
ORIGINAL PAPER

Hydrodynamic modeling of flash flood in mountain
watersheds based on high-performance GPU computing

Xiaozhang Hu1 • Lixiang Song1

Received: 16 September 2017 / Accepted: 27 November 2017 / Published online: 8 December 2017
� Springer Science+Business Media B.V., part of Springer Nature 2017

Abstract Numerical accuracy and computational efficiency are the two key factors for

flash flood simulation. In this paper, a two-dimensional fully hydrodynamic model is

presented for the simulation of flash floods in mountain watersheds. A robust finite volume

scheme is adopted to accurately simulate the overland flow with wet/dry fronts on highly

irregular topography. A graphics processing unit-based parallel method using OpenACC is

adopted to realize high-performance computing and then improve the computational

efficiency. Since the finite volume scheme is explicit which involves many computation-

ally intensive loop structures without data dependence, the parallel flash flood model can

be easily realized by using OpenACC directives in an incremental developing way based

on the serial model codes, except that data structure and transportation should be optimized

for parallel algorithm. Model accuracy is validated by benchmark cases with exact solu-

tions and experimental data. To further analyze the performance of the model, we con-

sidered a real flash flooding-prone area in China using a NVIDIA Tesla K20c card and

three grid division schemes with different resolution. Results show that the proposed model

can fast simulate the rainfall-runoff process related to the rapid mountain watersheds

response, and a higher speedup ratio can be achieved for finer grids resolution. The

proposed model can be used for real-time prediction of large-scale flash flood on high-

resolution grids and thus has bright application prospects.
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1 Introduction

Flash flood due to excessive rainfall is a serious threatening environment hazard which

causes loss of human life and substantial socioeconomic damage. Climate change of

increasing the intensity of rainfall in some parts of the world may lead to more severe flash

flooding. In addition, increased urbanization in flash flooding-prone zones will result in

larger segments of population being alive under high level of flood risk. So great attention

has been paid to flash flood disaster in the past few decades, and many works have been

focused on establishing effective early warning systems and further disaster mitigation

measures (Liu et al. 2010; Kourgialas et al. 2012; Yang et al. 2016; Zeng et al. 2016; Elfeki

et al. 2017; Lian et al. 2017). For example, an accurate and timely warning can provide

flood control departments with more time to prepare an effective response, such as moving

people to safer locations and dispatching flood material. As an important approach to help

improve warning lead times, simulation of flash flood is of interest and is required to

identify the threshold value of critical rainfall and support practical flood warning (Pender

et al. 2010).

Flash floods have a complex flow pattern in which not only general subcritical flow,

critical flow, and supercritical flow tend to occur at the same time, but also many com-

putational grids would be partially wetted by overland flow. In the rainfall-runoff process

related to the rapid mountain watersheds response, the flooding process often occurs in dry

slope land and river beds, giving rise to a number of difficulties in the numerical calcu-

lations, such as negative water depth due to overdraft, unphysical large velocity at wet/dry

fronts, discontinuous flow with large surface gradients, and so on. To improve the

numerical accuracy and stability, computational mesh refinement is always required.

However, the runtime would increase significantly as the number of computational meshes

increases; for example, the computational cost of two-dimensional hydrodynamic model at

scales approaching 1 m would be roughly 1012 operations per km2 per day (Sanders et al.

2010). In general, flash flood is a rapid flood event that is characterized by the time-to-peak

of the hydrograph being less than 6 h (Tao and Barros 2013). So a practical warning

service should be provided where times are shorter enough than this. Therefore, numerical

models used for simulation of flash flood should overcome simultaneously the two key

problems of accuracy and efficiency (Zhang et al. 2016, 2017).

Although numerical models of river flood or urban flood simulation have been studied

for many years, two persistent problems dog the schemes in practice for flash flood sim-

ulation in mountain watersheds. Firstly, when modeling realistic flash flood in mountain

watersheds over highly irregular bottom topography, negative water depth computed by

numerical model would be notable and induce serious water non-conservation problem.

Secondly, flash flood in mountain watersheds involves overland flow which is character-

ized by very small water depth. Use of a naive method can lead to predict unphysical high

velocities at wet/dry fronts. So a robust model is critical to simulate flash flood in mountain

watersheds (Begnudelli and Sanders 2006; Liang and Borthwick 2009; Song et al. 2011;

Kim et al. 2014; Guinot et al. 2017). For example, Song et al. (2011) proposed a robust

finite volume model for shallow water flows with wet/dry fronts over irregular terrain. A

new formulation of the shallow water equations and sloping bottom model are adopted to

preserve mass conservation in both fully and partially wetted cells, and the friction terms

are solved by a semi-implicit scheme that resolves the stiff problem.

Computational efficiency is very important for flash flood disaster prediction. However,

in a watershed scale the number of computational grids is commonly very large, and the

computational complexity is much more than that of a river floods modeling. So high-
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performance computing technology should be adopted to improve the traditional serial

computing model. In recent years, parallel algorithms using multi-CPU-based and graphics

processing unit (GPU)-based hardware architecture have been introduced to improve the

computational efficiency of numerical models (Sanders et al. 2010; Lai and Khan 2016;

Herdman et al. 2012; Wang et al. 2014; Liang et al. 2016; Zhang et al. 2016, 2017). For

multi-CPU-based parallel computing models, message-passing interface (MPI) method and

shared memory method (OpenMP) are widely used for many years. In the view of hard-

ware architecture, a piece of GPU card has multi-streaming processors with thousands of

computing cores, which are very important for dealing with computationally intensive task.

Thus, one GPU card could provide the same powerful computational capabilities as many-

CPU cores and GPU-based models can run with high speedup ratio and parallel efficiency.

With the development of GPU hardware and coding platforms in recent years, GPU-

based high-performance computing models are now one of the most popular parallel

algorithms in the world. There are various approaches and platforms for GPU parallel

computation implementation (Herdman et al. 2012). Among those methods, CUDA pro-

gramming language such as CUDA Fortran/C or OpenCL, and OpenACC command lan-

guage would be appropriate for hydrodynamic codes development. CUDA programming

language is a low-level development approach with high flexibility in parallel program-

ming, while OpenACC command language supports an incremental coding way by using

compiler directives and runtime routines. When using the CUDA programming language,

the thread structure of GPU device should be defined explicitly by developer as a specific

form, i.e.,\\\grid, block, thread[[[. The grid, block, and thread represent three dif-

ferent levels in the thread structure of CUDA. And then, the parallel regions should be

coded as kernels for GPU parallel computing. When using the OpenACC supported by PGI

compiler, the parallel region code is automatically transplanted from CPU to GPU by the

compiler, and massive amounts of data are handled in the accelerator device with auto-

optimal parameters of executive model. So OpenACC is easier to use as well as has the

advantages of better portability. Herdman et al. (2012) proposed a finite volume model of

solving compressible Euler equations by using OpenACC directives, and a max speedup of

4.91 is achieved by using X2090 processors. Zhang et al. (2017) developed a dam-break

flood parallel computation model based on OpenACC applications, and a max speedup of

20.7 is achieved by using NVIDIA Kepler K20c platform when the number of computa-

tional grids is 337084, while the speedup ratio is 10.77 when the number of computational

grids is 18109. Liang et al. (2016) proposed a GPU-based catchment-scale high-resolution

flash flood model coded by OpenCL language, and the simulation of 5 million computa-

tional nodes is nearly 5 times faster than real time by using a single Tesla K80 GPU.

In this work, the two-dimensional shallow water model proposed by Song et al. (2011)

is further developed and applied to simulate the flash flood in mountain watersheds with

rainfall-runoff process. A GPU-based parallel method using OpenACC applications is

adopted to realize high-performance computing. On the basis of serial model codes which

have been validated through various benchmarks and applications, the OpenACC direc-

tives are used in an incremental developing way with minimal recoding work, except that

the data structure and transportation are optimized for parallel algorithm. The applicability

of the model is demonstrated as applied to real flash flooding-prone areas in China. Three

grid division schemes with different resolution are adopted to further analyze the perfor-

mance of the model. Results show that the proposed parallel model can fast simulate the

rainfall-runoff process related to the rapid mountain watersheds response, and a higher

speedup ratio can be achieved for finer grids resolution.
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2 Governing equations

The classical shallow water equations are referred to the formulation of hydrostatic

pressure and bottom slope effects and their division between fluxes and source terms. In

this paper, the new formulation of the classical two-dimensional shallow water equations

proposed by Song et al. (2011) is adopted as the governing equations, as well as the rainfall

and infiltration is incorporated in the source term:
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5where h is the water depth; u and v are the

velocity components in the x and y directions, respectively; b is the bed elevation; r and f

are the source and sink terms due to rainfall and infiltration; S0x and S0y are bed slopes in

the x and y directions, respectively, assume the bed is fixed, i.e., b ¼ bðx; yÞ, then S0x ¼
�ob=ox and S0y ¼ �ob=oy; g is the gravity acceleration; Sfx and Sfy are the friction terms

in the x and y directions, respectively. The friction terms are estimated by Manning

formulae:
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It should be noted that the new formulation can essentially eliminate the need for

momentum flux corrections, providing a robust alternative to the classical form for pre-

serving the C-property. Besides, the new formulation is mass conservative in the frame-

work of sloping bottom model, which represents numerically irregular terrain with second-

order accuracy (Song et al. 2011).

3 Numerical scheme

In order to simulate the rainfall-runoff process related to the rapid mountain watersheds

response, a robust finite volume scheme (Song et al. 2011) is adopted for numerical

resolution of the governing equations. Triangular grid is used to facilitate grid generation

and localized refinement when modeling the natural waterways in mountain watershed.

The slope-limited linear reconstruction method is used to achieve second-order accuracy in

space where solutions are smooth, and to preserve first-order accuracy but high-resolution

where great gradient or wet/dry front exists. The model adopts the Harten–Lax–van Leer

contact wave (HLLC) approximate Riemann solver (Toro 2001) to compute inner interface

fluxes, and the Hancock’s predictor-corrector scheme for efficient time stepping as well as

second-order temporal accuracy.

Briefly, the process of time stepping is as follows:

Step 1 Calculate the limited gradient by central values for each cell.
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In this paper, the unlimited gradient of a cell is computed by the three neighbor central

values, and the limiting approach of Hubbard (Hubbard 1999) is used to get the limited

gradient.

Step 2 Calculate the predictor results for each cell.

The predictor results are given by
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in which g is water level; Dt is computational time step controlled by the CFL condition; �ox
and �oy denote the limited gradient in the x and y directions, respectively; the superscripts k

and k þ 1=2 denote the current time step and the predictor step, respectively.

Step 3 Calculate the reconstructed values for each edge.

The reconstructed values at time step nþ 1=2 are computed from the predictor results

and limited gradients at the basis time step, which is given by

pL ¼ p
nþ1=2
i þ �rip

n � ri pR ¼ p
nþ1=2
j þ �rjp

n � rj ð4Þ

where the subscripts L and R denote the left state and right state of the edge, respectively,

which are used for constructing local Riemann problem and numerical flux computation;

the subscripts i, j denote the left side and right side cell of the edge, respectively; p denotes

g, u or v; r denote the position vector of middle point of the edge relative to the cell center;
�rp denotes the limited gradient of p.

Step 4 Calculate the numerical fluxes for each edge.

The HLLC approximate Riemann solver is adopted to compute face fluxes, which is

given by

FðUL ;URÞ � n ¼

FðULÞ � n if s1 � 0

F�L if s1\0� s2
F�R if s2\0\s3
FðURÞ � n if s3 � 0

8>><
>>:

ð5Þ

where UL and UR denote the reconstructed values; s1; s2; s3 are wave speeds. More details

about the HLLC solver may refer to Song et al. (2011).

Step 5 Calculate the source terms approximation for each cell.

Source terms include rainfall and infiltration intensity, bed slope term, and friction term.

The rainfall and infiltration intensity, as well as bed slope term, are approximated

explicitly, while the friction term is computed by a semi-implicit scheme. In general, the

rainfall intensity is provided by design values or field measurements, while the infiltration
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rate can be determined using the popular Green–Ampt approximation or an assumed

constant value.

Step 6 Calculate the solutions at the next time step for each cell.

The solutions at the next time step k þ 1 are given as

Ukþ1
i ¼ Uk

i �
1

Xi

X3
m¼1

FmðUkþ1=2
L

; Ukþ1=2
R

Þ � nmLm þ 1
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i

ð6Þ

where m and L are the edge number and length, respectively; F is the numerical flux; X is

the area; S is the source approximation. The superscripts k þ 1=2 denote that the recon-

structed variables are computed on the predictor results.

After the water depth is updated, the water level at the next time step is updated by the

VFRs proposed by Begnudelli and Sanders (2006), and then, cells can be classified as fully

submerged, partially submerged, and dry by using the horizontal free surface classification

method proposed by Begnudelli and Sanders (2007).

4 GPU computing

From the process of time stepping described above, it can be concluded that there are many

computationally intensive loop structures without data dependence, i.e., the calculations

for a cell or edge are uncorrelated with other cells or edges in the current time step, since

the finite volume scheme adopted to simulate flash flood is explicit. So the calculation

loops are natural parallelizable and can be executed in GPU-based parallel model. On the

basis of serial FORTRAN codes, an incremental developing way with minimal recoding

work can be achieved by using OpenACC directives and clauses, so the PGI compiler

(version 2017) which supports OpenACC FORTRAN is adopted to realize GPU-based

high-performance computing in this work.

4.1 Design of calculation flow

OpenACC is a high-level programming model that parallelizes loops automatically by

using directives and clauses. In the OpenACC abstract accelerator, both computation and

data are offloaded from a host device (CPU) to an accelerator device (GPU). So the

parallelization of the flash flood model involves three steps in the OpenACC parallel

model: data transportation from CPU to GPU, numerical calculation in GPU, and data

transportation from GPU to CPU. Since the PCIe (peripheral component interface express)-

based data transportation between CPU and GPU is time-consuming, all numerical cal-

culations should be executed in GPU to avoid unnecessary data transportation. Figure 1

presents the computational flow diagram on CPU–GPU heterogeneous platform. When

data including mesh information, initial and boundary condition, and computation

parameters are initialized in CPU, the corresponding GPU device space is allocated by

CPU and those initial data are transported from CPU to GPU. Then, all numerical cal-

culation subroutines are successively called by CPU but parallel executed by numerous

computation cores of GPU with three levels of parallelism: gang, worker, and vector. At

the same time, CPU waits for the completion of GPU computation and transports data from

GPU to CPU when it is time to output results. As the calculation flow described above, the

parallel model is CPU-directed execution with an attached GPU device. All
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computationally intensive loop structures and the corresponding data are parallel handled

in the GPU device, and the CPU device is only used to control the calculation process with

data inputs and outputs.

By using OpenACC, the thread structure of GPU device is defined by three levels of

parallelism: gang, worker, and vector. Vector parallelism has the finest granularity, gang

parallelism is coarse-grained parallelism, and worker parallelism sits between vector and

gang levels. A gang consists of 1 or more workers, each of which operates on a particular

vector length. Vector operations are performed with the length, indicating how many data

elements may be operated on with the same instruction. It should be noted that using these

three levels of parallelism as well as sequential, we can map the parallelism in the code to

GPU. Fortunately, this mapping can be implemented implicitly by the compiler using what

it knows about the target device, i.e., massive amounts of data can be handled in the

accelerator device (GPU) with auto-optimal parameters of gangs-number, workers-num-

ber, and vector-length to efficiently use thousands of computing cores. This makes

OpenACC parallel model highly portable, since the same code may be mapped to all types

of GPU devices.

4.2 Data management

OpenACC exposes separate memory through the device data environment of CPU and

GPU. In this paper, the unstructured data management method is adopted by using the

Start

Data initialization in CPU

Data transportation from CPU to GPU

Data transportation from GPU to CPU

Results output

Stop

Limited gradient  calculation

Predictor results  calculation

Reconstruction

Numerical fluxes calculation

Source terms approximation

Results updation

Is time to output results?

Simulation finished
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Y

N

CPU GPU

Fig. 1 Computing flow diagram
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OpenACC clause ‘‘!$acc declare create (data array),’’ and then, the program creates a

copy of the GPU device for the first time after declaring data array in the CPU device

space. Any declared global variables in the parallel loops region or kernels will be regard

as GPU device data, but the declared global variables would be regard as CPU device data

when used in the CPU-computed loops region. So the OpenACC clause ‘‘!$acc update host

(data array)’’ should be used for data transportation from GPU to CPU, while the clause

‘‘!$acc update device (data array)’’ should be used for data transportation from CPU to

GPU. Since the GPU device space is allocated once in the initial process, and the number

of times of data transportation is limited, the data management approach can improve the

performance of the parallel algorithm.

4.3 Parallelization

Since the unstructured triangular meshes are adopted for finite volume discretization, most

of the numerical calculations are single-layer loops with one-dimensional arrays. So the

OpenACC clause of ‘‘!$acc parallel loop present(data array)’’ is adopted for paral-

lelization. In the view of data dependence, numerical calculations can be classified into two

categories: The first is computational loops without reduction and atomic operation, and

the second is computational loops with reduction or atomic operation. Figure 2 presents the

corresponding two methods for parallelization, from which it can be seen that an incre-

mental developing way with minimal recoding work can be achieved by using OpenACC

directives and clauses.

5 Results and discussion

In this section, the numerical accuracy of the proposed model to represent flash flood

routine process is demonstrated by firstly considering two idealized rainfall-runoff cases

over a sloping bottom with analytical solutions and a laboratory experiment. To further

Subroutine Comp1 
    Use Global, only : Flo2D 

Implicit none 
Integer*4      :: i 
!$acc parallel loop present (Flo2D) 
Do i =1, edgesNum 
    … 
    … 
    … 
    … 
End do 
!$acc end parallel loop 

End subroutine 

Subroutine Comp2 
    Use Global, only : Flo2D 

Implicit none 
Integer*4      :: i 
Real*8        :: speed 
Speed = 0.0d0 
!$acc parallel loop present (Flo2D) 
!$acc reduction (max: Speed) 
Do i =1, edgesNum 
 Speed=max(Speed, Flo2D%Speed(i)) 
End do 
!$acc end parallel loop 

End subroutine 

(a) without reduction and atomic operation (b) with reduction operation

Fig. 2 Examples for parallelizing loop
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analyze the performance of the model, we considered a real flash flooding-prone area in

China and three grid division schemes with different resolution. A NVIDIA Tesla K20c

card is used in this work for parallel computation. This card has a Kepler GK110 GPU and

2496 NVIDIA CUDA cores, meaning the proposed model can be executed efficiently with

the OpenACC application. The time step is governed by the CFL number of 0.85 for all

computation cases. It should be noted that both the serial model and parallel model are

used for testing in this work, and results show that the GPU-based simulations are the same

as for the serial model, indicating the veracity of the parallel model.

5.1 Overland flow over a sloping bottom

The first test problem is chosen to verify that the present model indeed accurately simulates

the overland flow resulted from rainfall over a sloping bottom, which has analytical

solutions. This example involves two test cases of one-dimensional overland flow, which

were also used by Singh et al. (2015) for model verification. In the first case proposed by

Giammarco et al. (1996), the computational domain is a 1000 m 9 800 m rectangular

channel with a slope of 0.05 in the y direction. A steady, uniform excess rainfall of

10.8 mm/h for the first 1.5 h is applied over the channel. This case was simulated using

uniform triangular meshes (n ¼ 10 m). The Manning’s n is set to 0.015. Solid slip con-

ditions are imposed at the upstream and lateral walls of the channel, while the downstream

boundary is a free outlet. The bed is initially dry. We run the simulation until t = 12,000 s.

Figure 3 shows the comparison of simulated hydrograph and the analytical solution at the

outlet: As it can be seen, a very good agreement is observed. Note that both the analytical

solution and numerical result of Singh et al. (2015) are digitally extracted from Singh et al.

(2015).

The second case proposed by Singh (1996) is the overland flow generated over a sloping

plane. This test case was used by other researchers for model verification (Tsai and Yang
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Fig. 3 Comparison of the
analytical solution and simulated
discharge for Case 1
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2005; Singh et al. 2015). The computation is a sloping plane with a length of 500 m and

slope of 0.01. The boundary and initial conditions are the same as the former test case. A

steady, uniform excess rainfall intensity of 300 mm/h for duration of the first 1600 s is

applied over the plane. This case was simulated using uniform triangular meshes

(n ¼ 1 m). The Manning’s n is set to 0.02. We run the simulation until t = 6000 s. Fig-

ure 4, which is bounded to clearly show the results in the peak period, presents the

comparison of the simulated and analytical solutions for water depth at the outlet. Simi-

larly, both the analytical solution and numerical result of Singh et al. (2015) are digitally

extracted from Singh et al. (2015). It can be seen that the numerical result computed by the

proposed model matches well with both the analytical solution and numerical result of

Singh et al. (2015), verifying the accuracy of the proposed model.

5.2 Rainfall2runoff process over a three-plane cascade surface

This example proposed by Iwagaki (1955) is used to validate the appropriateness of the

present model for overland flow simulation by comparison with experimental data. In this

experiment, a series of artificial rainfall was applied on an aluminum laboratory flume with

a three-plane cascade surface. The flume is 24 m in length and is equally divided into three

planes with constant slopes of 0.020, 0.015, and 0.010, respectively, from upstream to

downstream. The constant excess rainfall intensities of 389, 230, and 288 cm/h were

applied to the up-, middle-, and downstream of the flume, respectively, for the durations of

10, 20, and 30 s in three experiments.

The three cases are simulated using 1126 triangular meshes (n ¼ 0:5 m). The Man-

ning’s n is set to 0.007 (Huang 2006). Solid slip conditions are imposed at the upstream

and lateral walls of the flume, while the downstream boundary is a free outlet. The bed is

initially dry. Figures 5, 6, and 7 present the comparison of the computed hydrograph at the

outlet and experimental data for the three cases, respectively. It can be seen that the
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numerical results computed by the proposed model match well with the experimental data,

verifying the accuracy of the proposed model. Furthermore, numerical result of short

rainfall duration (10 s) shows that kinematic shock wave generated by the changes in bed

slope is simulated successfully without numerical instabilities and oscillations. This shock

capture capability is very important for numerical models to simulate the overland flow

with wet/dry fronts on highly irregular topography.
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Fig. 5 Computed and observed discharge hydrograph for the three-plane cascade with rainfall duration of
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5.3 Case study and model performance testing

5.3.1 Study area

The mountain watershed is located in the Wangmo County, Guizhou Province, China.

Rivers in the mountain watershed belong to the Beipan River and Hongshui River system

of the Pearl River basin. The length of the mountain watershed is 14 km from east to west

and 24 km from north to south, giving a total drainage area of 198.6 km2. Figure 8 pre-

sents the sketch map of 3D terrain, from which it can be seen that the topography is highly

steep and irregular. The altitude varies approximately from 600 to 1600 m, and the average

slope of the mainstream named Wangmo River is 2.73%. Besides, the average slopes of

tributaries vary from 2.95 to 25.93%. As a result of complex topographical condition, the

rainfall-runoff process related to the mountain watersheds response is rapid. Since the

rivers are narrow, steep, and short in length, flash floods due to excessive rainfall are the

most serious threatening environment hazard in this mountain watershed.

5.3.2 Computational grid

In this work, unstructured, triangular grid is adopted to facilitate grid generation and

localized refinement for modeling natural waterways in mountain watershed. To ensure the

precision of the calculations, the whole drainage area of the Wangmo River is triangulated

to computational grids. Three grid division schemes with different resolution are consid-

ered in this paper. The first division is a base grid (see Fig. 9) with average side-lengths

varying from 35 to 100 m. The other two divisions are refined in turn by averagely dividing

one grid to four grids from the middle of the edges. So the corresponding total numbers of

triangular mesh cells are 85504, 342016, and 1368064, respectively. For simplified
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expression, the three grid divisions are denoted as mesh-A, mesh-B, and mesh-C,

respectively.

5.3.3 Verification of mass conservation

Since the property of mass conservation is very important for flash floods simulation on

highly irregular topography, a hypothetical constant excess rainfall intensity of 100 mm/h

is considered in this work. The Manning’s n is set to 0.05. Solid slip conditions are

imposed at boundaries except that the downstream boundary of the Wangmo River is a free

outlet. The bed is initially dry. As the rainfall intensity is constant, the outlet discharge

would be gradually rose to a steady state with the exact value of 5517 m3/s, which is

calculated from 198.6 km2 9 100 mm/h. We run the simulation until t = 10 h. Figure 10

shows the computed discharge hydrographs at the outlet. It can be seen that the computed

steady outlet discharges are 5514, 5516, and 5517 m3/s for mesh-A, mesh-B, and mesh-C,

respectively, which match well with the exact value. Besides, a faster runoff concentration

in the flood rise period is simulated for finer grid resolution. This is partially due to the

water detention effect of local depressions. As the topography is highly irregular and steep,

finer grids have a smaller height deviation for cells as well as higher resolution in space for
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modeling narrow waterways. So water detention effect might be smaller for finer gird

resolution (See Fig. 11), resulting in a faster runoff concentration. On the other hand,

numerical accuracy is related to spatial discretization resolution, and finer grids would

reduce the numerical dissipation. Nevertheless, the computed discharge hydrographs at the

outlet are basically identical for the three grid divisions. Figure 12 shows the hydrographs

of accumulated water volume: As it can be seen, the accumulated water volume from

Fig. 9 The computational grid of mountain watershed
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Fig. 10 The computed discharge
hydrographs at the outlet
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rainfall is equal to the sum of that of cell storage and outflow, i.e., mass conservation is

preserved well. Note that only the result of mesh-A is drawn in Fig. 12 for clear expres-

sion, as other results of mesh-B and mesh-C are similar.

5.3.4 Real flash flood simulation

A heavy rain was occurred in June 5, 2011, and has caused huge economic losses to

society. Figure 13 presents the rainfall process, from which we can see that the 3-h

maximum rainfall is up to 257 mm. In general, reservoir in the mountain watershed should

be modeled as inner boundary. The flood discharge of reservoir is controlled by the

operation rules and should be computed based on the discharging curve. Besides, infil-

tration rate should be determined, for example, using the popular Green–Ampt equation.

Furthermore, the underground river should be considered here because of the Karst

topography. Together these factors make the fine simulation is very difficult, mostly due to

the limitation of data. In this work, to focus on the speedup ratio of GPU computing, the

effect of these factors is generalized by a coefficient of rainfall loss, which is calibrated to

0.62 based on the mesh-B. The comparisons of surveyed and computed peak discharges, as
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well as the maximum water levels at Wangmo city square, are presented in Table 1 and

illustrate that model predictions compare well with surveyed data. So it could be concluded

that the coefficient of rainfall loss is reasonable. Besides, result errors of mesh-A are much

bigger than those of mesh-B, indicating a moderate grid resolution is necessary for flash

flood simulation. Using coarse grids would result in illusive depressions and then decrease

the magnitude of floods. To improve the prediction accuracy, high-resolution grids should

be used at the catchment scale. This puts forward quite high demand for the computational

efficiency. Figure 14 presents the distribution of maximum water depth computed on

mesh-C, which is one of the major types of flood risk map.

5.3.5 Parallel performance analysis

In this work, we use Intel Xeon(R) CPU E5-2609 v2 @ 2.50 GHz for running the serial

model, while additionally use a NVIDIA Tesla K20c card for parallel model. This card has

a Kepler GK110 GPU and 2496 NVIDIA CUDA cores, and the clock frequency is

706 MHz, delivering up to 1.17 TFLOPS of peak double-precision floating point perfor-

mance for intense compute workloads. The real flash flood simulation schemes presented

in Sect. 5.3.4 is used for parallel performance analysis. Because the calculation time of

serial model for the entire rainfall-runoff process is too long, we studied the first 9 h of

rainfall (i.e., 2011/6/5 23:00 * 2011/6/6 8:00) to compare model performance.

To analysis parallel performance, a speedup is defined as (Zhang et al. 2017):
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Fig. 13 The rainfall process

Table 1 The comparison of surveyed and computed values at Wangmo city square

Observed Mesh-A Mesh-B Mesh-C

Discharge (m3/s) 1340 1112 1337 1425

Discharge relative error (%) – - 17.0% - 0.2% 6.3%

Water level (m) 546.44 546.13 546.43 546.60

Water level error (m) – - 0.31 - 0.01 0.16
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S ¼ TCPU=TGPU ð7Þ

where S denotes the speedup ratio; TCPU and TGPU denote the run time of the serial model

and the parallel model, respectively.

The time saving ratio is defined as follows (Zhang et al. 2017):

TS ¼ ðTCPU � TGPUÞ=TCPU ð8Þ

Results including speedup and time saving ratio of calculation on different mesh

divisions are presented in Table 2. We can see that all three mesh divisions attained a

Fig. 14 The distribution of maximum water depth

Table 2 Parallel results of different calculation schemes

Grid number Average grid area (m2) TCPU (h) TGPU (h) S TS (%)

Mesh-A 85504 2323 4.45 0.31 14.4 93

Mesh-B 342016 581 24.37 1.03 23.7 96

Mesh-C 1368064 145 103.24 3.37 30.6 97
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dramatic reduction in running time. For the mesh-A of 85504 grids with average side-

lengths varying from 35 to 100 m, a 9-h rainfall-runoff process took approximately 4.45 h

to calculate with the serial model, whereas only 0.31 h was required with a parallel model

on the NVIDIA Tesla K20c card. For the mesh-C of 1368064 grids with average side-

lengths varying from 9 m to 25 m, the running time requirement is approximately 103.24 h

(4.3 days) and 3.37 h for the serial model and parallel model, respectively. The simulations

using mesh-A, mesh-B, and mesh-C are nearly 29, 9, and 3 times faster than real time,

respectively. Generally, mesh refinement should be used to improve prediction precision,

while ineluctability is limited by the demand on calculation speed. So it can be concluded

that the tradeoff between numerical accuracy and computational efficiency can be relaxed

by using high-performance GPU computing. Furthermore, the speedup ratio increases with

the number of grid cells. In this work, a speedup ratio of 14.4 was achieved with the mesh-

A of 85504 grids, whereas a speedup ratio of 30.6 was achieved with the mesh-C of

1368064 grids. The speedup ratio could be further increased if multi-GPU cards are used

for calculation.

6 Conclusions

A two-dimensional full hydrodynamic model is presented for the simulation of flash floods

in mountain watersheds. The new formulation of the shallow water equations and sloping

bottom model are adopted to construct a robust finite volume scheme, which can simulate

the overland flow with wet/dry fronts on highly irregular topography. Since the finite

volume scheme is explicit, there are many computationally intensive loop structures

without data dependence, i.e., the calculations for a cell or edge are uncorrelated with other

cells or edges in the current time step. So the calculation loops are natural parallelizable

and can be executed in GPU-based parallel model.

The OpenACC programming model, which parallelizes loops automatically by using

directives and clauses as well as maps the parallelism with auto-optimal parameters of

gangs-number, workers-number, and vector-length, is adopted to realize high-performance

GPU computing. So an incremental developing way with minimal recoding work is

achieved, and the parallel model is highly portable with all types of GPU devices. To

minimize the time-consuming data transportation, the parallelization of the flash flood

model is designed to three steps: data transportation from CPU to GPU, numerical cal-

culation in GPU, and data transportation from GPU to CPU. So all computationally

intensive loop structures and the corresponding data are parallel handled in the GPU

device, and the CPU device is only used to control the calculation process with data inputs

and outputs.

Model accuracy is validated by benchmark cases with exact solutions and experimental

data. To further analyze the performance of the model, the Wangmo River basin of

198.6 km2 drainage area is triangulated to 85504, 342016, and 1368064 grids, respectively.

A hypothetical constant excess rainfall intensity of 100 mm/h is used for verification of

mass conservation. Results show that the computed steady outlet discharges match well

with the exact value, and a faster runoff concentration in the flood rise period is simulated

for finer grid resolution. This is partially due to the water detention effect of local

depressions. As the topography is highly irregular and steep, finer grids have a smaller

height deviation for cells as well as higher resolution in space for modeling narrow

waterways. So water detention effect might be smaller for finer gird resolution.
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Furthermore, a historical flash flood occurred in June 5, 2011, was reproduced by the

proposed model, and model predictions compare well with surveyed data.

Parallel performance is analyzed by comparing the running time of serial model and

parallel model. The Intel Xeon(R) CPU E5-2609 v2 @ 2.50 GHz is used for running the

serial model, while additionally a NVIDIA Tesla K20c card is used for parallel model. A

historical rainfall-runoff process of 9 h (i.e., 2011/6/5 23:00 * 2011/6/6 8:00) is used to

analysis parallel performance. Results show that all three mesh divisions attained a dra-

matic reduction in running time by using parallel model. For the mesh-A of 85504 grids

with average side-lengths varying from 35 to 100 m, a 9-h rainfall-runoff process took

approximately 4.45 h to calculate with the serial model, whereas only 0.31 h was required

with the parallel model on the NVIDIA Tesla K20c card. For the mesh-C of 1368064 grids

with average side-lengths varying from 9 m to 25 m, the running time requirement is

approximately 103.24 h (4.3 days) and 3.37 h for the serial model and parallel model,

respectively. In other words, a speedup ratio of 14.4 was achieved with the 85504 grids,

whereas a speedup ratio of 30.6 was achieved with the 1368064 grids, indicating that a

higher speedup ratio can be achieved for finer grids resolution. So it can be concluded that

the proposed parallel model can be used for real-time prediction of large-scale flash flood

on high-resolution grids and thus has bright application prospects.
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