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Abstract The area-characteristic, maximum possible earthquake magnitude T
M

 is 
required by the earthquake engineering community, disaster management agencies and the 
insurance industry. The Gutenberg–Richter law predicts that earthquake magnitudes M fol-
low a truncated exponential distribution. In the geophysical literature, several estimation 
procedures were proposed, see for instance, Kijko and Singh (Acta Geophys 59(4):674–
700, 2011) and the references therein. Estimation of T

M
 is of course an extreme value prob-

lem to which the classical methods for endpoint estimation could be applied. We argue that 
recent methods on truncated tails at high levels (Beirlant et al. Extremes 19(3):429–462, 
2016; Electron J Stat 11:2026–2065, 2017) constitute a more appropriate setting for this 
estimation problem. We present upper confidence bounds to quantify uncertainty of the 
point estimates. We also compare methods from the extreme value and geophysical litera-
ture through simulations. Finally, the different methods are applied to the magnitude data 
for the earthquakes induced by gas extraction in the Groningen province of the Netherlands.
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1 Introduction

Under the Dutch province of Groningen lies one of the largest gas fields in the world. 
The reservoir lies at a depth of 3 km in Rotliegend sandstone and contains an estimated 
2800 billion cubic metres of gas. Since production started in 1963, around 2000 billion 
cubic metres of gas has been produced up to 2012 by the NAM (Nederlandse Aardolie 
Maatschappij), a partnership between Shell and ExxonMobil. As a result of taxes and its 
participation in NAM, the Dutch government typically receives 70% of the profit from the 
Groningen Gas Field (GGF), although in some periods this can be even as high as 90% 
(van der Voort and Vanclay 2015).

Despite the economic advantages of the gas extraction on the Dutch government 
finances, there is also a serious drawback. Since 1986, anthropogenic (man-made) seis-
micity is observed in the, otherwise mostly aseismic, northern part of the Netherlands, 
and especially in the province of Groningen. When the gas is extracted, the porous layer 
of sandstone, in which it is contained, compacts. Normally, this happens gradually, and 
the surface subsides without causing any problem. However, when this process happens, 
e.g. close to fault lines, the sandstone layers can locally compact differently which causes 
seismic activity (van Eck et al. 2006; van der Voort and Vanclay 2015). Because of this 
anthropogenic seismicity, houses have been damaged and the NAM has paid around 200 
million euro of compensation up to 2014. Moreover, several thousands of houses need to 
be reinforced to avoid serious damage caused by future potential seismic activity. van Eck 
et al. (2006) also mention other social impacts of the seismic activity including declining 
house prices and concerns about breaching of the dykes in the gas field area in case of a 
large seismic event.

One of the obvious parameters responsible for the damage caused by seismic activity 
is the magnitude of the seismic event, which is directly linked to the energy released by 
the seismic event. So far, the largest (local) seismic event magnitude observed in the GGF 
is M = 3.6 which occurred on 16 August 2012 near the village of Huizinge, municipality 
of Loppersum. A modified Mercalli intensity of VI was observed less than 4 km from the 
event epicentre (Dost and Kraaijpoel 2013). The event caused significant damage to the 
infrastructure.

A natural question arises: what is the maximum possible seismic event magnitude TM 
which can be generated by the GGF? Knowledge of this parameter is required by the local 
authorities, the engineering community, disaster management agencies, environmentalists 
and the insurance industry. Its value depends on the regional tectonic setting of the area, 
the presence of active (capable) tectonic faults and, up to certain extent, the production 
regime. According to a comprehensive study of anthropogenic seismicity since 1929, the 
largest observed seismic event magnitude caused by oil and gas extraction is 7.3 (Davies 
et  al. 2013). This event and another event of magnitude ∼  7.0 took place near Gazli in 
Uzbekistan, in an area that is known to be aseismic. At the Lacq gas field in France, an 
event of magnitude ∼  6.0 was recorded (Bardainne et  al. 2008). It is uncertain that the 
events were indeed of anthropogenic origin, but several factors suggest that these are exam-
ples of the strongest seismic events related to gas extraction from the gas fields. Seismicity 
generated by groundwater extraction has a similar character. On 11 May 2011, in Lorca, 
Spain, extensive groundwater extraction caused the occurrence of a shallow (2–4 km) seis-
mic event of magnitude 5.1, leading to nine casualties and significant damage to infrastruc-
ture (González et al. 2012).



1093Nat Hazards (2019) 98:1091–1113 

1 3

The purpose of this research is to assess the maximum possible seismic event magnitude 
TM , based on the available seismic event catalogue of anthropogenic seismicity generated 
by the GGF. Several such estimates for the area have been made by the KNMI (Koninklijk 
Nederlands Meteorologisch Instituut): 3.3 in 1995, 3.8 in 1998 and 3.9 in 2004. In March 
2016, a workshop was held in Amsterdam to provide an estimate for the maximum pos-
sible seismic event magnitude, which can be generated by the GGF (see NAM 2016 for an 
overview of the results). The range of TM estimates, provided by the experts, is 3.8–5.0. So 
far, the epicentres of all occurred seismic events are within the areas of the gas extraction 
or not more than 500 m outside of the extraction area. This indicates that the observed seis-
micity can be classified as anthropogenic. However, it cannot be excluded that in the future 
the stresses generated by the gas extraction will be able to trigger tectonic origin stresses, 
resulting in significantly stronger events outside of the gas field. As a rule, such events can 
be significantly stronger than purely induced (see e.g. Gibowicz and Kijko 1994). So far, 
experts have found no evidence that the Groningen gas fields are capable of triggering sig-
nificantly stronger seismicity than already observed. However, if such events would occur, 
experts believe that an event of magnitude at most 7.25 can take place (NAM 2016).

The estimation of TM can be done in many different ways. For a review of different 
methods applicable for the assessment of TM , see e.g. Kijko and Graham (1998), Kijko 
(2004), Wheeler (2009), Kijko and Singh (2011), and Vermeulen and Kijko (2017). A 
comprehensive discussion of TM assessment techniques, mainly related and applicable to 
fluid injection, is provided in Yeck et al. (2015). Unlike Shapiro et  al. (2010) and Hallo 
et al. (2014), Yeck et al. (2015) assumed that the parameters describing the anthropogenic 
seismic regime (seismic activity rate, the b-value of Gutenberg–Richter and an upper 
limit of magnitude TM ) are subject to significant spatial and temporal variation. Especially 
prone to time-space fluctuation is the value of TM . Yeck et al. (2015) suggest two different 
approaches for the assessment of this parameter. The first one is based on the observation 
(see e.g. McGarr 2014; McGarr et al. 2002; Nicol et al. 2011) that the maximum seismic 
event magnitude is linearly proportional to the logarithm of the cumulative volume of fluid 
injected/extraction. However, Yeck et al. (2015) are not answering the question about the 
saturation of such a time dependence plot. Since fault sizes are limited, and the seismic 
event magnitude is linked to the fault size, the magnitudes also need to have an upper limit. 
Based on this simple physical consideration, the TM value must reach this certain upper 
limit. The second approach to assess TM , which is explored in Yeck et al. (2015), is based 
on the relationship between the size of the fault rupture and the seismic event magnitude 
(see e.g. Wells and Coppersmith 1994; Stirling et al. 2013). A similar approach, extended 
by application of the logic-tree formalism, is suggested in Bommer and van Elk (2017). 
The drawback of the proposed method is the fact that anthropogenic seismicity often takes 
place in previously inactive areas with unknown and unmapped faults.

Clearly, assessment of the upper limit of magnitude TM can be done using statisti-
cal tools, in particular extreme value theory (EVT). In this work, the EVT formalism is 
applied for assessment of the maximum possible seismic event magnitude in the GGF, by 
application of two different parameter estimation techniques, as developed in Beirlant et al. 
(2016), Beirlant et al. (2017). Our work also includes analyses of the confidence bounds 
of the upper limit of the magnitude distribution. For this purpose, we applied the asymp-
totic techniques as developed in Beirlant et al. (2016, 2017). Other EVT-based estimators 
using the moment estimator (Dekkers et al. 1989) or the peaks-over-threshold maximum 
likelihood (POT-ML) approach have also been applied (see e.g. Beirlant et  al. 2004; de 
Haan and Ferreira 2006). However, comprehensive tests based on simulated data show that 
moment and POT-ML-based estimators perform worse for truncated distributions than the 
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estimators developed in Beirlant et al. (2016, 2017). For this reason, the moment and the 
POT-ML endpoint estimators are not discussed in this work. Recently, another endpoint 
estimator based on EVT was proposed in Fraga Alves et al. (2017). It is, however, not suit-
able to estimate the endpoint when the distribution is truncated, as is, for example, the case 
for the Gutenberg–Richter distribution we discuss later. When applying the estimator to 
simulated data or the GGF data example, which we consider later in this paper, the method 
of Fraga Alves et al. (2017) yields very volatile estimates. Therefore, it is not included in 
this paper.

The EVT-based estimators of the upper limit of the earthquake magnitudes, or equiva-
lently the endpoint of the magnitude distribution, have received rather limited attention in 
the respectable seismological literature. Pisarenko et al. (2008, 2014); Pisarenko and Rod-
kin (2017); Vermeulen and Kijko (2017) are notable exceptions.

Based on empirical evidence, it is often assumed that earthquake magnitudes follow the 
so-called Gutenberg–Richter (GR) distribution (Gutenberg and Richter 1956). The original 
GR magnitude distribution has no upper limit. After right truncation of the GR distribu-
tion, or physically speaking, after introducing the upper limit of seismic event magnitude 
(Hamilton 1967; Page 1968), the cumulative distribution function (CDF) takes the form

where tM > 0 is the level of completeness of the seismic event catalogue, TM is the maxi-
mum possible magnitude, i.e. the upper limit (truncation point) of the magnitude distribu-
tion, and 𝛽 > 0 the distribution parameter. Note that the Gutenberg–Richter distribution 
is not only derived empirically. There are several attempts (see e.g. Scholz 1968, 2015; 
Rundle 1989) to derive the GR relation based on the physical principles of earthquake 
occurrence or by application of the universal concept of entropy (see e.g. Berril and Davis 
1980). Several parametric estimators of TM have been derived, which are based on the GR 
magnitude distribution (see e.g. Pisarenko et al. 1996, 2008; Raschke 2012). Here, we only 
look at one parametric estimator of TM : the Kijko–Sellevoll estimator (Kijko and Sellevoll 
1989; Kijko 2004). Moreover, we are also analysing a parametric upper confidence bound 
for TM based on the truncated GR distribution (Pisarenko 1991). This technique is applied 
in Zöller and Holschneider (2016b) to assess the maximum possible seismic event magni-
tude in the GGF. Note that Bayesian estimators for the maximum earthquake magnitude 
have also been considered, see e.g. Cornell (1994), Holschneider et al. (2011), and Kijko 
(2012).

Another parametric model for earthquake magnitudes is the tapered Pareto distribution 
a.k.a. the modified GR distribution (see e.g. Kagan and Jackson 2000, 2001). However, 
unlike the truncated GR distribution, this model does not provide an upper bound for the 
magnitudes, which makes it unrealistic from a physical point of view.

Zöller and Holschneider (2016b) like for example Pisarenko and Rodkin (2017) provide 
estimates for the maximum expected seismic event magnitude to occur, for different time 
intervals (time horizons). It is important to note that in our work, we do not try to estimate 
that quantity, but we only look at estimates for the time-independent maximum possible 
seismic event magnitude.

In the next section, we discuss the different endpoint estimators that can be applied to 
estimate the maximum possible seismic magnitude TM . In Sect. 3, we apply these methods 

FM(m) = ℙ(M ≤ m) =

⎧⎪⎨⎪⎩

0 if m ≤ tM
exp(−𝛽tM )−exp(−𝛽m)

exp(−𝛽TM )−exp(−𝛽m)
if tM < m < TM

1 if m ≥ TM ,
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to estimate TM for the GGF. Moreover, we also discuss upper confidence bounds for TM . 
Afterwards, we compare the performance of the EVT-based estimators with some dis-
cussed in Kijko and Singh (2011) using simulations, assuming that the seismic event mag-
nitude is distributed according to the truncated GR distribution.

2  Overview of applied estimators

We now discuss several different types of endpoint estimators: the EVT-based estimators 
are presented in Sect. 2.1, the non-parametric estimators as discussed in Kijko and Singh 
(2011) are described in Sect. 2.2 and the parametric Kijko–Sellevoll estimator is presented 
in Sect. 2.3. We provide only very few details for the estimators already in use for assess-
ment of the upper limit of the seismic event magnitude. More details can be found in Kijko 
(2004); Kijko and Singh (2011). In all cases where order statistics are used, the ordered 
sample of magnitudes is denoted as M1,n ≤ ⋯ ≤ Mn,n.

2.1  EVT‑based estimators

We consider two EVT-based estimators of the endpoint: the truncated generalised Pareto 
distribution (GPD) estimator using the framework from Beirlant et al. (2017) and the trun-
cated Pareto estimator of Beirlant et al. (2016).

The methodology for modelling the upper tail of the distribution of a random variable Y 
relies on the fact that the maximum of independent measurements Yi, i = 1,… , n, can be 
approximated by the generalised extreme value distribution: as n → ∞,

where bn ∈ ℝ , an > 0 and � ∈ ℝ are the location, scale and shape parameters, respectively. 
For � = 0 , G0(y) has to be read as exp (− exp(−y)).

In fact, (1) represents the only possible non-degenerate limits for maxima of inde-
pendent and identically distributed sequences Yi . Let FY (y) = ℙ(Y ≤ y) denote the CDF, 
F̄Y (y) = 1 − FY (y) the right tail function (RTF) and QY (p) = inf{y |FY (y) ≥ p} ( 0 < p < 1 ) 
the quantile function of a random variable Y.

Condition (1) is equivalent to the convergence of the distribution of excesses (or peaks) 
over high thresholds t to the generalised Pareto distribution (GPD): as t tends to the end-
point of the distribution of Y, then

where 𝜎t > 0 . The shape parameter � is often called the extreme value index (EVI). The 
specific case 𝜉 > 0 consists of the Pareto-type distributions defined through

(1)ℙ

⎛⎜⎜⎝

max
i=1,…,n

Yi − bn

an
≤ y

⎞⎟⎟⎠
→ G𝜉(y) = exp

�
− (1 + 𝜉y)−1∕𝜉

�
, 1 + 𝜉y > 0,

(2)ℙ

(
Y − t

𝜎t
> y |Y > t

)
=

F̄Y (t + y𝜎t)

F̄Y (t)
→ H𝜉(y) = − lnG𝜉(y) = (1 + 𝜉y)−1∕𝜉 ,

(3)
QY (1 −

1

vy
)

QY (1 −
1

y
)
→y→∞ v𝜉 and ℙ

(
Y

t
> y |Y > t

)
=

F̄Y (ty)

F̄Y (t)
→t→∞ y−1∕𝜉 .
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The max-domain of attraction (MDA) in case � = 0 is called the Gumbel domain to which 
exponentially decreasing tails belong. Finally, the domain corresponding to negative values 
of the EVI has finite right endpoints.

Right truncation models for X based on a parent variable Y satisfying the above extreme 
value assumptions are obtained from

for some T > 0 . The odds of the truncated probability mass under the untruncated distribu-
tion Y are denoted by DT = F̄Y (T)∕FY (T).

Truncation with the threshold t = tn → ∞ is defined through the assumption

which then entails that for x ∈ (0, �)

This corresponds to situations where the deviation from the GPD behaviour due to trunca-
tion at a high value T will be visible in the data from t on, and the approximation of the 
peaks-over-threshold (POT) distribution using the limit distribution in (6) appears more 
appropriate than with a simple GPD.

In the specific case of Pareto-type distributions (i.e. 𝜉 > 0 ), condition (6) can be simpli-
fied to

assuming that T∕t → 𝜌 > 1.
In practice, one has to choose a certain threshold t. Often, one takes it equal to the 

(k + 1)-th largest observation Xn−k,n and then computes the estimator for many values of k.

2.1.1  Truncated GPD estimator

We can estimate the endpoint of the magnitude distribution using the techniques developed 
in Beirlant et al. (2017). Its estimator for the truncation point TM is based on condition (6) 
for the variable M where � is the EVI of Y, the parent variable of M, see Table 1. The cor-
responding estimator for the endpoint is then given by

(4)X =d (Y | Y < T),

(5)
T − t

𝜎t
→ 𝜅 > 0,

(6)ℙ

(
X − t

𝜎t
> x |X > t

)
→

(1 + 𝜉x)−1∕𝜉 − (1 + 𝜉𝜅)−1∕𝜉

1 − (1 + 𝜉𝜅)−1∕𝜉
.

(7)ℙ

(
X

t
> x |X > t

)
→

x−1∕𝜉 − 𝜌−1∕𝜉

1 − 𝜌−1∕𝜉
, 1 < x < 𝜌,

(8)T̂M
k

= Mn−k,n +
1

𝜏k

⎡⎢⎢⎣

�
1 −

1

k

(1 + 𝜏k(Mn,n −Mn−k,n))
−1∕𝜉k −

1

k

�𝜉k

− 1

⎤
⎥⎥⎦
,

Table 1  Magnitude and energy: overview of notation

Variable EVI Endpoint Parent variable EVI of 
parent 
variable

Magnitude M �
M

T
M

Y with M =
d
(Y |Y < T

M
) �

Energy E �
E

T
E

Y
E
 with E =

d
(Y

E
|Y

E
< T

E
) �

Y
E
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with 𝜉k and 𝜏k the estimates for � and � = �∕�t obtained by application of the maximum 
likelihood principle. See Beirlant et al. (2017) for more details on estimation and testing. 
We will call this estimator the Truncated GPD.

Using Theorem  2 in Beirlant et  al. (2017) with p = 0 , we obtain an approximate 
100(1 − �)% upper confidence bound for TM:

One has to note that in (9), second-order terms have been omitted, and D̂T ,k denote the esti-
mates for the truncation odds DT , see Beirlant et al. (2017).

2.1.2  Truncated Pareto estimator

The endpoint estimator of Beirlant et al. (2016) is based on condition (7) and is hence only 
suitable for truncated Pareto-type tails. Since the (truncated) GR magnitude distribution is 
a truncated exponential distribution, we expect that this estimator cannot be applied to the 
magnitudes directly. Instead, we use following empirical relationship between the (local) 
earthquake magnitude M and the energy released by earthquakes (Lay and Wallace 1995)

or reversely

where the energy is expressed in megajoules (MJ). We thus expect the energy to follow 
a truncated Pareto-type distribution. Therefore, we apply the estimator of Beirlant et  al. 
(2016) to the energy and transform the endpoint back to the magnitudes using (11). By 
denoting the parent variable of E by YE , we have E =d (YE | YE < TE) , where TE is the end-
point for E, see Table 1.

Using the approach of Beirlant et al. (2016) applied to the variable E, the endpoint for 
the energy is then estimated as

Here 𝜉YE ,+
k

 are the estimates for �YE , the extreme value index of YE . See Beirlant et al. (2016) 
for more details on estimation and testing. Note that � (see (7)) is estimated by En,n∕En−k,n.

Transforming the estimated endpoints for the energy gives the following endpoint esti-
mates for the magnitudes:

(9)T̂M
k
− (ln 𝛼 + 1)

k+1

(n+1)D̂T ,k

k + 1

(
1 +

k + 1

(n + 1)D̂T ,k

)𝜉k
𝜉k

𝜏k
.

(10)E = 2 × 101.5(M−1) = exp(ln 2 + (M − 1)1.5 ln 10),

(11)M =
log10

(
E

2

)

1.5
+ 1 =

ln
(

E

2

)

1.5 ln 10
+ 1,

(12)T̂
E,+

k
= 2 × 101.5(Mn−k,n−1)

⎛
⎜⎜⎜⎝

�
2×101.5(Mn−k,n−1)

2×101.5(Mn,n−1)

�1∕𝜉
YE ,+

k

−
1

k+1

1 −
1

k+1

⎞
⎟⎟⎟⎠

−𝜉
YE ,+

k

.

(13)
T̂
M,+

k
=

log10

(
T̂
E,+

k

2

)

1.5
+ 1.
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We denote this estimator by Truncated Pareto.
Using the asymptotic results in Beirlant et  al. (2016), an approximate 100(1 − �)% 

upper confidence bound for TE can be constructed. Application of Theorem 2 in Beirlant 
et  al. (2016), after omitting second-order terms again, gives the following approximate 
100(1 − �)% upper confidence bound for TE:

Here D̂E,+

T ,k
 are the truncated Pareto estimates for the truncation odds DE

T
= F̄YE

(TE)∕FYE
(TE) , 

see Beirlant et al. (2016). This upper bound can then be transformed back to the magnitude 
level as before to get an approximate 100(1 − �)% upper confidence bound for TM:

2.2  Non‑parametric estimators

The next estimators are all based on the fact that

see Kijko and Singh (2011). Hence, TM can be estimated by

with Δ an estimator for ∫ TM
tM

Fn
M
(m) dm.

2.2.1  Non‑parametric with Gaussian kernel

The CDF in (15) can be estimated using a Gaussian kernel. The estimator for the endpoint 
is then obtained as the iterative solution of the equation

with

and Φ the standard normal CDF. The bandwidth h is chosen using unbiased cross-valida-
tion. We denote this estimator by N‑P‑G. For more details, we refer to Kijko et al. (2001) 
and Equations 28 and 29 in Kijko and Singh (2011).

exp

⎛
⎜⎜⎜⎝
ln T̂

E,+

k
−

k+1

(n+1)D̂E,+

T ,k

𝜉
YE ,+

k

k + 1
(ln 𝛼 + 1)

⎞
⎟⎟⎟⎠
.

(14)
ln

(
T̂
E,+

k

2

)

1.5 ln 10
+ 1 −

k+1

(n+1)D̂
E,+
T ,k

𝜉
YE ,+

k

k+1
(ln 𝛼 + 1)

1.5 ln 10
= T̂

M,+

k
−

k+1

(n+1)D̂
E,+
T ,k

𝜉
YE ,+

k

k+1
(ln 𝛼 + 1)

1.5 ln 10
.

(15)�(Mn,n) = ∫
TM

tM

m dFn
M
(m) = TM − ∫

TM

tM

Fn
M
(m) dm,

T̂M = Mn,n + Δ

TM = Mn,n + Δ

(16)Δ = ∫
TM

tM

⎛⎜⎜⎜⎝

∑n

i=1
Φ
�

m−Mi

h

�
− Φ

�
tM−Mi

h

�

∑n

i=1
Φ
�

TM−Mi

h

�
− Φ

�
tM−Mi

h

�
⎞⎟⎟⎟⎠

n

dm
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2.2.2  Non‑parametric based on order statistics

Cooke (1979) proposes to approximate the CDF in (15) with the empirical CDF. The cor-
responding endpoint estimator, see Equation 33 in Kijko and Singh (2011), is given by

We denote this estimator by N‑P‑OS.
Cooke (1979) also constructed an approximate 100(1 − �)% upper confidence bound for 

TM:

where the parameter � is determined by

for every constant c > 0.
Note that � = 1 for upper truncated distributions which can be proved by application of 

the mean value theorem. Since it is often assumed that magnitude data come from an upper 
truncated distribution, e.g. the truncated Gutenberg–Richter distribution, we use � = 1 in 
the remainder.

2.2.3  Few largest observations

Later, Cooke (1980) proposed a simple estimator that only uses the maximum and the (k + 1)

-th largest magnitude. This estimator, see Equation 38 in Kijko and Singh (2011), is equal to

We denote this estimator by FL.

2.2.4  Extended FL

The previous estimator only uses two observations. It can be extended as

see Equation 40 in Kijko and Singh (2011). We denote this estimator by EFL.

2.2.5  Robson–Whitlock

Robson and Whitlock (1964) propose the following simple estimator:

(17)T̂M,N−P−OS
n

= Mn,n +

[
Mn,n − (1 − exp(−1))

n−1∑
i=0

exp(−i)Mn−i,n

]
.

(18)Mn,n +
Mn,n −Mn−1,n

(1 − �)−� − 1
,

lim
y↑0

1 − FM(TM + cy)

1 − FM(TM + y)
= c1∕�

(19)T̂
M,FL

k
= Mn,n +

[
1

k
(Mn,n −Mn−k+1,n)

]
.

(20)T̂
M,EFL

k
= Mn,n +

[
1

k

(
Mn,n −

1

k − 1

k∑
i=2

Mn−i+1,n

)]
,

(21)T̂
M,R−W

2
= Mn,n +

[
Mn,n −Mn−1,n

]
,
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see Equation 42 in Kijko and Singh (2011). We denote this estimator by R–W.
Another approximate 100(1 − �)% upper confidence bound for TM was derived in Rob-

son and Whitlock (1964):

Note that this corresponds to the upper confidence bound (18) of Cooke (1979) (with � = 1).

2.2.6  Robson–Whitlock–Cooke

The previous estimator can be improved, in terms of MSE, as shown in Cooke (1979). The 
improved estimator is obtained as

see Equation 46 in Kijko and Singh (2011). As before, we take � equal to 1. We denote this 
estimator by R–W–C. Note that this estimator corresponds to the FL estimator for k = 2.

2.3  Parametric estimator: Kijko–Sellevoll

Kijko and Sellevoll (1989) introduced the equation (see Equation 13 in Kijko and Singh 
(2011))

with

and E1(z) = ∫ ∞

z
exp(−s)∕s ds the exponential integral function. Since these expressions 

depend on TM , we obtain TM using an iterative procedure. The parameter � is estimated 
based on the truncated Gutenberg–Richter law using maximum likelihood, see Page (1968) 
and Chapter 12 in Gibowicz and Kijko (1994). It is estimated iteratively using the equation

where Mn = 1∕n
∑n

i=1
Mi is the sample mean of M1,… ,Mn . Using a Taylor expansion, this 

becomes

where 𝛽0 =
1

Mn−tM
 is the Aki–Utsu (Aki 1965; Utsu 1965) estimator for � . This approach 

does not use iterations and is thus preferred for computational reasons. In each iteration 
step (for TM ), we first update the estimate of � using (25) and then improve the estimate of 

(22)Mn,n +
1 − �

�

(
Mn,n −Mn−1,n

)
.

(23)T̂
M,R−W−C

2
= Mn,n +

[
1

2𝜈
(Mn,n −Mn−1,n)

]
,

(24)TM = Mn,n +

[
E1(n2) − E1(n1)

� exp(−n2)
+ tM exp(−n)

]

n1 =
n

1 − exp(−�(TM − tM))
, n2 = n1 exp(−�(TM − tM)),

1

�
= Mn − tM +

(TM − tM) exp(−�(TM − tM))

1 − exp(−�(TM − tM))
,

(25)𝛽 = 𝛽0

(
1 − 𝛽0

(TM − tM) exp(−𝛽0(TM − tM))

1 − exp(−𝛽0(TM − tM))

)
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TM . We denote this estimator of the maximum magnitude by K–S. Note that of all dis-
cussed estimators, this is the only one that uses the truncated Gutenberg–Richter law 
directly.

Based on the truncated Gutenberg–Richter law, a parametric 100(1 − �)% upper confi-
dence bound for TM can be constructed (see Equation 19 in Pisarenko (1991)):

where we estimate � using the K–S method. Holschneider et al. (2011), Zöller and Holsch-
neider (2016a) noted that the upper confidence bound as defined in Pisarenko (1991) is 
infinite if the maximum observed seismic event magnitude is larger than 
tM −

1

�
ln(1 − �1∕n) . For the GGF magnitude data, this happens when � ≤ 0.061 . Therefore, 

we consider � = 0.1 in the data example and the simulations. A comprehensive discussion 
on this subject, including a condition on the existence of Pisarenko’s original TM estimator, 
can be found in Vermeulen and Kijko (2017).

3  Estimation of the maximum possible seismic event magnitude 
generated by the GGF

In this section, we attempt to estimate the maximum possible seismic event magnitude 
which can be generated by gas extraction in the GGF. The database of the seismicity of 
anthropogenic origin in the area is downloaded from the website of the KNMI: http s://
www.knmi .nl/kenn is-en-data cent rum/data set/aard bevi ngsc atal ogus . The database contains 
(local) magnitudes M of seismic events of anthropogenic origin in the Netherlands. We 
only consider events from the database that are located within the rectangle determined 
by (53.1◦ N, 6.5◦E), (53.1◦ N, 7 ◦E), (53.5◦ N, 7 ◦ E) and (53.5◦ N, 6.5◦E), see Fig. 1a. The 
selected area is almost the same as the area that was considered in Zöller and Holschneider 
(2016b). The extracted database contains 286 seismic events with magnitudes at least 1.5, 
which have been recorded between December 1986 and 31 December 2016. The events, 
together with the boundaries of the selected area and approximate contours of the whole 
GGF (green), are shown in Fig.  1b. A plot of the magnitudes of the selected events is 
shown in Fig. 1c. The dataset was tested for serial correlation, and no significant correla-
tion could be detected. Moreover, comparing the analysis using all earthquakes (as is done 
in this section) with the analysis using only more recent earthquakes did not indicate non-
stationarity in the data which is also confirmed in Fig. 1c.

The magnitudes in the database are rounded to one decimal digit, and hence, there are 
several ties in the dataset. Therefore, we smoothed the data by adding independent uniform 
random numbers within the range [− 0.05, 0.05] to all magnitudes that occur more than 
once. This ensures that all observations are unique. We then retain the 250 magnitudes 
larger than or equal to tM = 1.5 . The choice of 1.5 as threshold in the Groningen case is 
standard in the geological literature, see e.g. Dost et al. (2013). The exponential QQ-plot 
in Fig. 2b indicates that an exponential distribution is indeed suitable for the magnitudes, 
but the bending off at the largest observations suggests a possible upper truncated tail. The 
same behaviour is seen in the mean excess plot (see e.g. Chapter 1 in Beirlant et al. 2004) 
in Fig. 2c: the first horizontal part suggests that the data come from an exponential-like dis-
tribution, whereas the downward trend at the end indicates an upper truncation point. Note 
that the Pareto QQ-plot of the energy in Fig. 2a suggests that the energy follows a truncated 

(26)tM −
1

�
ln

(
exp(−�(Mn,n − tM)) − 1

�1∕n
+ 1

)
,

https://www.knmi.nl/kennis-en-datacentrum/dataset/aardbevingscatalogus
https://www.knmi.nl/kennis-en-datacentrum/dataset/aardbevingscatalogus
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Pareto distribution as discussed in Sect. 2.1.2. When applying the truncated GPD estima-
tor to the magnitudes, a value of � around 0 is found suggesting again an exponential-like 
distribution, see Fig. 3a. The parameter �YE is estimated by the truncated Pareto estimator 
to be around 1.8. The estimators for DT based on the truncated GPD and truncated Pareto 
estimators for � and �YE , respectively, suggest that the truncation odds are around 1%  see 
Fig. 3b. Next, we test (directly and via the energy) whether the data come indeed from an 
upper truncated distribution. Under the null hypotheses of both tests, the data come from 
an unbounded, hence not upper truncated, distribution. The P-values of a test for truncation 
based on the truncated GPD (Beirlant et al. 2017) in Fig. 3c indicate, for larger values of k, 
that the magnitude data come from an upper truncated distribution. Similarly, P-values of a 
test for truncation based on the truncated Pareto (Aban et al. 2006; Beirlant et al. 2016) in 
Fig. 3d indicate that, for values of k above 75, the distribution of the energy is upper trun-
cated. Note that the significance level of the tests, 10%, is indicated by the horizontal lines 

(a) (b)
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Fig. 1  Locations of anthropogenic seismicity in a the Netherlands and b Groningen between December 
1986 and 31 December 2016 with magnitudes at least 1.5, and c magnitude plot of anthropogenic seismic-
ity in the considered area with magnitudes at least 1.5
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in Fig. 3c and d. Finally, the fit provided by the truncated GPD with k = 125 , and hence 
𝜉125 ≈ 0 , models the data well, see Fig. 2d. All these elements suggest that the truncated 
Gutenberg–Richter distribution, i.e. a doubly truncated exponential distribution, might 
indeed be a suitable model for the GGF magnitude data.

Next, we compute all discussed estimates for the maximum possible earthquake magni-
tude (Fig. 4a). For estimators where no value of k needs to be chosen, the dot indicates how 
many observations are used: 2 or n. All estimators suggest that the endpoint lies between 
3.61 and 3.80 on the Richter scale. Note, however, that for the estimators of the endpoint 
based on EVT, we need to look at larger values of k where a more stable pattern emerges 
as the test for truncation was only significant for k ≥ 75 . For k around 125, the EVT-based 
methods estimate the endpoint around 3.76. Note that the EVT estimates for k = n are close 
to the estimates of the N-P-G and K–S methods which use all n observations above 1.5. All 
other methods lead to estimates for the endpoint that are lower than the EVT results.

Additionally, we look at 90% upper confidence bounds for the endpoint as discussed 
above. The endpoint estimators are given by the full orange (Truncated GPD), dashed 
blue (Truncated Pareto), purple long dashed (N-P-OS) and grey dash-dotted (K–S) lines 
in Fig.  4b. The corresponding 90% upper bounds are added as dash-dotted lines in the 
same colour. The upper bounds using the truncated GPD (9) and truncated Pareto (14) take 
values of 4.04 and 3.98, respectively, for k = 125 . The 90% upper bound (18) takes a value 
of 4.50, and the parametric 90% upper bound (26) is equal to 4.32 (grey point). Note that 
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Fig. 2  Groningen gas field anthropogenic seismicity: a Pareto QQ-plot of energy data, b exponential QQ-
plot of magnitude data, c mean excess plot of magnitude data and d exponential QQ-plot of magnitude data 
with fit based on the k = 125 largest magnitudes
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the latter two confidence bounds are based on n magnitudes and should hence be compared 
with the EVT-based upper bounds for k = n (4.03 and 4.04).

We summarised the obtained estimates and 90% confidence bounds for the maximum 
possible earthquake magnitude in Table 2. Note that for the estimators where k needs to be 
chosen, we indicate the chosen value of k in the last column. Fixed values of k, e.g. 2 for 
the R–W estimator, are indicated in the last column in italics.

4  Simulations

The performance of the nine applied estimators of the upper limit of the magnitude distri-
bution was tested using simulations. We generated 5000 magnitude samples of size 250 
from the truncated Gutenberg–Richter distribution with level of completeness tM = 1.5 , 
rate parameter � = 2.1203 and three different endpoints: TM = 3.75 , 4.0 and 4.5. The 
parameter � was estimated from the GGF data by application of (25) (Gibowicz and Kijko 
1994). Note that these endpoints correspond to the 99.2, 99.5 and 99.8% quantiles of the 
shifted exponential distribution with � = 2.1203 and level of completeness tM = 1.5 . For 
each of these simulations, we plot the relative mean, the relative mean squared error (MSE) 
and the coverage percentage of the upper confidence bounds over the 5000 simulations. 
These plots are found in “Appendix”.
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E
 (dashed line), b estimates of the 

truncation odds D
T
 , c P-values of a test for truncation based on the truncated GPD and d P-values of a test 

for truncation based on the truncated Pareto
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Table 2  Summary of estimates and 90% confidence bounds for the maximum possible earthquake magni-
tude in the GGF

Estimator Estimated T
M

90% upper confidence 
bound

k

Truncated GPD 3.77 4.04 125
Truncated Pareto 3.75 3.98 125
Non-parametric Gaussian (N-P-G) 3.78 – n = 250

Non-parametric order statistics (N-P-OS) 3.68 4.50 n = 250

Few largest observations (FL) 3.61 – 250
Extended few largest observations (EFL) 3.61 – 250
Robson–Whitlock (R–W) 3.70 – 2
Robson–Whitlock–Cooke (R–W–C) 3.65 – 2
Kijko–Sellevoll (K–S) 3.77 4.32 n = 250
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The simulations show that the truncated GPD and truncated Pareto estimators have the 
lowest bias, over all three considered truncation points. However, their MSE is among the 
highest which indicates that these estimators have the largest variances. As expected, the 
bias and MSE of all nine analysed estimators increase when the endpoint gets larger. For 
simulations with endpoint 3.75 and 4.0 (which seem to be realistic scenarios), on average, 
the EVT estimators slightly overestimate the true endpoint. When TM = 4.5 , all estimates 
of TM , except K–S, are on average too low.

The coverage percentages of the upper confidence bounds are defined as the percentage 
of times that the obtained upper bounds are larger than the true endpoint. In theory, these 
percentages should be equal to 90%. When the endpoint gets larger, the observed coverage 
percentages decrease. The coverage percentage for the upper bound (18) of Cooke (1979) 
is closer to 90% than the ones for the upper bounds of the EVT-based estimators. The per-
formance of the first two EVT-based estimators is rather similar with a slight advantage 
for the truncated Pareto. Since second-order bias terms were not taken into account for 
the upper bounds (9) and (14), developing bias reduced methods can improve these upper 
bounds. The parametric upper confidence bound (26), which uses all n = 250 observations, 
performs similarly to the one using the truncated Pareto for k large when the endpoint is 
3.75. For higher endpoints, this upper confidence bound performs much worse than the 
other ones.

It is important to note that the parametric K–S estimator is designed specifically for 
the truncated Gutenberg–Richter distribution, which we consider in these simulations, 
whereas the EVT-based estimators are also suitable for other upper truncated distributions. 
The good performance of the EVT-based estimators on different upper truncated distri-
butions, e.g. a truncated lognormal distribution, is shown through simulations in Beirlant 
et al. (2016, 2017).

5  Conclusions

In our work, we investigated the performance of nine different estimators of the endpoint 
of the distribution and applied it to the estimation of the maximum possible seismic event 
magnitude generated by gas production in the Groningen gas field. The analysis includes a 
comparison of EVT-based estimators, non-parametric estimators and a parametric estima-
tor. Since the available database contains only a few large magnitude events, all estimates 
provide the assessment of the upper limit of magnitude with significant uncertainty. The 
quantification of the uncertainty is a problem on its own, which requires careful considera-
tion and effort, not less than the assessment of the upper limit of magnitude itself.

Based on the application of the nine different techniques, the maximum possible anthro-
pogenic origin seismic event magnitude in the Groningen gas field is estimated to be in 
the range 3.61–3.80. The 90% upper confidence bounds vary from 3.85 to 4.50. In addi-
tion, the extreme value analysis in Sect. 3 suggests that the widely used truncated Guten-
berg–Richter distribution might indeed be appropriate to model the distribution of seismic 
event magnitudes in the Groningen gas field. However, the EVT-based and non-parametric 
estimators do not require knowledge of the magnitude distribution, which gives them more 
flexibility compared to their parametric counterparts.

Based on simulations from the truncated GR distribution, it is clear that the EVT-based 
methods perform well when estimating the endpoint. It is important to note that these 
methods usually provide an assessment with a positive bias, which means that, on average, 
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the true endpoint is overestimated, whereas the other estimators (except K–S and N-P-G), 
on average, are too low. The upper confidence bounds based on these two estimators are 
sharper than the other ones. However, the simulations point out that they are too sharp indi-
cating the need for bias reduction.

In general, the presence of bias is not an obstacle leading to disqualification of any of 
the applied endpoint assessment procedures. It would be very useful to study the bias in 
detail. If we knew the bias, it could be used to correct the endpoint estimator (Lasocki 
and Urban 2011) and potentially lead to improvement in any of the discussed procedures. 
Moreover, if additional, independent high-quality information is available, the Bayesian 
formalism provides a powerful tool, capable of both improving the endpoint estimates and 
providing a more reliable assessment of its confidence bounds.

Overall, we can conclude that the EVT-based estimators of Beirlant et al. (2016, 2017) 
are a valuable addition to the already existing methods for estimation of the area-character-
istic, maximum possible seismic event magnitude.

Appendix: Simulation results

See Figs. 5, 6, 7.
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