouped only for intensity, while
the figures from “b” to “f” point out, for the single tsunami intensity classes, the percentage of tsunami
events classified for triggering causes

4.1 Tsunami generated by earthquakes

The geodynamic setting of Western Mediterranean basin is characterized by seismogenic
faulting zones, as the Tell-Atlas thrust belt, the Southern Tyrrhenian thrust belt and the
Eastern Sicily, able to generate earthquake-generated tsunamis that can pose significant
hazard for the Mediterranean coasts (Fig. 5) (Tinti et al. 2005, 2011; Lorito et al. 2008;
Sahal et al. 2009). Seven simulations of tsunamis triggered by earthquakes are reviewed
and summarized in Table 3; they concerned the events occurred: (a) on 21 May 2003
(performed by Tinti et al. 2005), and on 10 October 1980 (simulated by Lorito et al. 2008)
for the Algeria-Tunisia zone; (b) on 5 March 1823 along the offshore seismic belt (sim-
ulated by Lorito et al. 2008) in the Southern Tyrrhenian zone; (c) on 11 January 1693 (Tinti
et al. 2005; Tonini et al. 2011) for the Eastern Sicily (Fig. 5). This latter event was possibly
generated offshore, according to Tinti et al. (2001) and was located along the Hyblaean-
Malta escarpment by Tinti and Armigliato (2003). However, Tonini et al. (2011) speculate
that this event was related to a submarine landslide (volume = 4.1 x 10° m?; Argnani
et al. 2012) along the Malta escarpment, which took place in waters deeper than 1800 m,
triggered by a non-tsunamigenic earthquake occurred on the mainland. Tonini et al. (2011)
also simulated the tsunami triggered by the strong earthquake occurred in the Messina
Straits on 28 December 1908.

In the westernmost Mediterranean area, the Alboran Ridge is the only zone able to
generate earthquake induced tsunamis. For this area, the results of several simulated events
(Alvarez-Gémez et al. 2011) generated by earthquakes with magnitude ranging between 6
and 7 are reported in Table 3. In addition, Ioualalen et al. (2014) pointed out that the
earthquakes sourcing on the French—Italian Riviera are recurrent but only strong earth-
quakes, such as the event occurred on 23 February 1887, could induce tsunamis (Table 2b).
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Table 2 Summary of data for tsunami events affecting the Italian subregions retrieved from EMTC
database and scientific literature. They were grouped in three sections: the triggering causes, features of
triggering causes, tsunami features. In addition, the events providing data on tsunami features are listed in

(b) (for detail on single event see the online Appendix 1)

(b)

@ Springer

Classes Details Note
Earthquakes
. (75%)
Ex Volcanic
5 2 | cruptions (14%)
8.2 [ Mass failures
=2 (3%)
More than one
causes (3%)
Earthquakes Magnitude range between 5.3 and 7.4 Mw
Earthquake offshore (11 events)
magnitude  [Earthquakes inand | Magnitude range between 5.3 and 7.4 My
ranging 3.2-7.9 | (27 events)
Mw IT events Magnitude lower than 5.3 Mw
£
g
3 VEI ranging
£ from 105
o
£
§ Volume = 20x10° m* December 2002 - Aeolian Islands
g 49x10° m’ (Stromboli, Sciara del Fuoco).
H Mass failure on | Volume = 0.2x10° m’ April 1988 - Acolian Tslands
H Mass failure land (Vulcano, La Fossa)
2 Volume =2 km’ 13 ka BP - Acolian Islands
1km* (Stromboli)
0.52-0.95 km* 5.6 ka BP
5ka BP
Mass failure Volume = 0.00219 km” in shallow water October 1979 Ligurian Sca (Nice
offshore 0.0622 km* (mean depth =800 m) airport)
intensity = 2 ‘number of events=42 Intensity ranges from:
2104 for volcanic eruptions
Tsunami ranging from intensity = 3 ‘number of events=16 2103 for landslide
intensity — 210 6 for carthquakes.
intensity > 3 and< 6 number of events=14 Only 9 tsumam events have an
intensity higher than 3.
2 =2 | >2and <4 | 4and <6 | >6and <8 | >8and <10 | =10 | Tofal cvents with tsunami
£ Earthquake 1 amplitude data = 9
H Volcanic cruption 2
g Tsunami Landslide 5 1 1 2 1
E ; ranging from Volcanic eruption and
Z amplitude 07510160m | carthquake
Earthquake and landslide 1
Volcanic eruption and
landslide 1 1
ranging from 0.50 <2 | >2and <4 | >4and <6 | >6and <8 | >8and <10 | =10 | Total events with run up data = 9
Run up
0 13.0m Earthquake 1 1 1
Volcanic eruption 1
Landslide 2 2 T 3
Volcanic eruption and
earthquake 1
Earthquake and landslide | 3 1 5 3 3 1
Volcanic eruption and
landslide 2 3 4 3 4 1
<40 [ >40-<80 [ >80-<120 [ =120-<160 | >160- <200 | =200 | Total events with inland
Farthquake 3 inundation data = 10
Volcanic cruption 1 2
Inland Landslide 1
an range 5-2414m | Volcanic cruption and
inundation
earthquake 1
Earthquake and landslide | , ) ) N 5
Volcanic cruption and
landslide 0 |s 1
(a)
- - v
8 intensity fm) inundation (m) | height (m)
30 July 1627 Gargano 5 25 2030
14 April 1672 Central Adriatic 2 6.1
11 Jenuary 1693 Eastern Sicily 5 15.0
06 February 1783 | Messina Straits 6 160 40.0-24140 [35-83
25 April 1836 Tonian Calabria 4 1219
23 February 1887 | Liguria-Cote dAzur | 3 15
08 September 1905 | Tyrrhenian Calabria 4 6.0
23 October 1907 | lonian Calabria 3 300
28 December 1908 | Messina Straits 6 09-100  [2000-7000 | 14130
03 July 1916 Aeolian Islands 2 20.0 10
22 May1919 Acolian Islands 3 150.0 - 300.0
1T September 1930 | Acolian Islands 4 20-30 2000 25
20 August 1944 Aeolian Islands 4 300.0
18 April 1968 Liguria- Cote dAzur | 2 3.0
12 July 1977 Southern Calabria 50 55x10°m°
20 April 1988 Acolian Islands 2 1.0-2.0 55 0.2x10° (subaerial)
30 December 2002 | Acolian Islands 5 0.75-100 |5.0-1340 15-10.9 | 20x10° (submarine)
4-9x10° (subaerial)
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Fig. 5 a Topographic and bathymetric map of Western Mediterranean domain; the line symbols represent
simplified geological structures (modified from Faccenna et al. 2003; Cavazza et al. 2004; Billi et al. 2011).
The orange stars are the location of tsunami simulated in the Western Mediterranean Sea, while the numbers
in the brackets indicate: 1-French Italian Riviera, 2-Alboran ridge, 3-Tell-Atlas thrust belt, 4-Marsili
Seamount, 5-Palinuro Seamount, 6-Stromboli, 7-Southern Tyrrhenian thrust belt, 8-Messina Strait,
9-Hyblaean Malta escarpment. The yellow box indicates the location of study area illustrated in detail in
the lower part of the image; b bathymetry off the Campania-Lazio regions, in the central Tyrrhenian Sea, by
a composite swath bathymetric dataset of IAMC. Deep data from Emodnet, http://portal.emodnet-
bathymetry.eu/

4.2 Tsunami generated by landslides

A large number of tsunamigenic landslides were generated in subaerial coastal settings or
shallow marine areas, typically at the shelf edge or upper continental slope (Bondevik et al.
2005; Chaytor et al. 2007; Billi et al. 2008; Lo Iacono et al. 2011; Mazzanti and Bozzano
2011). For most of these events, it is still unclear if the tsunami was caused by co-seismic
slip, by earthquake or by a combination of both mechanisms. In the Western Mediter-
ranean, most failures have limited volume, short run-out and source in relatively deep
water. Therefore, only the largest although infrequent events are likely to trigger large

@ Springer


http://portal.emodnet-bathymetry.eu/
http://portal.emodnet-bathymetry.eu/

62 Nat Hazards (2018) 92:43-76

tsunamis (e.g. Camerlenghi et al. 2010; Urgeles and Camerlenghi 2013). However,
catastrophic sediment failures, such as the BIG’95 (11.500 cal year BP, the main features
are summarized in Table 3) can also happen along continental margin not affected by
significant earthquakes or active faulting (Lastras et al. 2002), such as those characterizing
the northwestern Mediterranean Sea.

The propagation of a tsunami that may be triggered by a submarine landslide occurred
on the southern flanks of the Alboran Ridge was simulated by Macias et al. (2015)
(Table 3). They pointed out that shape and propagation patterns, wave amplitude and,
finally, the area that may be exposed to this event (South Iberia and North Africa) are
mainly influenced by the basin morphology.

Also in the Ligurian Sea, at the France-Italy border, numerous submarine landslides
have occurred in the past along the narrow continental slope. The effects of the event
occurred on 16 October 1979, simulated by Ioualalen et al. (2010), are summarized in
Table 3. This event was divided into two main phases: the initial rupture at the shelf break
involving a volume of 2.2 x 10° m® in shallow water; the ensuing phase of erosion and
increasing volume occurred at about 800 m depth along the slope. The volume comparison
has revealed that the moving slurry flow increased its volume 25 times in less than 3—4 km
and in a short time period. A similar event had occurred 2 years before at the head of Gioia
Canyon (Southern Tyrrhenian Sea), with a mobilized volume of 5.5 x 10® m®, generating
5-m tsunami amplitude (Colantoni et al. 1992). More interestingly, in the surrounding area
Casas et al. (2016), using high-resolution DEM, recognized several potentially tsunami-
genic landslides occurring in shallow water.

Moreover, we also considered the inferred tsunamis which might have been triggered by
landslides occurred in active volcanic area. In the last 13 ka BP, four coaxial flank col-
lapses affected the NW flank of Stromboli volcano, the last one forming the Sciara del
Fuoco (SdF) depression (Tibaldi 2001).The first of these collapses involved the Upper
Vancori edifice about 13 ka BP (Tibaldi 2001) with an estimated volume exceeding
2 x 10° m’, the second occurred in the early Holocene before 5.6 ka BP with a sliding
mass in the order of 1 x 10° m’ (Tibaldi 2001), the third more recent than 5 ka BP,
involved a total volume of material of about 5.2 x 108-9.5 x 10® m> (Tibaldi 2001). The
tsunami triggered by the last major slope failure was simulated by Tinti et al. (2003b), and
the resulting characteristics are summarized in Table 3.

Marine studies recognized large debris avalanche deposits at the base both of the
northwestern and eastern flank of Stromboli (Romagnoli et al. 2009a, b). The latter
deposits on the E flank of Stromboli were attributed to (at least) two large sector collapses,
the older one being comparable or larger in size to the collapses affecting the NW flank and
the younger one (last few thousands of years) involving about 100 x 10° m? (Romagnoli
et al. 2009b). Based on the mobilized volume and similar morphological setting with the
NW flank, they have been considered responsible for the generation of large tsunamis
comparable to those computed for the NW flank (Casalbore et al. 2011 and reference
therein).

In more recent times, the tsunamis generated by a submarine and a 7 min later subaerial
landslide (volume of approximately 10 x 10°m®, and 4-9 x 10° m?, respectively;
Chiocci et al. 2008), affecting the NE part of the Sciara del Fuoco (December 2002), were
investigated by Tinti et al. (2006a, b). It is noteworthy that similar events likely occur with
high recurrence times (i.e. some tens of years) at the Sciara del Fuoco depression, as
testified by the re-interpretation of five similar tsunami events which occurred in Stromboli
in the past century (Maramai et al. 2005a) and by results of multi-lapse bathymetric
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surveys to monitor the morphological evolution of the 2002 landslide scar (Chiocci et al.
2008).

Amongst the active volcanic seamounts located in the Tyrrhenian Sea, the steep slopes
(25°-40°) of the Palinuro Seamount, coupled with the rock alteration and high fluid
pressure, contribute to a slope instability often marked by mounded facies in the accu-
mulation zone (Passaro et al. 2010 and reference therein). Similarly, the Marsili seamount
showed signs of instability and eruptive or seismic events which might disrupt the
unstable equilibrium of these rocks, intensely altered, generating mass failures (Ventura
et al. 2013). Furthermore, Caratori Tonini et al. (2011) recognized a collapse in the western
flank of the central-northern sector of Marsili seamount. The authors claim the threat
associated with possible future mass failures in the area and the need of further investi-
gations to assess the potential hazard.

4.3 Tsunami triggered by volcanic eruption

The Aeolian archipelago is an active volcanic area that should not pose significant hazard
for the city of Napoli. Here, the tsunamis directly linked to volcanic activity have had only
a local impact (Tinti et al. 2003a); as a matter of fact, only two tsunamis related to hot
avalanche entering the sea occurred in the last 100 years; moreover, they only posed
serious hazard only along the Aeolian Islands’ coasts (Maramai et al. 2005b).

5 Tsunamis potentially generated at Napoli Gulf
5.1 Volcano-tectonic activity and tsunami events

In a volcanic area, earthquakes, rapid inflation or deflation of volcanic flanks, pyroclastic
flows and lahars can occur during an eruption; the tight relationship amongst co-volcanic
(or volcanic-induced) phenomena makes very difficult the identification of specific tsunami
triggering factors. For the Napoli Gulf, a combined reading of historical documents, field
data and simulation results is needed to solve the problem of scarcity of data relatively to
the feedback between these events.

At present, the Somma-Vesuvio is characterized by a low level of seismicity (a few
hundred micro earthquakes per year), with most of the earthquakes having a local mag-
nitude (ML) < 3.0. The hypocenters are mainly located at very shallow depths (less than
5 km), and the strongest earthquake occurred in 9 October 1999 (ML 3.6) (Convertito and
Zollo 2011).

At Campi Flegrei, the ground deformations are accompanied by low-energy shallow
seismicity (Dvorak and Gasparini 1991). During the last bradyseismic episodes in
1969-1972 and 1982-1984, a maximum uplift of about 350 cm was observed and more
than 16.000 local earthquakes were recorded. Seismicity was characterized by swarm-type
activity; the largest event (MD = 4.2) occurred on 8 December 1984 (Del Pezzo et al.
1987). A ground uplift up to 4 cm occurred in March 2000 and was accompanied by two
swarms of about 50 low-energy (MD < 2.2) earthquakes occurred on 2—7 July, and 22
August 2000.

At Ischia Island seismic activity is concentrated in the northern part of the island around
the town of Casamicciola and is characterized by a very shallow hypocentral distribution
with typical depths between 1 and 3 km. Several events with maximum intensity I > VII
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MCS have occurred in the last few centuries (i.e. 1762, 1796, 1828, 1841, 1863, 1881 and
1883; Cubellis and Luongo 1998), causing landslides (Rapolla et al. 2010). Apart from the
earthquake with intensity 6.2 MCS occurred on 22 August 2017, the island was charac-
terized by low intensity seismicity over the last 130 years.

5.2 Analysis of tsunamis data and simulation results

The occurrence of anomalous waves has taken place not only during the largest explosive
eruptions in the area (79 A.D., 1631) but also during low-size eruptive events (14 May
1698; 4 April 1906—Tinti and Maramai 1996) or prior to the beginning of volcanic
activity (25 December 1813)—Lirer et al. 2009) (online Appendix 2). Moreover, a sea
retreat was described for the eruption of 12 August 1804 (Scandone et al. 1993) and for the
1723 eruption (Lirer et al. 2009).

During the 1631 eruption, the contemporary accounts describe the occurrence of a
tsunami reaching amplitude between 2 and 5 m in the Gulf of Napoli (online Appendix 2).

In his Geographica (source in Buchner 1986), the Greek writer Strabo (64 B.C.-21
A.D.) gives the description of a sudden collapse of a sector of the Ischia Island with an
associated tsunami wave, dating prior to the Greek period, and recently dated
between ~ 3 and 2.4 ka BP (Ischia Debris Avalanche, IDA; de Alteriis et al. 2010). At
Ischia Island, mass failures are, in fact, quite common (Della Seta et al. 2012); in many
cases, they were caused by large-scale collapses of the over-steepened and faulted flanks of
Mt. Epomeo resurgent block (Buchner 1986). The occurrence of these events is supported
by large-scale slide scar recognizable onshore and facing coastal sector as well as by the
local hummocky topography of the island offshore (Budillon et al. 2003; D’ Argenio et al.
2004; Chiocci and de Alteriis 2006; de Alteriis and Violante 2009).

In a recent scientific work, the presence of tsunamis hazard triggered by the occurrence
of debris avalanches at the Somma-Vesuvio volcano was inferred by Milia et al. (2012 and
reference therein). They recognize two debris avalanches of about 1 x 10° m® (DA2),
deposited in a time span very close to the Avellino eruption (4.2 ka BP—Santacroce et al.
2008), and of 3 x 10° m® (DA1), occurred during the Basal Pumice Plinian eruption
(22 ka BP—Santacroce et al. 2008), respectively. They also recognize a submarine fan
(volume: 3 x 10® m?) interpreted as the result of the entry into the sea of AD 79 pyro-
clastic density currents.

The earthquake occurred in the Apennine Chain on 26 July 1805 (online Appendix 2)
caused a rise of sea water in the Napoli Gulf (Poli 1806; D’Onofrio 1805; Baratta 1901).

Two tsunami simulations were performed for in the Napoli Gulf considering as trig-
gering mechanisms the lightest component of pyroclastic flows as those occurred during
large explosive eruptions of Somma-Vesuvio (Tinti et al. 2003a) and the Ischia Debris
Avalanche (Tinti et al. 2011). Moreover, Zaniboni et al. (2013) have simulated a possible
mass-failure event that might involve Monte Nuovo in response to a renewal of magmatic
activity (Table 3).

5.3 Morphological-derived submarine mass failure parameters

The morphometric parameters of about 470 submarine landslide scars were measured
between Ventotene Island (75 km to the NW of Napoli) and the northern sector of the
Salerno Gulf (60 km to the SE) (Fig. 5b) in order to estimate the landslide-generated
tsunami hazard from the marine sectors surrounding the city of Napoli. The landslide scars
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below 700 m depth were excluded from the analysis for their intrinsic low hazard in
relation to their size.

In the case of the Ventotene edifice, a total number of 126 landslide scars have been
identified between — 130 and — 1150 m (Casalbore et al. 2014), with areas ranging from
0.1 x 10°to 10 x 10° m* (Fig. 6). The scars can be grouped into two types, one affecting
the flanks of the edifice and the other occurring at the edges of the insular shelf, similarly to
what was observed offshore other insular and oceanic islands (e.g. Romagnoli et al. 2013;
Casalbore et al. 2015). However, none of these landslides was able to generate a maximum
computed tsunami amplitude higher than 1 m. Taking into account the distance from the
city of Napoli (ca. 75 km) and the inactivity of Ventotene edifice (last activity ended
0.15-0.3 Ma), the tsunami hazard related to landsliding processes affecting the submarine
flanks of Ventotene edifice can be considered absent or very low for the Napoli city.
Indeed, typical features of landslide-generated tsunamis are high amplitudes in the near-
field and a rapid attenuation of the waves in the far field (Harbitz et al. 2006).

Around 350 landslides were identified along the continental margin between Volturno
and the Sele river mouth. The greatest number of failures (up to 20/10 km?) is observed
north, west and south of the island of Ischia, a sector of the Campania continental margin
largely controlled by volcanic features, such as cones, domes, dykes (Fig. 7). Landslide
scars develop in water depth ranging between — 7 and — 900 m and occur in several
morphological contexts: edge of submarine terraces, flanks of volcanic cones, canyon
heads and walls, open slope, sedimentary aprons. Landslide scars are clustered around two
modes: 0.20-0.4 x 10° m? and 0.6-2.0 x 10° m? wide, with volumes not exceeding
8 x 10°m® and 13-25 x 10° m?, respectively. At least two failures, characterized by large
volume and shallow coastal settings (— 35/— 240 m), resulted as potentially tsunamigenic
with a computed maximum tsunami amplitude > 1 m. Differently, the large failure rec-
ognizable offshore the village of Casamicciola, at a water depth of about 7 m, partially
remobilizing the northern debris avalanches, was not considered tsunamigenic, because it
has been interpreted as a slow-moving slide by de Alteriis and Violante (2009).

A large number of landslides has been also observed at the headwalls and along the
lateral walls of Magnaghi and Dohrn Canyons (D’ Argenio et al. 2004; Milia 2000), in the
depth range of 100-600 m. The instability processes have progressively enlarged the
headwall of the Canyon Magnaghi through very small failures (< 0.08 x 10° m?). Dif-
ferently, landslides in the canyon thalweg are at least one order of magnitude larger than
the previous ones (0.2—-1 x 10° mz). Several landslides (0.5-1 x 10° m2) have also been
observed on the open slope between the canyon valleys (Fig. 7); they have a low potential
hazard because located deeper than 200 m and characterized by volumes not exceeding
7 x 10° m®. In this morphological context, few landslide scars larger than 1 x 10° m?
were found at water depth shallower than — 300 m, implying a low potential tsunami
hazard (Fig. 7).

The third group of submarine landslides runs along a Pleistocene structural lineament
which bounds the southern side of the Sorrento Peninsula-Capri horst (Fig. 8) and controls
the extension of the shelf edge (Milia and Torrente 1999; Casciello et al. 2006). The
resulting 50-km-long escarpment is very steep (locally up to 20°) and an uneven seascape
made of gullies, canyons, erosive scarps and aprons has developed through time. Locally,
the emerged rocky cliffs are in continuity with the submerged slope and very small littoral
wedges are preserved (Sacchi et al. 2009; Violante 2009). The greatest number (70%) of
landslides is in shallow waters (< — 150 m) since the failures mostly occur along the shelf
edge and account for a general retrogression of the continental slope. Despite the limited
extension of the landslides, very high head scarps and very steep scar slopes have been
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Fig. 6 Shaded relief map and isobaths (equidistance 100 m) of Ventotene edifice allow the recognition and
morphometric characterization of 126 submarine scars (modified by Casalbore et al. 2014), based on the
coupling between scar morphometry and predictive equations available in literature (see text for details);
none of them resulted as being potentially tsunamigenic

observed. However, only two failures could have had a potential tsunami hazard, with
computed maximum wave amplitude > 1 m high.

The southern edge of the Salerno Valley (Fig. 8) includes about 100 single failures,
mostly distributed in 120-750 m depth range and a 14 km-long landslide complex,
developed at 320-850 m water depth (Budillon et al. 2014). On the whole, they are
translational landslides failed along weak layers with landslide scars characterized by
several metres high head scarps and flat bottoms, corresponding to the slip surfaces. The
largest single failure event identified in the area, which mobilized about 245 x 10° m? of
material, is associated with a low tsunami hazard, due to the deep-water setting
(> — 400 m).

@ Springer



Nat Hazards (2018) 92:43-76 67

,’ 1} 1 |
i (s
vz

Fig. 7 Shaded relief map and isobaths (equidistance 100 m) of Ischia Island-Campi Flegrei offshore. The
symbols indicate: (1) debris avalanches/debris flow deposit; (2) Banco della Montagna dome-like structure;
(3) underwater creeping/slump deposit; (4) volcanic reliefs and banks (modified from Aiello et al. 2001;
Milia and Torrente 2007; de Alteriis and Violante 2009; Della Seta et al. 2012); (5) non-tsunamigenic
landslide (maximum tsunami wave amplitude < 1 m); 6) potentially tsunamigenic landslide (maximum
tsunami wave amplitude > 1 m)

The morphometric analysis of mass failures in the near field pointed out that only four
submarine landslides, with volume ranging from ca. 2.0 to 10.5 Mm® (Table 4) and
occurring in relatively shallow water (15-360 m), could be considered potentially
tsunamigenic, as their computed maximum wave amplitude (A) is encompassed between
1.18 and 1.71 m. This finding agrees with the recent observation that small and medium
scale landslides (volumes up to tens of millions of cubic metres) in shallow waters can
create local but sometimes destructive tsunamis, as for instance observed at Gioia Tauro in
1977 (Colantoni et al. 1992), Nice in 1979 (Sultan et al. 2010) and Stromboli in 2002
(Chiocci et al. 2008).

A proper modelling of landslide-generated tsunami propagation is beyond the aim of
this paper, however, a first estimation of tsunami amplitude at the coast can be roughly
made by applying the empirical relation between depth and amplitude of tsunami waves
offshore (above the landslide scar) and in coastal sector (at — 1 m) provided by Federici
et al. (2006). In the study area, the shoaling factor for the computed tsunami amplitude
above the slide should be roughly comprised between 2 and 4.

6 Tsunami events
The identification of tsunami events possibly affecting the city of Napoli required the

analysis of tsunamis occurred not only in the homonymous Gulf (near field) but also in all
the Italian subregions. This paramount vision aimed to improve the knowledge on the
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Fig. 8 Shaded relief map and isobaths (equidistance 100 m) of Capri Island-Sorrento Peninsula offshore.
The symbols indicate: (1) deep sedimentary fan; (2) base of slope apron; (3) mass-wasting deposit (modified
from Violante 2009; Budillon et al. 2014); (4) non-tsunamigenic landslide (maximum tsunami wave
amplitude < 1 m); (5) potentially tsunamigenic landslide (maximum tsunami wave amplitude > 1 m); main
fault. (modified from Milia and Torrente 1999; Casciello et al. 2006; Violante 2009)

events possibly affecting the city overcoming the paucity of quantitative data typical of a
non-conservative environment as the volcanic areas. Moreover, the results of tsunami
simulations realized in the Western Mediterranean Sea have been also considered.

The analysis of tsunami data concerning the Italian subregions and the simulations

realized in the Western Mediterranean Sea highlighted:

the main tsunami triggering causes for the Italian Peninsula are the earthquakes and
volcanic eruptions with 54 (index value = 75%) and 10 (index value = 9%) events out
of 72, respectively. The Campania (index value = 13.89%), Aeolian Islands and
Tyrrhenian Calabria (index value: 11.11%) are the subregions more exposed to these
events.

The earthquakes magnitude index pointed out that 38 tsunami events out of 54 (index
value = 70%) were generated by seismic events > 5 Mw.

Only 14 tsunamis out of 72 showed an intensity > 3 Mw (rather strong, according to
Ambraseys 1962); in detail, these events were mostly triggered by earthquakes (sum of
intensity index = 13.89), followed by volcanic eruptions (intensity index = 2.78),
earthquakes and landslide (intensity index = 1.39) and eruption and landslide classes
(intensity index = 1.39).

The summary of tsunamis features evidenced a tsunami amplitude < 4 m in 14 sites;
higher values characterized tsunami events sourcing at Aeolian Island, Eastern Sicily,
Messina Straits and Tyrrhenian Calabria and recorded in only seven sites (for detail see
online Appendix 1). For the run-up and inland inundation tsunami features, a general
rule could not be found since the local topography influenced the tsunami propagation.
Moreover, the greatest part of sites reached by tsunami waves were characterized by an
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Table 4 Morphometric parameters measured for the four potential tsunamigenic landslide recognized in
the study areas (red lines in Figs. 7, 8)

D Sector Scar Barycentre  Head Width Length Scar  Volume
minimum depth (m) scarp (m) (m) slope (Mm?)
depth (m) height ©)

(m)
5295d Ischia Island, 33 100 27 390 380 23 2.0
south-western
offshore
5282  Ischia Island, 50 125 38 480 856 10 7.8
south-eastern
offshore
93 Sorrento 170 280 60 660 530 21 10.5
Peninsula,
southern
offshore
123a Sorrento 98 360 125 500 200 40 6.2
Peninsula,
southern
offshore

inland inundation lower than 200 m, only in five localities this value was overcome
(Table 2a). These places were exposed to tsunami events occurred on the 22 May 1919
and 20 August 1944 at Aeolian Island, on the 6 February 1783 at Scilla (Messinia
Straits) and on the 28 December 1908 in the Messinia Straits (for detail see Appendix
1).

The analysis of tsunamis simulation triggered by earthquakes (magnitude: from 6.2 to
7.4 Mw) sourcing in Southern Tyrrhenian and along the coasts of Algeria and Tunisia
might generate tsunami amplitude ranging from 0.1 to 0.5 m in the Gulf of Napoli.
Volcanic eruptions occurred in the far field, as those characterizing the Aeolian Islands
and Etna Volcano, have had only local effects (Table 3).

Landslides, with a volume ranging from few to several millions cubic metres, occurring
in several sites of Mediterranean Sea did not propagate in the Gulf of Napoli (Table 3).

For the near field, the analysis of data pointed out a tsunami hazard mainly related to the

Neapolitan volcanoes activity. The tsunami data analysis concerning the event occurred or
simulated in the near field highlighted:

tsunamis with low intensity (value = 2) could be triggered by volcanic eruptions. The
tsunami amplitude ranges from centimetres to a few metres. In detail, during the
Somma-Vesuvio eruptions, a tsunami amplitude of 30-40 cm was recorded for the
1906 eruption and of 2—5 m for the 1631 eruptions; a value of 1.8-2.7 m was reported
for the earthquake of 1805 (online Appendix 2).

The analysis of numerical simulations of tsunami events (Table 4) allowed to estimate
a tsunami amplitude of about 20 m close to the coast of Napoli city linked to the debris
avalanche occurred at Ischia Island (3 and 2.4 ka BP, de Alteriis et al. 2010) and of
0.4 m due to the propagation in the sea of the lightest component of pyroclastic flows
sourcing at Somma-Vesuvio.
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e The morphometric analysis of submarine landslide scars along the continental margin
nearby the city of Napoli has evidenced that only 4 out of over 450 were potential
tsunamigenic landslides. They could have generated tsunami amplitude of a few metres
in the city of Napoli. Because of the steep gradients and concomitant presence of
multiple predisposing and triggering factors for the development of instability
processes along the Campania continental margin off Napoli, the possibility of future
submarine landslides with size similar to the previous ones cannot be neglected.

7 Conclusive remarks

The integration of tsunami data for the events occurred in both near (from Ventotene Island
to the northern sector of Salerno Gulf) and far (from other Italian subregions and Western
Mediterranean Sea) fields made possible to identify the main source areas of tsunami
events which might affect the city of Napoli in the future. Concerning the tsunamis
generated by earthquakes in the far field (Western Mediterranean), only those triggered by
high magnitude events (value > 6-7 Mw) might affect the city of Napoli in about 30';
however, the expected maximum tsunami amplitude would not exceed 0.5 m, according to
the analysed data.

Concerning the landslide-generated tsunamis, those sourced in the far field are far to
represent a serious hazardousness for the city of Napoli, if the recurrent instability of
Stromboli Island is excluded. As its instability is concerned, mass failures with volumes
higher than those occurred in December 2002 (e.g. the sector collapse at 5 ka BP) could
represent a potential hazard for the study area.

Concerning the landslide-generated tsunamis in the near field, the most critical source
area could be represented by the southern submarine slope of Ischia and Sorrento peninsula
where, in a recent past (20 ka BP), four landslides have occurred with a size and depth that
could potentially trigger tsunamis with a maximum wave amplitude between 1.18 and
1.71 m. In addition, a possible sector collapse is thought to be occurred at Ischia in
historical time, promoting the generation of tsunami waves up to 20 m high.

The hypothetical occurrence of a failure involving the Monte Nuovo at Ischia Island as
much as the propagation of lightest components of pyroclastic flows emitted from the
Somma-Vesuvio volcano could reach the city within 10-20 min with a tsunami amplitude
ranging from 0.4 to 1 m.

This research aims to support the drawing up of a territorial plan sensitive to all natural
hazards impending on the investigated area. The tsunami hazard has to be considered in the
process of multi-hazard assessment for a correct allocation of resources dedicated to the
risk reduction. In this frame, this work represents a first step towards the assessment of
Neapolitan areas possibly exposed to tsunami inundation.
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