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Abstract Dynamic and vigorous top soil is the source for healthy flora, fauna, and

humans, and soil organic matters are the underpinning for healthy and productive soils.

Organic components in the soil play significant role in stimulating soil productivity pro-

cesses and vegetation development. This article deals with the scientific demand for

estimating soil organic carbon (SOC) in forest using geospatial techniques. We assessed

distribution of SOC using field and satellite data in Sariska Tiger Reserve located in the

Aravalli Hill Range, India. This study utilized the visible and near-infrared reflectance data

of Sentinel-2A satellite. Three predictor variables namely Normalized Difference Vege-

tation Index, Soil Adjusted Vegetation Index, and Renormalized Difference Vegetation

Index were derived to examine the relationship between soil and SOC and to identify the

biophysical characteristic of soil. Relationship between SOC (ground and predicted) and

leaf area index (LAI) measured through satellite data was examined through regression

analysis. Coefficient of correlation (R2) was found to be 0.95 (p value\ 0.05) for predicted

SOC and satellite measured LAI. Thus, LAI can effectively be used for extracting SOC

using remote sensing data. Soil organic carbon stock map generated through Kriging model
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for Landsat 8 OLI data demonstrated variation in spatial SOC stocks distribution. The

model with 89% accuracy has proved to be an effective tool for predicting spatial distri-

bution of SOC stocks in the study area. Thus, optical remote sensing data have immense

potential for predicting SOC at larger scale.

Keywords Soil organic carbon � Predictor variables � Leaf area index � Kriging
spatial interpolation � RMSE

1 Introduction

Soil being a vital part of our ecosystem forms a substratum for sustaining life on the Earth.

It is estimated that about 75% of total carbonic stock of terrestrial ecosystem lies in soil.

The carbon content in soil is most important parameter for examining soil quality and soil

health (Brown 1997). Forest Inventory and Analysis (FIA) with its baseline regional carbon

assessment reports have helped researchers to understand about carbon content and har-

vested wood products in forest ecosystems (Gullison et al. 2007; Wu et al. 2009; Houghton

et al. 2009). The information about the relationship among the carbon storage, past

management, and disturbance impacts can be retrieved from the varied trends of the carbon

stocks along with the companion assessments on forest carbon disturbances (Tekin et al.

2012). This associated information can be used to assess the short- and long-term carbon

consequences for alternative forest strategies. The climate change and global warming

have created severe negative inferences to environment all over world. Carbon dioxide

alone supplies about 60% of the total worldwide warming and plays an important role in

carbon sequestration. ‘‘Soil organic carbon (SOC),’’ which is a part of natural carbon

cycle—the quantity of carbon stored in the soil—is a constituent of soil organic matter,

produced by disintegration of plant and animal materials at various stages in soil (Barnes

et al. 2003; Gao and Goetz 1990; McBratney et al. 2003). Soil organic matter constitutes

humus, faunal, and microbial biomass dissolved organic matter and carbonized organic

matter. It releases the nutrients for plant progress, encourages the structural, biological, and

physical health of the soil, and is a buffer against the human elements (Maynard et al.

2007). Soil organic organisms are important for the protection of flora and are sources of

the nutrients for the plants. SOC is one of the most significant elements of the soil due to its

ability to influence plant development as both a source of energy and a trigger for nutrient

accessibility through mineralization (Selige et al. 2006). Soil organic carbon behaves both

as a sink and as a source of atmospheric carbon and is the largest vigorous terrestrial

carbon reservoir. Thus, pool of soil organic carbon is significant in climate alteration

processes by acting as a basis of sinks for atmospheric CO2.

The amount of soil carbon present in soil can vary according to the landscape types and

paddock over the time depending on climate (temperature and rainfall), slope, farming

methods, land management, soil nutrition, and soil type (Neigh et al. 2014). Soil organic

carbon can be assessed and predicted using different vegetation indices like Brightness

Index, Greenness Index, NDVI, SAVI/MSAVI, Wetness Index, and Compound Topo-

graphic Index as the parameters for the model with the help of band-rationing algorithm

and surveyed data (Gupta et al. 2014; Pandey et al. 2014). The traditional method of

acquiring data through field is time consuming and involves huge investment. Geospatial

techniques, on the other hand, being cost-effective and having synoptic view, can be

utilized for predicting SOC through model building. The present study makes an integrated
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use of remote sensing data, laboratory data, geostatistical tools, and field data for pre-

dicting SOC in Sariska Tiger Reserve in India (Zheng et al. 2004).

2 Materials and methods

2.1 Study area

Sariska Tiger Reserve is a tiger reserve situated in the Alwar district of Rajasthan, India.

The landscape of the tiger reserve contains dry deciduous forests, scrub–thorn arid forests,

rocks, grasses, and hilly cliffs (Jain and Sajjad 2016a, b). Vegetation of the study area can

be classified in two major types, i.e., tropical dry deciduous forest- and tropical thorn

forest-based structural attributes (Jain and Sajjad 2016a, b). In terms of the succession, and

concept of continuum of vegetation, the large-scale formations in the area are Acacia

catechu and Anogeissu spendula vegetation types (Jain et al. 2016; Kumar et al. 2015).

Dhok (Anogeissus pendula Edgew.) is the main species of the tree covering over 90% of

the area. It is associated with species like Salar (Boswellia serrata Planch.) and Urjan

(Linnea corommrndelica Houtt.) which are small trees, with a short usually crooked bole

which grow on rocks and dry area. It extends from the Aravalli hills in Rajputana to

Bundelkhand and is important tree, not only as a source of timber and fuel but also for

clothing dry tracts. Khair (Acacia catechu Willd.) and Bamboo (Dendro calamusstrictus

Roxb.) is small- or medium-sized deciduous tree attaining a height of 12–15 m with light

feathery crown, the branch let armed with paired and re-curved spines. The study area was

divided into square plots of 0.1 hectare, and a total of 30 soil samples were composed from

the whole research area (Fig. 1). Measurement of various parameters like species name,

height, diameter at breast height (DBH) for all sampled tropical forest trees above 10 cm

DBH was carried out.

2.2 Data used

The study utilized satellite, field, and laboratory data. Base map was prepared using Survey

of India (SOI) toposheet (1:50,000). Sentinel-2A Multispectral Instrument (MSI) sensor

satellite images were for used for predicting soil carbon. The satellite functions in a sun

synchronous orbit with a 10-day repeat cycle. Specific bands like 2, 3, 4, 8, and 11 (Blue,

Green, Red, NIR and SWIR respectively) with 10 m spatial resolution were used. Sentinel-

2A Multi Spectral Instrument (MSI) contains 13 spectral bands ranging from visible to

short-wave infrared (SWIR) wavelengths along a 180� phase orbit with 290-km orbital

swath. Measurement of sampled trees was carried out in field, and soil parameters were

tested in the laboratory.

2.3 The predictor variables (NDVI, SAVI, and RDVI)

NDVI, RDVI, and SAVI were derived using blue, green, red, and near-infrared bands of

the satellite data to assess the biophysical status of surrounding soil (Kumar et al. 2016;

Tomar et al. 2013). The NDVI is a modest graphical indicator that can be used to define the

greenness, the relative density, and healthiness of vegetation (Powell et al. 2010). This is

calculated using Eq. 1. Red band has maximum absorption by the leaf pigments, and

infrared band has maximum reflectance due to leaf cellular structure.
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NDVI ¼ RNIR � RRED

RNIR þ RRED

ð1Þ

SAVI or Modified Soil Adjusted Vegetation Index (MSAVI) is approximately similar to

NDVI, but MSAVI diminishes the consequence of bare soil on the SAVI (Richardson and

Wiegand 1977; Huete 1988). It is calculated by using Eq. 2 (Qi et al. 1994).

MSAVI ¼ 1

2
2 RNIR þ 1ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2 � RNIR þ 1Þ2 � 8 RNIR � RREDð Þ
q

� �

: ð2Þ

RDVI is generally used to analyze the vegetation at growth stage and the amount of

greenness present in the vegetation. RDVI was calculated using the following equation:

RDVI ¼ ðRNIR � RREDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RNIR þ RRED

p ð3Þ

Fig. 1 Location map of study area

696 Nat Hazards (2018) 90:693–704

123



2.4 Soil carbon analysis from field data

Walkey–Black procedure was followed for estimating soil organic carbon at 5 cm depth of

soil, where the sampler radius is 3.8 cm and sampler volume is 226.8229 cm3. Bulk

density (g/cm3) and soil carbon content (%) were calculated from the soil data collected

from 30 locations in the study area (Table 1). Bulk density is determined using Eq. (4)

(Vagen and Winowiecki 2013; Grossman and Reinsch 2002). We applied drying procedure

and baked soil carbon content at 900 �C using an NC-Analyzer Model Sumigraph-NC

90A. Soil carbon and bulk density are calculated by using Eqs. 4 and 5:

Table 1 Summary of field sampling in Sariska Tiger Reserve

Sampling
unit

Sampler
radius (cm)

Soil depth
(cm)

Soil
weight
(gm)

Bulk
density
(g/m3)

Sampler
area
(m2)

SOC
(g/m2)

SOC
(t/ha)

SOC
(%)

1 3.8 5 360 1.58714 0.004536 190.4569 1.9046 0.24

2 3.8 5 320 1.41079 0.004536 1488.3853 14.8839 2.11

3 3.8 5 342 1.50778 0.004536 1085.6042 10.8560 1.44

4 3.8 5 348 1.53424 0.004536 1971.4933 19.7149 2.57

5 3.8 5 347 1.52983 0.004536 872.0016 8.7200 1.14

6 3.8 5 362 1.59596 0.004536 1771.5136 17.7151 2.22

7 3.8 5 322 1.41961 0.004536 631.7261 6.3173 0.89

8 3.8 5 330 1.45488 0.004536 1142.0800 11.4208 1.57

9 3.8 5 306 1.34907 0.004536 829.6778 8.2968 1.23

10 3.8 5 315 1.38875 0.004536 2083.1222 20.8312 3.0

11 3.8 5 300 1.32262 0.004536 1534.2360 15.3424 2.32

12 3.8 5 344 1.51660 0.004536 2654.0520 26.5405 3.5

13 3.8 5 325 1.43284 0.004536 1103.2832 11.0328 1.54

14 3.8 5 356 1.56951 0.004536 776.9054 7.7691 0.99

15 3.8 5 345 1.52101 0.004536 1475.3795 14.7538 1.94

16 3.8 5 364 1.60478 0.004536 946.8176 9.4682 1.18

17 3.8 5 341 1.50337 0.004536 2059.6237 20.5962 2.74

18 3.8 5 308 1.35789 0.004536 1093.0991 10.9310 1.61

19 3.8 5 311 1.37111 0.004536 1295.7020 12.9570 1.89

20 3.8 5 321 1.41520 0.004536 2059.1167 20.5912 2.91

21 3.8 5 335 1.47692 0.004536 2104.6147 21.0461 2.85

22 3.8 5 345 1.52101 0.004536 1505.7997 15.0580 1.98

23 3.8 5 355 1.56510 0.004536 1291.2051 12.9121 1.65

24 3.8 5 356 1.56951 0.004536 1239.9096 12.3991 1.58

25 3.8 5 352 1.55187 0.004536 1365.6464 13.6565 1.76

26 3.8 5 344 1.51660 0.004536 1107.1188 11.0712 1.46

27 3.8 5 305 1.34466 0.004536 826.9664 8.2697 1.23

28 3.8 5 325 1.43284 0.004536 845.3729 8.4537 1.18

29 3.8 5 320 1.41079 0.004536 1403.7378 14.0374 1.99

30 3.8 5 315 1.38875 0.004536 784.6427 7.8464 1.13
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Bulk density g=cm3
� �

¼ Mass of oven� dried soil

Total volume
; ð4Þ

Soil carbon t=phð Þ ¼ Soil depth � soil bulk density � carbon content %ð Þ: ð5Þ

2.5 Assessing relation between SOC and LAI

SOC is found in soil as a constituent of various biochemical multiplexes. Thus, SOC

having such biochemical cannot be extracted from the satellite data. In order to delineate

SOC through remote sensing, a constraint (terrestrial surface reflectance) has to be linked

SOC, which would represent a strong correlation among them. Leaf area index was derived

using Landsat 8, and OLI image was used for delineating SOC through spectral

characteristic.

LAIsatellite was calculated in two successive processes. Firstly, the soil fraction (FC)

covered by plants was calculated using equation via (Choudhury et al. 1994).

FC ¼ NDVImax � NDVI

NDVImax � NIDVImin

� �

: ð6Þ

Again on 1998, Campbell and Normann stated the soil fraction index using LAI, as

mentioned below (Eq. 6). So LAI can be derived by simplifying Eqs. (7) and (8)

FC ¼ exp �Kbe 0ð Þ � LAIð Þ; ð7Þ

FC = soil fraction covered by plants of given pixel; Kbe(0) = spherical leaf angle distri-

bution = 0.5 (standard)

So, leaf area index can be simplified as;

LAIsatellite ¼ �2Ln 1� FCð Þ: ð8Þ

The spectral linear relationship between LAI and SOC was evaluated through linear

regression analysis.

2.6 SOC extraction using Kriging method

Location points of SOC were interpolated using Kriging method (Oliver 1990). This

method weights the neighboring dignified values and provides an estimate for an

unmeasured plot location. The statistical values for autocorrelation models were calculated

through variograms and covariance functions. The model predicts the unknown values

after autocorrelation of the data. Prediction value for unmeasured location is calculated by

using Eq. 9:

Z sOð Þ ¼
X

N

i¼1

kiZ Sið Þ ð9Þ

Z sOð Þ = prediction value for unmeasured location; Z(Si) = ith location by measured

value; ki = ith location by an unidentified weight for the estimated value; N = the number

of measured value
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2.7 Model validation

Observed (y) and predicted as (ŷ) values were divided into two groups for each land-cover

type (Black 1965). The ground measured SOC was taken as the observed variable and the

SOC extracted from satellite data as the predictors. The results were validated by com-

paring the (root-mean-square error (RMSE) as well as absolute RMSE (Eq. 10).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Y � Y
� �2

N

s

ð10Þ

3 Result and discussion

3.1 Predictor variable

NDVI (Fig. 2a) for the study area ranges from - 0.41 to ? 0.43. Features like barren rock,

sand, or snow displayed very low NDVI values (0.1 or less) (Kumar et al. 2014). Scarce

vegetation such as bushes and grasslands or crops showed moderate NDVI values (ap-

proximately 0.2–0.5). Similarly SAVI (Fig. 2b) is also a kind of vegetation index which is

used for enhancing vegetation brightness in low-vegetation canopy areas using background

adjustment factor. SAVI values for the study area varied from -0.6 to 0.63. The value

beyond 0.2 indicated diminishing of the soil brightness (Kumar et al. 2013; Tomar et al.

2014).

3.2 Analysis of SOC using field data

A summary of the carbon stocks for the whole part of research area is shown in Table 1.

The range of SOC stock varies from 1.90 to 26.55 t/ha in the study area. SOC is mostly

found in the core zone of tiger reserve area, where as lowest values are found all around the

border of the study area.

Fig. 2 Mapping of predictor variables using remote sensing data: a Normalized Vegetation Index, b Soil
Adjusted Vegetation Index, c Renormalized Vegetation Index
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3.3 Analysis of LAI and SOC relationship

The soil fraction value (Fig. 3a) for the study area ranges from - 0.01 to ? 1.00. The

value beyond ? 0.1 is for those soil surfaces which are covered by the plants. LAI

(Fig. 3b) varied from - 0.91 to ? 0.56 m. Low LAI found in the study area is associated

with the texture of sandy soil. The LAI variation was found to be caused by altered

management practices. The effect of biophysical factors on LAI was found to be almost

identical in the entire study area.

A regression investigation was accomplished between SOC (predicted and field data)

and LAI to explore their relationship. We performed regression analysis twice: first

between predicted SOC and LAI, and second between LAI and field SOC data. The

coefficient of regression (R2) was resulted to 95% for the first case (Fig. 4a) and 79% for

the second case (Fig. 4b). The analysis revealed that significant correlation was found

between predicted SOC and LAI, as p value is less than 0.05 (0.032\ 0.005). So LAI can

be used as a constraint for extracting SOC using remote sensing.

3.4 SOC prediction

The SOC map generated from Kriging model using Landsat OLI data clearly shows

variation in the SOC stocks. The map showed spatially interpolated SOC stocks and helped

in assessing the complexity of SOC storage in the Sariska Tiger Reserve. It is observed that

the stock decreases with the increasing slope. Among the various categories of land-

use/land-cover, vegetation has the maximum content of carbon stock, followed by the

Fig. 3 a Soil surface fraction and b leaf area index
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agricultural, fallow lands, and is very low at the settlement. Vegetation has a higher stock

of SOC due to healthy vegetation that gives a steady supply of organic matter to the stock

after decomposition. Fallow lands are open lands with little shrub bery, so they have

greater stock than settlements. SOC stock and its spatial distribution is shown in Fig. 5.

The interpolated the value for the entire study area ranges from 0.273 to 19.064 t/ha.

Fig. 4 a Regression analysis between SOC (predicted) and LAI. b Regression analysis between SOC
(observed) and LAI
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3.5 Validation of results

The RMSE is calculated using Eq. 10 where in �Y was taken as predicted SOC and Y as

observed SOC from the field data. The model accuracy was found to be 0.89. Kriging

method has given an acceptable result in this study due to the collection of more number of

predictors (sampling) for this model. A positive and strong affiliation was found between

the SOC (Predicted from the satellite image) and leaf area index (LAIsatellite). Regression

analysis revealed strong relationship between the leaf area index and predicted SOC.

Fig. 5 Predicted soil organic carbon stock at Sariska Tiger Reserve
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Spectral reflectance of soil organic carbon with multiplex biochemical cannot be measured

precisely and there fore cannot be monitored directly using remote sensing data.

4 Conclusion

The study predicted soil organic carbon distribution using field inventory data in Sariska

Tiger Reserve, India. The distribution of carbon stock across the reserve was modeled by

Kriging geospatial interpolation technique using Landsat 8 OLI data. We predicted SOC

using leaf area index derived through satellite data. LAI can be significantly used as a good

constraint for calculating SOC, as the regression for the LAIsatellite and SOC (predicted)

was found to be R2 = 0.95, with p value less than 0.05. Spatial distribution of SOC shows

that forest has maximum stock followed by agricultural lands, while built-up area has the

lowest stock. The findings further revealed low SOC concentration along steep slopes.

Prediction of soil organic carbon may help in efficient management of forest. Higher-

resolution satellite data and Kriging algorithm for soil characteristic can provide accurate

information for monitoring health of tree species in different geographical regions at

various scales.
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