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Abstract After the earthquake occurrence, collecting correct information about the extent

of damage is essential for managing critical conditions and allocating limited resources.

The prepared building damage maps sometimes bring about waste of time required for

rescuing individuals under the rubble by wrongly conducting rescue teams toward regions

with a lower rescue priority. In this research, an algorithm based on using a proposed

standard at database level was developed to prioritize damaged buildings by considering

five key elements of land use type, the degree of damage to buildings, the land use

differentiation index, time of the highest population density in each land use, and time of

disaster’s incidence. The steps of the proposed method which was implemented in the

MATLAB environment include: detecting buildings on the pre- and post-event imagery,

implementing texture features for each candidate building, choosing the optimal features

by genetic algorithm, determining the degree of building damage in three classes of

negligible damage, substantial damage, and heavy damage by using the difference between

chosen features as inputs of the designed neurofuzzy inference system. Data collected from

field observations were compared to the output obtained from the proposed algorithm. This

comparison presented a general accuracy of 88% and Kappa coefficient of 79% in the

classification of buildings into three damage classes. The proposed standard then was used
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for classifying damaged buildings into relief priorities of high, medium, and low. Findings

revealed that the relief priority map could be a basis for correct guidance of relief and

rescue teams during crucial times following earthquakes.

Keywords Relief priority map � Damage map � Texture analysis � Genetic
algorithm � Neurofuzzy inference system

1 Introduction

Different forms of catastrophic events do have deadly effects when they occur in populated

areas. Some of these catastrophic events include: floods, cyclones, hurricanes, heavy rains,

landslides, avalanches, earthquake (Karimzadeh et al. 2014). Among these natural disas-

ters, earthquakes with the largest number of fatalities, highest number of occurrences, and

also posing serious threats to urban areas (Bartels and VanRooyen 2012; Berz et al. 2001;

Ranjbar et al. 2014a) are regarded as the most devastating events (Ranjbar et al. 2016; Wei

et al. 2017). After earthquake occurrence, detecting the level of damage for every indi-

vidual building in the form of a building damage map is one of the extremely important

operations required in the response and reconstruction phase of disaster management in

affected areas (Aghamohammadi et al. 2013; Feng et al. 2013; Jin et al. 2011; Kakooei and

Baleghi 2017; Rastiveis et al. 2013).

Collecting information about the affected areas by using field survey methods, although

having high accuracy, still needs long time (Kakooei and Baleghi 2017) and more field

work (Zhai et al. 2016). Remote sensing technology can be a very useful and powerful

resource for post-earthquake damage assessment, due to continuous monitoring of the

earth, rapid access of data and multitemporal coverage of areas (Jin et al. 2011; Li et al.

2008; Ranjbar et al. 2017a; Vu and Ban 2010; Zhai et al. 2016). Each remote sensing data

has its own advantages which makes that source suitable for an appropriate purpose. For

instance, information such as shape, texture, morphology, which could be easily extracted

from optical images compared to other remote sensing data, is valuable property for

damage assessment (Dong and Shan 2013; Ranjbar et al. 2017a; Rathje et al. 2005).

Discriminating between buildings and other features also requires high spatial resolution

data, which led to the use of high-resolution data, such as IKONOS, QuickBird, World

View, GeoEye, and EROS in most recent researches (Hamedianfar and Shafri 2014; Li

et al. 2010).

In addition to the properties of data and its resolution, there are three parameters

affecting the process of building damage assessment; these include: accuracy, speed, and

the operator role. Speeding up the process and reducing the role of operators can produce

an instantaneous damage map and thus reduce the number of fatalities. On the contrary, the

creation of damage map with low accuracy may increase the number of fatalities; hence, to

avoid this scenario, it becomes necessary to properly optimize these three parameters.

Researchers have tried to achieve this goal by using three different approaches, namely

monotemporal, multitemporal, and a combination of imagery and vector maps. The main

differences between these three approaches lie in optimizing the three mentioned param-

eters above.

The monotemporal approach for earthquake damage assessment, which involves using

only the post-disaster imagery of damaged areas, is greatly used by researches after

development in spatial resolution of satellite imagery (Li et al. 2010; Ranjbar et al. 2015;

Vu and Ban 2010). Although the methods developed based on this approach have higher
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processing speed in comparison with the other methods, the results of these methods could

not accurately discriminate between damaged and intact areas (Dong and Shan 2013).

Various methods have been designed in this area using different properties, such as color,

edge, texture, spectra, shape, and shadow. Liu et al. (2004) proposed a method to auto-

matically identify damaged buildings by using structure and statistical information of

texture. This method was developed based on the fact that the intact buildings generally

showed even texture, while the damaged or semi-damaged buildings always exhibited

uneven texture. The outputs of this method were in accordance with observations from

field survey. Vu et al. (2005) proposed an automatic area independent methodology for

damage identification of buildings after earthquake by using statistical textures, edge

variance, and direction obtained from high-resolution satellite imagery. The algorithm

showed a compromising result in classifying buildings with sustainable damage level.

Rathje et al. (2005) implemented a semi-automatic method for extracting damage patterns

due to earthquake in the city of Bam by using color and textural features. The results of this

research approved that the selected optimum features and window sizes for discriminating

damages significantly depend on the characteristics of the earthquake and the affected area.

Guo et al. (2009) identified damaged buildings after earthquake by using a theory based on

the combination of morphological features with reflection mechanism. The outputs of this

research could be used for detecting damaged buildings due to other events. Vu and Ban

(2010) developed an automatic approach for earthquake damage assessment by considering

valuable information including spatial relations, shape, structure, spectra, and edge

extracted from QuickBird images. The speed of this method was optimized 36 times by

using parallel processing, and the accuracy of damage ratio was estimated about 80%. By

considering the limitations of traditional approaches in extracting information and the

speed required for damage assessment processing, Li et al. (2011) presented an object-

based method for building damage identification by using post-event high-resolution

satellite imagery which could achieve a higher accuracy in comparison with ordinary

methods.

The multitemporal approach is another way of detecting damage grades after earth-

quake, which has more accurate results in comparison with the methods using the

monotemporal approach (Dong and Shan 2013). The usefulness of this method was limited

by differences between the environmental conditions, satellite sensor characteristics

(Thonfeld et al. 2016), and the lack of pre-event reference data (Li et al. 2011). Deploying

mathematical operations and independent classification are two different methods for

detecting changed areas in this approach (Deng et al. 2008; Hussain et al. 2013; Ranjbar

et al. 2014b; Singh 1989). The first method, which includes different techniques such as

differencing, rationing, regression, principal component analysis, vegetation index differ-

encing, and change vector analysis (CVA), regards each individual pixel as a separate

object and labels it a different damage level comparing with its neighboring pixels

(Rastiveis et al. 2013). In other words, these techniques are developed to identify the

changes between temporal images based on using mathematical algebra and selecting

threshold (Deng et al. 2008). Berberoglu and Akin (2009) analyzed and compared different

techniques of traditional method for identifying changes and concluded that image

rationing has the ability to reduce the effects of topographic such as shadow and illumi-

nation despite its unsatisfying results in comparison with image differencing and CVA.

Coppin et al. (2004), Hussain et al. (2013), Lu et al. (2004), Singh (1989) also reviewed

different pixel-based change detection techniques and summarized their pros and cons in

more details. Selecting the optimum threshold value was considered as the most chal-

lenging task for discriminating class of change from class of no-change in the
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aforementioned method (Hussain et al. 2013; Lu et al. 2004; Xian and Homer 2010).

Although this method is fairly simple and easy to use, complete information about changed

areas could not be completely provided (Lu et al. 2004). By considering the limitations of

traditional method such as the dependency of the output’s accuracy to the coregistration

errors of images (Ban and Yousif 2016), the insufficiency of using solely spectral infor-

mation for damage assessment (Rastiveis et al. 2013), and the necessity to high spatial

resolution images for discriminating roof pixels from neighboring pixels (Dong and Shan

2013), most of the researchers (Chini et al. 2011; Gusella et al. 2005; Huyck et al. 2005;

Ranjbar et al. 2016) used the second method for detecting different damage levels of

buildings. Based on the results of a number of researches (Blaschke et al. 2011; Chen et al.

2012b; Hussain et al. 2013), the object-based method is considered more applicable for

high spatial resolution images than the traditional method. In object-based method, pixels

of image are initially segmented into image objects which are the basis for further analysis.

So, defining suitable parameters for segmenting image into appropriate image objects is the

main challenging task of the mentioned method (Rastiveis et al. 2013). Finally, each

change detection technique has its own advantages which could make it appropriate for a

particular application (Berberoglu and Akin 2009).

On the one hand, the other approach called the combination of imagery and vector maps

could improve the accuracy and also decrease the time requiring for data processing of

mono- and multitemporal damage detection approaches by identifying the building foot-

prints more accurately in case of using updated vector maps (Dong and Shan 2013;

Rastiveis et al. 2013), but on the other hand, the approach could have negative effects on

the outputs in case of using outdated version of vector maps. Turker and San (2004)

proposed a technique by using vector data of buildings for discriminating collapsed from

intact buildings. The method was implemented based on the hypothesis that there would

not be a shadow for a collapsed building. Although the overall accuracy of the developed

technique was estimated about 96.15%, the technique failed to function normally in areas

with complex building shapes. A procedure for rapid damage identification of buildings

using ancillary data was developed by Gamba et al. (2007) and implemented in Bam city of

Iran. The accuracy of the proposed damage detection method was improved notably due to

extracting buildings and omitting other classes by using vector maps; the results indicated

an acceptable accordance with data gathered from field survey. Based on using the com-

bination of image features Trianni and Gamba (2008) carried out the idea of using satellite

imagery and ancillary data at Algeria and Peru earthquakes occurred in 2003 and 2007,

respectively. The results of this study proved the improvement of data interpretation, the

robustness, and affordability of this procedure comparing with other methods. The infor-

mation about the extent of the destructive earthquake which hit Tohoku of Japan in March

11, 2011, was captured by high-resolution satellite images. The difference between

backscattering intensity of images was used in the research conducted by Liu et al. (2012)

for detecting damaged buildings; moreover, in the proposed method each individual

building was identified by its corresponding vector map. The results were reliable in

comparison with the outputs of visual interpretation. Rastiveis et al. (2013) detected

damaged buildings in four different grades by considering the shape of roofs in the post-

earthquake imagery and comparing it with the shape of roofs in the pre-earthquake ima-

gery. Identifying damaged buildings based on shapes besides other features like textures

was the novelty of this research which had promising results. Ranjbar et al. (2016) pre-

sented a casualty estimation method based on object-based damage identification of

buildings. In this research, the optimum texture features were extracted by visual inter-

pretation from pre- and post-event high-resolution satellite imagery and the difference
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between selected features was used as inputs of a proposed fuzzy logic system for

determining damage levels. The necessity to an expert operator for identifying optimum

features and also preparing a set of rules for the fuzzy inference system was the main

weakness of the mentioned algorithm. Although in this research a fuzzy-genetic approach

was used for discriminating class of building from other classes, the accuracy of building

detection was improved by using a vector map.

The damage map obtained from previous studies because of neglecting information

related to the type of land use, the key parameters influencing the prioritization of regions

requiring rescue and relief, and lack of a proposed standard for making relief processes at

early moments following the incidence of earthquake could not be a reliable source for

relief teams. In other words, these maps by only considering the damage level sometimes

misdirect rescuers toward buildings that were devoid of inhabitants; this situation led to

waste of time in the relief process (Ranjbar et al. 2017a). To support this issue, Hassan-

zadeh and Nedovic-Budic (2016) proposed a spatial index to prioritize building blocks by

considering seven main criteria in the GIS environment. Thereafter Ranjbar et al. (2017a)

developed a fuzzy hierarchical analysis for estimating the level of necessity to rescue

actions for any building in the study area. Since proposing a comprehensive standard at

database level for prioritizing buildings is indispensable, this research focused on devel-

oping an algorithm for detecting the degree of damage to buildings based on texture

analysis on pre- and post-event high-resolution satellite images and converting the resul-

tant to a relief priority map by integrating it with a proposed prioritization standard. The

method was implemented in the Varzaghan district in Azarbaijan Province of Iran as a case

study. This paper described the approach (Sect. 2) of the study and evaluated the perfor-

mance on the case study (Sect. 3). In Sect. 4, the results were discussed and concluded.

2 Materials and methods

In this research by considering the necessity to a reliable standard for discriminating

buildings with higher relief priority from buildings with lower relief priority in the early

moments after the earthquake occurrence, an algorithm based on using a comprehensive

standard at database level was presented. The developed algorithm consists of six main

steps of pre-processing, building detection, texture analysis, optimum feature selection,

damage assessment using an adaptive neurofuzzy inference system, and prioritization of

damaged buildings based on using the proposed relief priority standard. The proposed

algorithm is based on the flowchart shown in Fig. 1. In the proposed algorithm, damaged

buildings initially were detected on pre-processed satellite images of the study area by

using snakes and dynamic programming and vector map of the study area. Different texture

features were extracted for every individual building to differentiate between damaged and

undamaged buildings; the optimum features relevant to the problem were selected by the

genetic algorithm (GA). Differences of the optimum features were then used as inputs of

the proposed neurofuzzy inference system to estimate the rate of damage for the extracted

buildings. Finally, a standard for prioritizing damaged buildings was prepared based on

analysis of experiences of local crisis management teams, and the buildings requiring

rescue and relief were identified.
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2.1 Pre-processing

This step involves pre-processing of satellite images and preparing GIS database of the

study area requiring in the process of prioritizing damaged buildings after the earthquake

occurrence in Varzaghan city, Iran. Initially, atmospheric and solar illumination effects of
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Post-event  
building area

Map candidate 
buildings

Texture analysis

Post-event 
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Pre-event 
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Optimum feature selection 
(Genetic algorithm)
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Adaptive boosting 
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Test and 
control data
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control data
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Proposed 
standard
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Fig. 1 Flowchart of the proposed algorithm
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pre- and post-event satellite images were eliminated through using atmospheric correction,

and the ground elevation of images was compensated by using a coarse digital terrain

model (DTM). The satellite images were then pan-sharpened by fusing the multispectral

and panchromatic channels of GeoEye-1 images, in order to utilize multispectral infor-

mation at a higher spatial resolution. Afterward, the spectral similarity of pre- and post-

event satellite images was increased by using histogram matching, and the two images

were registered using 15 control points. Also, the GIS database of the study area was

prepared in the way that could provide the necessary information of the proposed priori-

tization standard.

2.2 Building detection

Automatic extraction of buildings from satellite images is one of the most important steps

in the proposed method which was achieved through the use of an algorithm presented by

(Fazan and Dal Poz 2013). This algorithm was developed based on the assumption that

buildings have straight lines with orthogonal angles. In this research, the buildings were

initially formulated by using a snake model; then, the constructed formulation was solved

as an optimization problem by a dynamic programming (DP) algorithm. The optimum

solutions of the method would represent the candidate buildings of the study area. The

snake model consists of an internal and an external energy term which are responsible for

controlling the geometry of curve v and for moving the contour v along the candidate

feature, respectively [Eq. (1)]. For additional details about this method, the reader is

referred to (Fazan and Dal Poz 2013; Kass et al. 1988).

E2ðvÞ ¼
Xn�1

i¼0

a viþ1 � vij j2 þbi vi�1 � 2vi þ viþ1j j2 �ci rGðviÞj j2 �gi ½ð1� cosðdiÞÞCS(viÞ�2
h i

ð1Þ

where the constants ai and bi are weights of the first and second orders of internal energy

term, and ci and gi are negative and positive constants at vi of the contour, respectively.

rG við Þj j is the gradient of image, CS(viÞ is the result of an operator for corner detection,

and di is the deflection angle.

Finally, the buildings were detected in the pre-event image of the study area by using

the mentioned method and the outdated vector map. The extracted corners of buildings

were mapped on the post-event image to find the boundary of buildings which were

disappeared due to earthquake. Digital values of zero were assigned to the outer pixels of

the boundary of buildings, in order to eliminate the effect of non-building classes in the

class of building.

2.3 Texture analysis

Texture has been defined differently by a variety of researchers; the most commonly

acceptable definition is that texture is a function of the spatial variation in pixel intensities

to characterize the smoothness of a surface (Li et al. 2010). Damage detection methods

using texture features were developed based on the hypothesis that the areas with high rate

of damage had a more coarse texture than areas with lower level of damage (Dong and

Shan 2013). Techniques using spectral information of the pixels for distinguishing dam-

aged pixels from intact pixels in a building area yield unsatisfying results in comparison

with the methods using complementary information such as textural information (Rastiveis
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et al. 2013). Also, the type of texture features plays an important role in the accuracy of

damage detection methods (Ranjbar et al. 2016); thus, in this paper, features in six cate-

gories of first-order statistical, Haralick, geostatistics, wavelet, Gabor, and fractal features

were implemented (Fig. 2). From this list, based on deploying genetic algorithm (GA) as

an optimization method, ten features were selected as optimum features to be used with

spectral features in the damage detection process (features in dashed line rectangles in

Fig. 2). The selected features are described in greater detail in the forthcoming paragraphs.

First-order statistical features First-order statistical features were computed using the

histogram of pixel intensities (Aggarwal and Agrawal 2012) for measuring the similarity of

a gray value at a randomly chosen location in the image without considering pixel

neighborhood relationships (Ranjbar et al. 2016; Rastiveis et al. 2013). The features were

derived from the histogram of pixel intensities including moments, which are greatly used

First-Order Statistical

Variance

Skewness

Kurtosis

Entropy

Median

Mode

Range

Mean

Weighted distance mean

Haralick

Entropy

Energy

Contrast

Sum mean

Homogeneity

Variance

Mean

Maximum probability

Inverse difference 

Cluster tendency

Dissimilarity

Correlation

Gabor

Standard deviation

Mean

Fractal

Standard deviation

Expected mean

Wavelet

Second angular moment

Entropy

Logarithm of energy

Shanson index

Geostatistics

Madogram

Radogram

Pseudo-cross variogram

Simple variogram

Cross variogram

Mean
Weighted distance mean

Homogeneity
Correlation

Simple variogram
Cross variogram

Log energy
Shanson index

Mean
Standard deviation

Fig. 2 Six categories of texture features implemented for damage detection (features in dashed line
rectangles are those selected by GA)
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in statistics and mechanics. In this research, the first-order moment or mean (l1) of gray
values and weighted distance mean (MW) of adjacent pixels in a region were considered as

the first-order statistical features to be applied in the damage detection process. These

features can be calculated using Eqs. (2) and (3):

l1 ¼
XNg�1

I¼0

I � PðIÞ ð2Þ

MW ¼
PNr

i¼1

PNg

j¼1
1
di;j
Iði; jÞ

PNr

i¼1

PNg

j¼1
1
di;j

ð3Þ

where PðIÞ is defined as the probability of a digital number I existing within an image, Ng

is the number of gray levels within an image, and d is the distance between the central

pixel and pixel ði; jÞ.
Haralick features The first-order statistical features could not give any information

about the relative positions of various gray levels within the image, to measure whether all

low-value gray levels are positioned together or they are interchanged with high-value gray

levels (Aggarwal and Agrawal 2012). As a result, the second-order statistical features were

proposed based on a two-dimensional co-occurrence matrix to consider the neighboring

pixel relationships. The co-occurrence matrix P½i; j� is an array which counts all pairs of

pixels separated by d having gray levels i and j (Rastiveis et al. 2013). Among the features

which could be derived from the co-occurrence matrix, homogeneity (H) and correlation

(C) were selected in the damage detection process. These features can be calculated using

Eqs. (4) and (5):

H ¼
XNg

i

XNg

i

P½i; j�
1þ ði; jÞ2

ð4Þ

C ¼
XNg

i

XNg

j

ði� liÞðj� ljÞP½i; j�
rirj

ð5Þ

where Ng is the number of gray levels, and li, lj and ri, rj are mean and standard

deviation, respectively.

Geostatistics features The geostatistic features try to implement texture features based

on two parameters, namely local changes and spatial correlation (Chica-Olmo and Abarca-

Hernandez 2000). Local changes measure the separation of mean within an image, and

spatial correlation assumes that the gray levels are distributed based on this assumption that

closer pixels have more gray-level dependency (Ranjbar et al. 2016; Van der Meer 2012).

Semi-variogram is the main tool to model these two parameters, which has a variety of

applications in remote sensing techniques like damage assessment (Balaguer et al. 2010;

Ranjbar et al. 2016; Rastiveis et al. 2013). Among the features which could be derived

from semi-variogram the simple variogram and cross-variogram were selected as the

optimum features in the damage detection process. These features can be calculated using

Eqs. (6) and (7):
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ckðhÞ ¼
1

2nðhÞ
XnðhÞ

i¼1

fDNkðxiÞ � DNkðxi þ hÞg2 ð6Þ

ckðhÞ ¼
1

2nðhÞ
XnðhÞ

i¼1

fDNjðxiÞ � DNjðxi þ hÞg�
fDNkðxiÞ � DNkðxi þ hÞg ð7Þ

where ckðhÞ is defined as the variogram value in a number of variogram ranges h, DNk is

the digital number of xi and xi þ h pixels, and in a region of image nðhÞ is the number of

points in pair at a distance of h.

Wavelet features The basic functions used in Fourier transform have an unlimited

period; many signals are not continuous signals in nature. For instance, digital images are

an example of discrete functions. In wavelet transform, a series of functions with a limited

period is used as basic functions for composing a discrete signal with less coefficients and

better accuracy. After defining a wavelet basis wðxÞ, other functions are achieved by

transferring and changing the function scale in the spatial domain. The Daubechies and

Haar are a family of wavelets used in the feature extraction process of the current research.

For additional details about these wavelets, the reader is referred to (Daubechies 1992;

Haar 1910).

In two-dimensional imagery, basic wavelet functions will be according to Eq. (8).

wa;bx;by
¼ 1

aj jw
x� bx

a
;
y� by

a

� �
ð8Þ

where a represents the scale, and bx and by represent the amount of filter transmission on

the x-axis and y-axis, respectively.

Transformation is defined according to Eq. (9) as a function of inner multiplication in

basic wavelet functions.

wða; bÞ ¼ f ;wa;bx;by

D E
ð9Þ

After applying the conversion stage, N � N image is converted into four N
2
� N

2
-point

images without any loss of data (Myint et al. 2004). This makes it possible to move on to

the next orders of conversion by considering the estimation image (LL) of the primary

image as the input. The logarithm of energy (log) and Shannon index (SHAN), which

could be derived from image approximation, were selected for damage detection process.

These features can be calculated using Eqs. (10) and (11):

log ¼
Xk

i¼1

Xk

j¼1

logðPði; jÞ2Þ ð10Þ

SHAN ¼
Xk

i¼1

Xk

j¼1

Pði; jÞ � logðPði; jÞÞ ð11Þ

where Pði; jÞ is defined as the probability of a digital number I existing within an image; k

is the gray levels within an image.

Gabor features Gabor filters reduce the complexity of texture analysis by decomposing

an image into a number of scales (S) and orientations (k) (Khan et al. 2016). These filters

can be designed according to the general form gðx; yÞ of a Gabor discrete transform which
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is defined by convolution of two functions including Gaussian and harmonic (Ranjbar et al.

2016; Wu et al. 2000). A set of Gabor filters can be calculated using Eq. (12).

gm;nðx; yÞ ¼ a�mgðx0; y0Þ; a[ 1

x0 ¼ a�mðx cos hþ sin hÞ
y0 ¼ a�mð�x sin hþ y cos hÞ

8
<

:

9
=

;h ¼ ðn� 1Þp
k

ð12Þ

where k is the total number of given directions and m and n are natural numbers.

After filtering the image with Gabor filters and forming sub-bands, standard deviation

and mean of sub-bands are computed as obtained features. In many cases, only the real part

of filter is used for calculating the features, while in some cases such as this study, both real

and imaginary parts are used (sum of squares of real and imaginary images). For additional

details about these Gabor filters, the reader is referred to (Manjunath et al. 1996; Wu et al.

2000).

2.4 Optimum feature selection

The optimum feature space is generated by removing repetitive and irrelevant descriptors

to solving the problem. To form this space, the effective feature subset should be searched

among existing features. This study used genetic algorithm, which is one of the most

effective optimization algorithms, for selecting optimal descriptors. The algorithm is

derived from the natural process of biological evolution and tries to solve problems using

these principles (Tsai et al. 2013). In these algorithms, solutions are not developed, a set of

solutions is kept in a generation, better solutions are provided with chance of producing

child, while weaker solutions are removed (Ranjbar et al. 2017b).

The GA-based algorithm process starts with a random generation of one set of solutions

required to evolve for a problem as the initial population in which candidate solutions were

encoded on the genes of a variety of chromosomes. Here a chromosome is a string of bits

that 1 and 0 represent the presence and absence of a feature in classification, respectively

(Li et al. 2004). Genetic operators such as elitism, crossover, and mutation are then used to

evolve the populations with an iteration process (Haddadi et al. 2011; Tsai et al. 2013). The

reproductive success of each individual chromosome was evaluated based on using a

fitness function (Pal 2013). Since classifying damaged buildings with the highest accuracy

is the main aim of this research, the fitness value was defined in a way that could maximize

the obtained overall accuracy of classification. In this way, sample buildings were initially

classified by adaptive boosting method, and the computed overall accuracy was then

assigned to corresponding chromosome as fitness value. Repeating this process, most

times, leads to solutions that are better than the first generation. The overall process of

optimal description space formation is shown in Fig. 3.

2.4.1 Using adaptive boosting algorithm as a fitness function in the genetic algorithm

In this research, statistical adaptive boosting method was used for evaluating each chro-

mosome in the process of optimum feature selection. Adaptive boosting is a meta-algo-

rithm which has the ability to integrate with other learning algorithms in order to improve

the performance of classification. In general, learning algorithms are grouped into weak or

strong; strong classifier algorithms use techniques such as artificial neural network, while

weak classifier algorithms use techniques such as Bayesian networks (Herfeh et al. 2013;

Ibarra-Manzano and Almanza-Ojeda 2012). Boosting algorithm gives to each instance in S
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learning data equal weight of wjðiÞ. Learning algorithm makes a classifier hj for the data,

and then, a new weight value of wjþ1ðiÞ is assigned to each sample based on the output of

the classifier. The weight of the samples that were properly classified is decreased, and the

weight of the samples that were incorrectly classified is increased. This process resulted in

a series of easy instances having low weight and a series of hard instances having high

weight. In the next repetition, a classifier is created for reweighted data with a focus on the

classification of hard instances. Again, samples’ weight based on new classifier is

decreased or increased. After that, all weights were updated; the weights are normalized

until the sum of the weights remains the same as the previous case. After all repetition,

assumed value of hfinalðxÞ is calculated (Herfeh et al. 2013). For additional details about the
adaptive boosting method, the reader is referred to (Herfeh et al. 2013; Ibarra-Manzano and

Almanza-Ojeda 2012). A sample code which was written for adaptive boosting algorithm

is as follows:

"

Yes

Decoding

Initial generation 
formation

Next generation 
formation

Elitism

Crossover/Mutation

Final algorithm 
terms

No

Selected features

Start

End

Confusion matrix 

Evaluation process

Algorithm training 

Fig. 3 Optimal description space formation using genetic algorithm
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After training this algorithm by using sample data in the selected description space, a

confusion matrix was formed in order to evaluate the performance of each chromosome.

This matrix compares the outputs of visual interpretation by an expert with the outputs of a

supervised classification process. The overall accuracy can be calculated using Eq. (13).

Overal Accuracy ¼ Tc

Ttp
ð13Þ

where Tc is the total number of pixels classified properly and Ttp is the total number of

sample pixels.

2.5 Damage assessment using an adaptive neurofuzzy inference system

After extracting optimal features from the pre- and post-event images, deploying methods

for uncertainty modeling are inevitable due to the non-deterministic nature of damage

identification techniques (Ranjbar et al. 2014a, 2016). By integrating fuzzy systems and

neural networks, an intelligent system is achieved, which has both the learning capability

of neural networks and the uncertainty modeling capability of fuzzy inference systems.

Neurofuzzy system is a Takagi–Sugeno fuzzy model (TS model) (Sugeno and Kang 1988)

in which neural network weights are equivalent to the parameters of fuzzy system (Jang

and Sun 1995; Jang et al. 1997). The general rule of TS model is presented in Eq. (14).

If x equals to A and y equals to B; then z ¼ f ðx; yÞ ð14Þ

where A and B are fuzzy sets, x, y, and z are input and output of the system, and z ¼ f ðx; yÞ
is an explicit function which is usually a first-order or zero-order polynomial function.

Figure 4 illustrates the TS model architecture, and the rules related to the layers of this

model are mentioned below (Jang et al. 1997).
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Layer 1 In this layer, lAi
ðxÞ and lBi

ðyÞ are fuzzy membership functions (MFs) of x and y

in fuzzy sets Ai and Bi, and Ok;i is the output of node i in layer k that are presented in

Eq. (15).

OK;i ¼ lAi
ðxÞ; for i ¼ 1; 2 and K ¼ 1

OK;i ¼ lBi
ðyÞ; for i ¼ 3; 4 and K ¼ 1

ð15Þ

In this study, input parameters are optimal features which were selected in the previous

stage and the output of this layer is the membership degree of these variables to each fuzzy

set.

Layer 2 This layer contains fixed nodes which multiply input signals based on the type

of inference system; the output is presented in Eq. (16).

Ok;i ¼ wi ¼ lAi
ðxÞ � lBi

ðyÞ; for 1 ¼ 1; 2 and K ¼ 2 ð16Þ

Layer 3 The output of this layer �w is the normalization of the previous layer wi; the

output is presented in Eq. (17).

Ok;i ¼ �wi ¼
wiP2
j¼1 wj

; for i ¼ 1; 2 and K ¼ 3 ð17Þ

Layer 4 Each node of this layer is an adaptive node that its output is calculated by

Eq. (18).

OK;i ¼ �wifi ¼ �wiðpixþ qiyþ riÞ for i ¼ 1; 2 and K ¼ 4 ð18Þ

where �wi is the normalized weight, x and y are the input parameters, and pi, qi, and ri are

the coefficients of the polynomial function.

Layer 5 In this layer, there is a fixed node named R that calculates the final output

according to Eq. (19) by adding up the input signals.

OK;i ¼
X

i

�wifi ¼
P

i wifP2
j¼1 wj

; for i ¼ 1; 2 and K¼ 5 ð19Þ

x

y

input

A1

A2

B1

B2

Layer 1 Layer 2

N

N

w1

w2

Layer 3 x y

x y

Layer 4

fout output

Layer 5

Fig. 4 The structure of neurofuzzy inference system equivalent to TS model (Jang et al. 1997)
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Hybrid learning method which is a combination of the method of least square and

backpropagation can be used for training the TS model to modify the parameters of

membership functions and polynomial coefficients during every individual iteration.

2.6 Prioritization of damaged buildings based on using the proposed relief
priority standard

Lack of contextual information is considered to be the main reason for unsuccessful relief

operations after the earthquake event (Chen et al. 2012a; Hassanzadeh and Nedovic-Budic

2016; Peña-Mora et al. 2010; Ranjbar et al. 2017a). Damage map in which only the

buildings’ status and the extent of damage are detected (Rastiveis et al. 2013) cannot cover

all the necessities of crisis management teams at the golden moments after the earthquake

occurrence. This map by wrong conducting the relief teams toward places with lower relief

priority leads to loss of time for saving people under the rubble (Ranjbar et al. 2017a). An

updated GIS database which includes different levels of geospatial and attribute data of the

study area could improve the performance of response actions of relief teams after the

earthquake occurrence. This source of information has the capability for integrating with

developed spatial support systems related to damage detection as a reliable and robust data

infrastructure.

In this research, a prioritization standard was initially proposed based on using the

contextual information derived from the GIS database of the study area (Table 1). To form

this strategy, by the analysis of the operations of local relief teams, the main factors for

prioritizing damaged buildings were identified which include type of land use (residential

regions, schools, governmental, commercial, therapeutic, industrial centers, parks, and

open space), the degree of building damage (negligible damage, substantial damage, and

heavy damage), the differentiation index of each land use (an index was specifically

considered for each individual land use), activity time of each land use (the time during

which population density is considerable in that land use), and earthquake occurrence time.

These factors were then investigated by local experts and scholars of the study area through

a questionnaire method for assigning a prioritization degree: high, medium, and low. The

standard was then implemented at database level in order to prioritize damaged buildings at

the time of earthquake occurrence.

As mentioned previously, relief priority for each land use is considered at three levels:

high, medium, and low by considering activity time, earthquake occurrence time, the

amount of damage to each land use, type of land use, and the differentiation index. In other

words, the land use in the study area was divided into seven main categories; for each

category, a key element was considered by the point of disaster management experts as

differentiation index of that land use which expertise the final decisions about the relief

priority of that specific land use, namely type of school was pointed for the category of

school or type of products was considered for the industrial land use. Activity time and

earthquake incidence time were the other parameters which contributed in providing this

priority catalog, as if an activity time of a land use like an elementary school with sub-

stantial damage is not within the time of earthquake occurrence, the relief priority for that

land use is considered low. Some of the rules which were extracted from the standard could

be found in Table 2. In the proposed standard, the considered activity time for each land

use is the time when the specific land use has the highest population concentration, namely

if the activity time of a land use is from 8 a.m. to 12 a.m. (midnight), but in which

population concentration peak is from 17:00 p.m. to 20:00 p.m., the peak time is con-

sidered for the activity time of that land use. For instance, the low priority was considered
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Table 1 The proposed standard for prioritizing damaged buildings in the study area

Relief
priority

Earthquake
occurrence
time

Activity
time

The differentiation
index of each land use

The degree of
building damage

Type of land
use

Population density (person/parcel)

Low 16:53 p.m. 16:30 p.m.–
6:00 a.m.

\ 10 Negligible
damage

Residential
regionsLow [ 10

Medium \ 10 Substantial
damageHigh [ 10

High \ 10 Heavy damage

High [ 10

Type of school

Low 16:53 p.m. 8:00 a.m.–
14:00
p.m.

Elementary school Negligible
damage

Schools

Low Intermediate school

Low High school

Low Elementary school Substantial
damageLow Intermediate school

Low High school

Medium Elementary school Heavy damage

Medium Intermediate school

Medium High school

Type of governmental facility

Low 16:53 p.m. 8:00 a.m.–
16:00
p.m.

Military Negligible
damage

Governmental
organizationsLow Non-military

High Military Substantial
damageMedium Non-military

High Military Heavy damage

High Non-military

Number of units

Low 16:53 p.m. 16:00 p.m.–
20:00 a.m.

\ 15 Negligible
damage

Commercial
centersLow [ 15

Medium \ 15 Substantial
damageHigh [ 15

High \ 15 Heavy damage

High [ 15

Number of bed rooms

Medium 16:53 p.m. All day long \ 20 Bed rooms Negligible
damage

Therapeutic
centersMedium [ 20 Bed rooms

High \ 20 Bed rooms Substantial
damageHigh [ 20 Bed rooms

High \ 20 Bed rooms Heavy damage

High [ 20 Bed rooms
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for most of the schools because the activity time of schools in the study area was from 8:00

a.m. to 14:00 p.m., while the earthquake occurrence time was at 16:53 p.m. Finally, by

preparing a relief priority map using the proposed standard at the early moments after the

Table 1 continued

Relief
priority

Earthquake
occurrence
time

Activity
time

The differentiation
index of each land use

The degree of
building damage

Type of land
use

Type of products

Low 16:53 p.m. 7:00 a.m.–
17:00
p.m.

Chemical Negligible
damage

Industrial
centersLow Non-chemical

High Chemical Substantial
damageMedium Non-chemical

High Chemical Heavy damage

High Non-chemical

Type of parks

Low 16:53 p.m. All day long Green land Negligible
damage

Parks and
green spaceLow Fun fair

Low Green land Substantial
damageMedium Fun fair

High Green land Heavy damage

Table 2 Some of the rules for prioritizing damaged buildings in the study area

Rules set for the residential land use as an example

IF Type of Land Use is Residential regions AND The degree of building damage is Negligible damage AND
Population density is less than 10 AND Earthquake occurrence time is within the activity time, THEN the
relief priority is low

IF Type of Land is Residential regions AND The degree of building damage is Negligible damage AND
Population density is more than 10 AND Earthquake occurrence time is within the activity time, THEN
the relief priority is low

IF Type of Land is Residential regions AND The degree of building damage is Substantial damage AND
Population density is less than 10 AND Earthquake occurrence time is within the activity time, THEN the
relief priority is Medium

IF Type of Land is Residential regions AND The degree of building damage is Substantial damage AND
Population density is more than 10 AND Earthquake occurrence time is within the activity time, THEN
the relief priority is High

IF Type of Land is Residential regions AND The degree of building damage is Heavy damage AND
Population density is less than 10 AND Earthquake occurrence time is within the activity time, THEN the
relief priority is High

IF Type of Land is Residential regions AND The degree of building damage is Heavy damage AND
Population density is more than 10 AND Earthquake occurrence time is within the activity time, THEN
the relief priority is High
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earthquake, it would be possible to properly organize a limited number of relief forces

toward areas with higher relief priority.

3 Results and discussion

To evaluate the proposed damage detection method, two high-resolution images and

1:2000 vector map of the city of Varzaghan, Iran, were used. The pre- and post-Varzaghan

earthquake satellite images with four spectral bands and size of 3251� 2115 pixels were

acquired on the July 31, 2011, at 7:54:00 a.m. and August 15, 2012, at 7:36:00 a.m.,

respectively, by the GeoEye-1 satellite.

In the pre-processing phase, the atmospheric effects were corrected by using ERDAS

IMAGINE 2015, and the relief effects were compensated on the pre- and post-event

images by using a digital terrain model (SRTM). Then, in order to improve the spatial

resolution in color mode and increase the spectral similarity between images, the pan-

sharpening using Brovey method and the histogram matching were performed on the

images. Finally, pre- and post-event images were registered to the vector map of the study

area using 15 ground control points with root-mean-square errors (RMSE) of 0.3861 and

0.4123, respectively. Figure 5 shows the pre-processed high-resolution satellite images of

the study area. The GIS database of the study area with fields including type of land use,

activity time period, population density of each land use, type of schools, type of gov-

ernmental facility, type of parks, number of units in commercial centers, number of beds in

therapeutic centers, and type of products in industrial centers was also prepared.

After pre- processingBefore pre- processing T
he im

age before the earthquake
T

he im
age after

the earthquake

Fig. 5 Pre-processed satellite images of the study area
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After pre-processing, 1819 buildings were detected on the pre-event satellite image of

the study area by using snake and dynamic programming technique and outdated vector

map. To precede the building detection, as shown in Fig. 6, a number of seed points near

buildings’ corners were defined by an expert operator; other points on buildings’ borders

were predicted by the algorithm due to the hypothesis that buildings have straight sides.

The results indicate that since the width of shadow border is wider than the border of

building, the external energy of shadow border overcomes the total energy; thus, the DP

algorithm selects shadow border instead of buildings’ border. To overcome this problem,

the vector data of the study area were also used as a complementary source besides the

snake building detection technique for buildings which the snake algorithm was unable to

detect them. To assess the accuracy of the building detection technique used in this

research, the amount of RMSE was estimated for 183 buildings extracted by an expert

operator and those detected by the algorithm; the RMSE took the value of 0.98. Extracted

corner points of buildings on the pre-event image were then located on the post-event

image to detect buildings which their borders were disappeared due to the earthquake. In

order to separate other classes from building class, a value of zero was assigned to all

pixels that are located outside the building border.

In order to detect the degree of damage for candidate buildings, 34 textural features

were implemented in the MATLAB environment using a window with 3� 3 pixel size in

four spectral bands; however, other windows with pixel size of 5� 5 or 7� 7 may be

applied. During Haralick feature extraction, a co-occurrence matrix was generated along

four major directions, that is: h ¼ 0�, h ¼ 45�, h ¼ 90�, and h ¼ 135� with a distance of

d ¼ 1; the four resulting matrices were averaged and the second-order statistical features

were generated out of the averaged co-occurrence matrix. The geostatistics features were

extracted by computing the mean of the calculated features along four main directions with

a distance value of h ¼ 1. For extracting the four wavelet features of logarithm of energy,

Shannon index, second angular moment, and entropy, the first and second orders of

Daubechies, along with Haar wavelet, were used, in which the output of the first-order

transform (LL) was used as the input of the second-order transform. Each type of wavelet

feature was generated in the panchromatic bands and in both orders. Also, during

extraction of Gabor features, a library of Gabor filters was developed with three different

Fig. 6 Defining seed points near candidate buildings’ corners by expert operator
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scales S ¼ 3 and four rotations K ¼ 4. Accordingly, mean and standard deviation of

convolved Gabor filters with the image bands were extracted.

In the next step, the genetic algorithm was used to remove redundant and irrelevant

textural features to damage detection. For this purpose, an initial generation was formed

with chromosomes having 240 genes and a population of 20 chromosomes encoded using a

random function with uniform distribution. The solutions were then evaluated by using the

overall accuracy obtained from the adaptive boosting classification as a fitness value. The

evaluation process was carried out using 183 buildings with pre-interpreted damage

degree. The convergence of GA was obtained by considering the number of runs and the

overall accuracy of classification which were set 80 and 99.95%, respectively. After

computing the fitness value for each chromosome, among the 20 chromosomes of the

initial generation, the strongest chromosome with a higher accuracy was transferred to the

next generation (elitism). In total, 60% of the chromosomes were kept to produce two

offspring by using crossover operator, and the rest of the chromosomes were then used to

produce one offspring by using mutation operator. A random function with uniform dis-

tribution was deployed for selecting chromosomes in the evolution process. Finally, ten

features were selected as optimal features that include: first-order features mean of red

band (MeanR), weighted distance mean of near-infrared band (WDMeanNIR); second-

order features homogeneity of near-infrared band (HomogeneityNIR), correlation of near-

infrared band (CorrelationNIR); geostatistics features simple variogram of red band

(SvariogramR), cross-variogram of near-infrared band (CvariogramNIR); wavelet features

logarithm of energy of near-infrared band (first order of basic wavelet transform)

(LOG1NIR), Shannon index of near-infrared band (second order of basic wavelet trans-

form) (SHAN2NIR); Gabor features mean of red band (Gabor wavelet transform by using

Gabor filters with scale of three and rotation of 3�) (MeanGS3R0R), standard deviation of

green band (Gabor wavelet transform by using Gabor filter with scale of two and rotation

of 0�) (StdGS2R0G).
Extracted optimum textural features were used as the inputs of the neurofuzzy inference

system, and the damage degree of buildings was determined according to expert opinions.

For each building, a number was assigned in the range of ½0; 1�, for which a degree closer to
the value of 1 indicates a higher damage rate. The TS model was implemented for 1819

buildings; 60% of the data, that is, 1091, were used to train the model, while 40% of the

data, that is, 728, were used to evaluate the results of the proposed model. The parameters

requiring for training the TS model including the number and type of membership func-

tions for each input (four MFs and Gaussian membership function), the number of runs for

training the model (1100 runs), training method (hybrid), and the order of polynomial

function (first order) were defined by the user. The parameter of the RMSE was also used

in both evaluation and training phases of the TS model. The TS model was implemented in

the neurofuzzy toolbox of the MATLAB environment. Figure 7 shows the diagram for

training the TS model. Finally, each building was classified into three categories of

‘‘negligible damage,’’ ‘‘substantial damage,’’ and ‘‘heavy damage’’ by considering lin-

guistic variables for buildings’ damage degree on the output of the fuzzy system. Table 3

presents the computed confusion matrix for the proposed damage detection algorithm, in

which the overall accuracy of 88% and Kappa coefficient of 79% were estimated. The

damage map of the study area obtained by using the proposed neurofuzzy inference system

is shown in Fig. 8.

Based on the analysis of the experiences of local teams in the study area, a standard was

then proposed for prioritizing damaged buildings. This standard by considering main

factors such as the time of earthquake occurrence, activity time of each land use, type of
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land use, the damage degree of buildings, and a differentiation index tries to discriminate

buildings with a higher relief priority from other buildings. The implemented standard at

the database level could provide a relief priority map after earthquake occurrence. Figure 9

shows the relief priority map of the study area according to the proposed standard.

4 Conclusion

Appropriate resource allocation after earthquake occurrence requires adequate and com-

prehensive information about the affected areas. Building damage maps sometimes leads to

wrong guidance of relief teams toward regions with a low relief priority, due to inadequate

contextual information; these maps only present degree of damage for each individual

building. In other words, since the rate of success for rescue operations after earthquake

occurrence severely depends on this issue that how geographically the rescue teams are

distributed toward the areas with high degree of priority at the appropriate time, in this

research, a method for prioritization of damaged buildings was proposed, which does not

have the complexity of previous methods and could prepare a relief priority map solely

based on the rules previously set at the database level. This algorithm could improve the

efficiency of rescue operations in comparison with the field-based resource allocation

techniques.

The building detection process which is the main pre-requisite of performing this

algorithm was implemented by using the snake and dynamic programming technique. The

inability of the used algorithm to differentiate between building borders and shadow

borders and also the necessity of the algorithm to seed point definition along the sides of

buildings by an expert operator make obstacles in the automatic process of building pri-

oritization. So, modeling the local context of the study area for removing shadows and

examining the capability of other automatic building detection algorithms is recommended

for improving the efficiency of the building extraction. In this research, texture features

were the main property of the pre- and post-event images which were used for damage

degree identification. The results indicate texture features are not adequate for building

damage detection in more than three grades; therefore, it is recommended that other

properties such as building shadow, edge, spatial relationship, morphology, and shape are

used in future works. The adaptive boosting method used as fitness function in the genetic

algorithm, when compared with strong classifiers such as neural networks, was more

complex, but in terms of execution speed, it is faster. Finally, the proposed algorithm could

play an effective role for improving the efficiency of relief operations.

Basic system
(expert 

opinion)

Neuro fuzzy 
system

Training 
algorithm

Optimal featuresxi:

Z: Damage rate (expert 
interpretation)

: Damage rate (system 
estimation)

e: RMSE

Input (xi)

+- eZ

Z

Fig. 7 Diagram for training phase of the TS model
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