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Abstract Rock burst is a complex dynamic process can lead to casualties, to failure and

deformation of the supporting structures, and to damage of the equipment on site; hence, its

prediction is of great importance in underground construction. We present a novel

empirical method to predict rock burst based on the theory of logistic regression classifiers.

An extensive database collected from the literature, which includes observations about

rock burst occurrence (or not) in underground excavations in projects from all over the

world, is used to train and validate the model. The proposed approach allows us to compute

new class separation lines (or planes) to estimate the probability of rock burst, using

different combinations of five possible input parameters—tunnel depth, H; maximum

tangential stress, MTS; elastic energy index, Wet; uniaxial compressive strength of rock,

UCS; uniaxial tensile strength of rock, UTS—among which it was found that the preferable

model could be developed in H–Wet–UCS space. The proposed model is validated with

goodness-of-fit tests and nine-fold cross-validation; results show that its predictive capa-

bility compares well with previously proposed empirical methods and confirm that, as

expected, the probability of rock burst increases with excavation depth, and that both Wet

and UCS have a similarly significant influence on rock burst occurrence. Finally,

expressions are proposed for identification of conditions associated with several reference

values of rock burst probability, which can be employed in preliminary risk analyses.
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1 Introduction

Rock burst is a dynamic process caused by a sudden and violent release of elastic energy

accumulated in rock and coal masses. Given its ‘‘explosive’’ nature, rock burst can lead to

significant risks (see, e.g., Brauner 1994; Ortlepp and Stacey 1994; Kaiser et al. 1996;

Huang and Wang 1999; Dou et al. 2012). For instance, it can threaten human life, as

demonstrated by more than 13,000 accidents, with more than 16,000 casualties, reported in

Chinese metal mines between 2001 and 2007 (Zhou et al. 2012). And it can also affect the

schedule and budget of projects, as illustrated by the two Jinping-II hydropower tunnels, in

which the cumulative lengths of sections with rock burst problems added to (approx.) 18.5

and 16.3% of the tunnel length (Shan and Yan 2010).

Significant rock burst problems are also common in coal mining. For instance, a rock

burst accident associated with a large gas emission occurred in Sunjiawan coal mine

(Fuxin, Liaoning province; February 14, 2005), leading to a seismic event with Richter

magnitude of 2.5 (Dou et al. 2009), and another accident occurred in Qianqiu coal mine

(Henan province; November 3, 2011), with 10 people killed and 75 trapped underground. It

is expected that, with the increasing complexity and depth of future underground projects,

new challenges due to rock burst must be addressed.

Predicting the (likely) occurrence of rock burst in one specific project using limited

information is still one of the main challenges in relation to rock burst. The reason is that,

although many advances in the understanding of rock burst have been achieved since the

seminal work of Cook (1966)—see, e.g., Ortlepp and Stacey (1994), Zubelewicz and Mróz

(1983), Xie and Pariseau (1993), or Program (1996)—, the complexity of the phenomena

involved makes it difficult to predict rock burst in real cases. In other words, there is a need

of new methods to predict and control rock burst hazards during underground activities

(Dou et al. 2012).

The prediction of rock burst can be divided into two categories: long-term and short-

term predictions (Peng et al. 2010). Long-term prediction uses simple information, that is

commonly available during the initial stages of a project, to assess the likelihood of rock

burst during project development, so that it can guide decision makers in relation to

excavation and control methods, whereas short-term prediction aims to predict the location

and time of rock burst using data—such as information about drilling bits, microseismic

monitoring, and acoustic emission—collected during construction of the actual under-

ground facility (see, e.g., Cai et al. 2001, 2015; Lu et al. 2012; Ma et al. 2015).

Here, we focus on long-term rock burst prediction. Data mining methods and artificial

intelligence have often been applied for long-term prediction of rock burst since the

seminal work of Feng and Wang (1994). For instance, Zhang et al. (2011) employed a

particle swarm optimization–BP neural network; Zhou et al. (2012) and Peng et al. (2014)

proposed a rock burst classification based on Support vector machines; Li and Liu (2015)

employed the Random forests approach; and Liu et al. (2013) employed cloud models with

attribution weights. Although such data mining methods can estimate rock burst hazards,

they are often complex and difficult to use on site for immediate prediction work.

In this paper, we propose a novel empirical method for long-term rock burst prediction

that is based on the statistical theory of logistic regression classifier. The classifier is

trained and tested using a database of case histories compiled from the literature and from

technical reports on underground projects, and it allows us to estimate the likelihood of

rock burst occurrence based on simple input data that is commonly available at early stages

of project development.
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2 Empirical methods for rock burst prediction

To be able to anticipate rock burst occurrence, we should incorporate (at least) most of the

important aspects that influence rock burst. Some of such factors are discussed below,

together with empirical methods proposed to predict rock burst occurrence and to evaluate

the associated risk.

The rock stress within a rock mass increases with depth (Hoek and Brown 1980);

therefore, the energy accumulated within the rock mass also increases with depth, so that

rock burst likelihood is expected to increase as the depth of excavation increases (Dou

et al. 2006). That observation motivated Hou and Wang (1989) and Pan and Li (2002) to

propose empirical equations to anticipate rock burst based on a ‘‘critical depth’’ computed

as a function of other rock mass parameters. See Table 1.

The elastic energy index, Wet, defined as the ratio of retained to dissipated strain energy

during one loading–unloading cycle under uniaxial compression (see Fig. 1), is another

parameter with a strong influence on rock burst (Kidybiński 1981; Singh 1988). As it is

also one of the most common rock tests conducted in coal mines in China (Cai et al. 2016),

several criteria have been proposed to predict rock burst based on Wet. Among them, the

criterion proposed by Kidybiński (1981), who suggested using Wet C 2.0 as a threshold to

identify rock burst conditions, is probably the most commonly employed (see Table 1). As

additional advantages, Wet can be measured using rock samples collected on site, with a

relatively simple servo-controlled laboratory test (Wang and Park 2001) whose procedures

are ‘‘normalized’’ (see, e.g., Ulusay and Hudson 2007); or with direct or indirect in situ

evaluations (e.g., the ‘‘double hole’’ or ‘‘rebound’’ methods, respectively) (Kidybiński

1981).

But there are other mechanical parameters that could influence rock burst, and which

can be assessed at the early stages of a project. The maximum tangential stress around the

excavation (MTS or rh), the uniaxial tensile strength of rock (UTS or rt), and the uniaxial

compressive strength of rock (UCS or rc) are other mechanical parameters that have been

commonly employed to predict rock burst. Examples of the associated predictive models,

with their corresponding references, are listed in Table 1 (The reader should note that

existing predictive models are deterministic, so that, for instance, they cannot be easily

employed in the context of risk analyses. Similarly, although there are other factors—such

Table 1 Summary of previous empirical criteria for rock burst prediction

Criteria References

Hcr = 0.318rc(1 - l)/(3 - 4l)c Hou and Wang (1989)

Hcr = rc(1 - sinu)k[-1 ? (1 ? E/k)1/(1 - sinu) - E/k]/
2Eksinu

Pan and Li (2002, 2005)

Wet C 2.0 Kidybiński (1981), Wang et al. (1998)

rh/rc C 0.3 Wang et al. (1998)

rc/rt B 40 Wang et al. (1998)

rh/rc[ 0.2 Russenes (1974)

rh is the maximum tangential stress of surrounding rock, MPa; rc is the uniaxial compressive strength of
rock, MPa; rt is the uniaxial tensile strength of rock, MPa; l is the Poisson’s ratio; c is the weight of the rock
mass; u is the internal friction angle of rock; k is the softening modulus (value of elastic modulus after the
peak value of stress in the stress–strain curve), MPa; E is the elastic modulus, MPa; Wet is elastic energy
index
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as water conditions or rock mass integrity—that could affect rock burst, they are not

considered herein due to the absence of a sufficient number of reliable case histories that

provide information about them in the context of rock burst occurrence. When more

information about them is available, they could probably be included in future models for a

better prediction work.)

We propose an alternative approach, developed using the theory of statistical classifiers,

to estimate the likelihood of rock burst occurrence. To that end, we start compiling a

database of 135 case histories from different types of underground excavations from all

over the world, in which the occurrence (or not) of rock burst has been recorded. (83 case

histories correspond to rock burst, and 52 are non-rock burst cases out of the 135 case

histories within the database.) Each record (i.e., case history) in the database contains fields

that correspond to the five main aspects influencing rock burst discussed above: H, MTS,

UCS, UTS, and Wet. Figure 2 shows the boxplot of distributions for the five parameters

collected in the database and Table 2 reports their main statistics. Black solid points in

Fig. 2 indicate the ‘‘outliers’’ (or extreme cases) of each distribution, the horizontal bold

lines inside the boxes represent its median values, and the bottom and top lines of each box

indicate the first and third quartiles. Table 3 lists the correlations coefficients (and the

corresponding p values) among the parameters; it can be observed that only the UCS–UTS

and UCS–Wet relationships (in bold) have correlation coefficients higher than 0.6, indi-

cating strong relationships between those two parameters respectively. The database is

developed based on observations reported by Zhou et al. (2012), Zhao et al. (2007), Guo

et al. (2008) and other unpublished technical reports. The complete database of case

histories employed in this paper is presented in Appendix A of ESM.

The reader should note that information about some fields might be incomplete in some

records from the database, so that not all case histories contain information about all

parameters. This is the reason why, in the discussion below, the number of case histories

might be different for the different models considered (see Table 4). The details of the

formulation of the statistical classifier, which builds on the work of Jordan (2003), are

discussed below; additional details about the implementation of similar classifiers to

probabilistically anticipate the occurrence of complex phenomena in underground con-

struction—respectively, the squeezing of tunnels and the stability of underground coal

mine pillars—can be found in Jimenez and Recio (2011) and Recio-Gordo and Jimenez

(2012).
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Fig. 1 Single loading–unloading
cycle of uniaxial compression
and definition of Wet
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3 A logistic regression classifier for rock burst prediction

Statistical classifiers aim to assign ‘‘labels’’ to observations based on their characteristic

features; in other words, they aim to identify the ‘‘class’’ or ‘‘group’’ to which observations

belong. In the context of rock burst prediction, our statistical classifiers are trained to

assign a discrete-valued random variable, Y, that represents the possible rock burst
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Fig. 2 Boxplot of rock burst parameters (‘‘N’’ represents non-rock burst and ‘‘Y’’ represents rock burst)

Table 2 Descriptive statistics of
the input parameters for case
histories within the database

Parameter Available Missing Min Max Mean SD

H (m) 119 16 100 1140 705.97 274.53

MTS (MPa) 100 35 2.6 167.2 56.28 33.21

UCS (MPa) 134 1 2.9 263 97.32 54.69

UTS (MPa) 123 12 0.38 19.2 5.68 3.58

Wet 117 18 1.1 9.3 4.41 2.05
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occurrence—‘‘rock burst’’ or ‘‘non-rock burst’’—, based on the observation of a set of

variables, X, defined in terms of the input parameters discussed above. The main difference

with many of the previous efforts to address rock burst is that the assignments can be

conducted probabilistically, using the computed conditional probability P (Y|X), as

explained below.

Our classifier is a discriminative model (Mitchell 2015), so that it aims to maximize the

quality of its predictions for the training set, using the logistic function to construct a

‘‘map’’ between physical features and rock burst probabilities. In particular, if we use

X = (X1,…, Xn) to denote the input vector that includes information about (some of) the

parameters that influence rock burst described above—i.e., H, Wet, MTS, UTS, and/or

UCS—, then the conditional probability of the class label, Y, can be computed based on a

set of observations on X, as P(Y = y|X = x). And, since Y is a Bernoulli-type random

Table 3 Pearson’s correlation coefficients (p values) between the parameters collected in the database (The
p value is expressed in probability levels so that the smaller p level shows the significant relationship)

H MTS UCS UTS Wet

H 1 0.161 (0.140) -0.245 (0.008) -0.193 (0.046) -0.169 (0.091)

MTS 0.161 (0.140) 1 0.216 (0.031) 0.207 (0.039) 0.293 (0.003)

UCS -0.245 (0.008) 0.216 (0.031) 1 0.601 (0.000) 0.685 (0.000)

UTS -0.193 (0.046) 0.207 (0.039) 0.601 (0.000) 1 0.299(0.002)

Wet -0.169 (0.091) 0.293 (0.003) 0.685 (0.000) 0.299(0.002) 1

Table 4 Possible models using parameters collected

Types of parameters Error cases Case histories number Error rate (%)

Environmental Rock intrinsic

H Wet 10 1 10 101 19.8

H UCS 20 ? 8 118 23.7

H UTS 25 ? 5 107 28.0

MTS Wet 10 ? 2 100 12.0

MTS UTS 10 ? 2 100 12.0

MTS UCS 11 ? 2 100 13.0

H, MTS Wet 4 ? 4 85 9.4

H, MTS UCS 7 ? 4 85 12.9

H, MTS UTS 8 ? 2 85 11.8

H Wet, UCS 2 1 4 99 6.1

MTS UCS, Wet 10 ? 2 100 12.0

H Wet, UTS 4 ? 4 89 9.0

H UCS, UTS 23 ? 7 107 28.0

MTS Wet, UTS 10 ? 3 100 13.0

MTS UCS, UTS 9 ? 2 100 11.0

For the catalogue of error cases, the first figure indicates that observations assigned a rock burst label when
they actually presented non-rock burst conditions (false positive), whereas the second indicates observations
for which a non-rock burst label was assigned even though the rock burst occurred in reality (false negative)
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variable (Y = 1 indicates ‘‘rock burst’’, whereas Y = 0 indicates ‘‘non-rock burst’’), the

conditional probability can be expressed as

pðyjxÞ ¼ f ðxÞyð1� f ðxÞÞ1�y ð1Þ

where f (x) is the parameter of the Bernoulli distribution—note that it is a function of input

data—, with f ðxÞ ¼ pðy ¼ 1jxÞ ¼ EðyjxÞ.
Furthermore, we assume that f (x) can be computed using the logistic function and a

linear transformation of the input features, as

f ðxÞ ¼ 1

1þ expð�hTxÞ
ð2Þ

where h is the parameter vector of the logistic regression classifier.

To ‘‘learn’’ the parameter vector, a maximum likelihood approach—that aims to

maximize the probability that the model produces the observations available within the

training dataset—is common. In our case, assuming independence between observations in

the training data set, we can define the likelihood as

pðy1; . . .; yN jx1; . . .; xN ; hÞ ¼
YN

i¼1

f ðxiÞyið1� f ðxiÞÞ1�yi ð3Þ

and, taking logarithms to facilitate the optimization, we obtain the log-likelihood as

log p ¼ logðy1; . . .; yN jx1; . . .; xN ; hÞ ¼
XN

i¼1

fyi log f ðxiÞ þ ð1� yiÞ logð1� f ðxiÞÞg ð4Þ

The log-likelihood in Eq. (4) could be optimized using a wide variety of methods, but

Newton–Raphson methods—which are iterative methods that employ first and second

order derivatives—and, in particular, the iteratively reweighted least squares (IRLS)

algorithm, are commonly employed due to their good performance. The final expression is

(see Jimenez and Recio 2011 for details of the derivation):

hiþ1 ¼ hi þ ðXTWiXÞ�1
XTðy� f ðxiÞÞ ð5Þ

where X is the matrix of observations (with an additional column of ones to provide an

independent item);W ¼ diagff ðx1Þð1� f ðx1ÞÞ; . . .; f ðxNÞð1� f ðxNÞÞg is a diagonal weight
matrix that changes from iteration to iteration—hence the algorithm’s name—; y is a

N � 1-dimensional vector with the observed outcomes of ‘‘rock burst’’ or ‘‘non-rock burst’’

occurrence for each input; and f (xi) is another N � 1 vector with the Bernoulli’s model

parameters computed with Eq. (2) for each input vector with the current value of the

parameter vector, hi.

4 Results and discussion

4.1 Model training and probability calculation

The algorithm described in Sect. 3 has been implemented in MATLAB, and several

models with different combinations of ‘‘environmental’’ (or ‘‘external’’) and ‘‘rock
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intrinsic’’ parameters have been tested to assess their performance and predictive

capabilities.

For simplicity, we only construct models with two or three input parameters (out of the

five parameters discussed above), so that at least one parameter is chosen from the ‘‘en-

vironmental’’ parameters (H or MTS) and at least one is chosen from the ‘‘rock intrinsic’’

parameters (Wet, UCS or UTS). The possible models constructed using such combinations

of parameters, and their training results, are listed in Table 4. Results show that, as

expected, models with three parameters perform better than models with two. Results also

show that the models with two input parameters that use MTS as ‘‘environmental’’

parameter obtain lower error rates, but their prediction are biased, which makes us to

suggest that other non-biased models be used instead. (Although they are biased toward the

conservative side, with non-rock burst cases being predicted as rock burst, unbiased models

are preferable in the context of risk analyses). Furthermore, results show that models that

do not consider Wet and MTS have consistently higher error rates (above 20%).

Next, we discuss two of the models in Table 4 that, due to their simplicity and per-

formance, were considered preferable to predict rock burst. The first model (referred to as

Model A) considers only two input (predictive) variables: Wet and H. Model B contains

three input variables: Wet, UCS, and H.

Based on the discussion above, the classier for Model A is developed using the fol-

lowing input observation matrix:

X ¼ ½1;X1;X2� ¼ ½1;Wet;H� ð6Þ

where X is a N � 3-dimensional matrix that includes a first column with a vector of ones to

supply an independent term in the regression, and N is the number of observations in the

collected case histories. The rock burst observations form a N � 1-dimensional vector, Y,

in which a value of 1 represents rock burst occurrence (using 0 otherwise). Similarly, the

observation matrix for Model B is a N � 4-dimensional matrix constructed as:

X ¼ ½1;X1;X2;X3� ¼ ½1;UCS;Wet;H� ð7Þ

The convergence of the IRLS algorithm is fast, and the parameter vector, h, can be

trained in just a few iterations. (Results presented herein are computed with a convergence

tolerance of 1E-9.) As an example of the results obtained, Table 5 lists the iterative

estimates of the parameter vector for Model B obtained during its training with the IRLS

algorithm. (For Model A, the algorithm converges in just six steps, with a final result of

h1 = -3.5092, h2 = 0.9920, and h3 = 0.0013.)

Table 5 Iterative parameter
estimates for the logistic regres-
sion classifier of Model B

Iteration h1 h2 h3 h4

0 0 0 0 0

1 -2.8830 0.0166 0.2271 0.0019

2 -4.8288 0.0332 0.3437 0.0029

3 -6.7756 0.0492 0.4899 0.0038

4 -8.2241 0.0600 0.6191 0.0046

5 -8.7536 0.0638 0.6747 0.0048

6 -8.8060 0.0641 0.6811 0.0048

7 -8.8064 0.0641 0.6812 0.0048

8 -8.8064 0.0641 0.6812 0.0048
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Once the classifier has been trained, Eq. (2) is employed to develop the logistic

regression classifier for different values of probability (indicated by f(x)), as:

hTx ¼ ln
f ðxÞ

1� f ðxÞ

� �
ð8Þ

And, particularly for Model A, we obtain:

h1 � 1þ h2Wet þ h3H ¼ ln
f ðxÞ

1� f ðxÞ

� �
ð9Þ

where the hi values are the computed values listed above.

As f (x) is a probability, we can obtain lines in the Wet–H space with constant rock burst

hazard. For example, to develop a line with 50% of rock burst probability (with f = 50%),

we obtain:

HðmÞ ¼ 2699:38� 763:08Wet ð10Þ

Similarly, Model B can be transformed to:

h1 � 1þ h2UCSþ h3Wet þ h4H ¼ ln
f ðxÞ

1� f ðxÞ

� �
ð11Þ

where the hi values correspond to the converged results listed in Table 5.

As a particular example, we can obtain the class separation plane with a 50% likelihood

of rock burst occurrence under the Wet–UCS–H three-dimensional space, as
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HðmÞ ¼ 1834:67� 13:35UCS� 141:92Wet ð12Þ

Figure 3 shows the resulting probability lines [for f(x) = (1%, 10%, 25%, 50%, 75%,

90%, 99%)] for Model A. Figure 4 shows the class separation plane (corresponding to a

50% probability of rock burst) of Model B, which divides the input space into two regions:

one in which ‘‘rock burst’’ is more likely than ‘‘non-rock burst’’ (the upper half-space) and

another in which it is otherwise. Figure 5 shows another view of the results of Model B

shown in Fig. 4, in which additional probability planes have been added (for rock burst

probabilities of 1%, 10%, 25%, 75%, 90%, and 99%), and in which the angle of view have

been selected so that such planes appear as lines in the plot.

4.2 Goodness of fit and predictive performance

Goodness-of-fit tests aim to understand whether the model predictions accurately reflect

the observed data outcomes, so that the performance of a classifier can be evaluated

comparing its predictions to available observations (Dreiseitl and Ohno-Machado 2002).

4.2.1 Deviance and Akaike’s information criterion

Deviance is a goodness-of-fit test for logistic regression models, based on the likelihood

ratio between our fitted model and the saturated one (one in which each observation gets its

own parameter). The null deviance shows how well the output is predicted by a model with

an intercept only, and the residual deviance shows how well the output is predicted by the

model when the predictors are included.

Akaike’s information criterion (AIC; Akaike 1974) can also be used for model selec-

tion. It represents an objective methodology to select the ‘‘best’’ model, given some

observations, among a set of candidate models; ranking the models considering both their

fit and complexity (Simply comparing goodness of fit is a poor model selection technique,

as it is always possible to improve it increasing the number of model parameters, but too

complex models should be penalized to avoid overfitting.)

Table 6 shows the results computed for both models. The null deviances of models A

and B are slightly different because their total number of case histories is different, and

both models decrease their deviances when predictors are added. It is also clear that Model

B has a lower residual deviance and AIC than Model A, illustrating the effects of including

UCS as a predictive parameter.

4.2.2 Hosmer–Lemeshow (H–L) test

The Hosmer–Lemeshow (H–L) test is another statistical test for goodness of fit for logistic

regression models. It is often employed in risk prediction models. It evaluates whether the

observed proportions of events within subgroups of the population match the expected

Table 6 Summary of deviances and AIC for Model A and Model B

Model Null deviance Residual deviance AIC

A 122.882 83.141 81.474

B 117.930 41.095 49.095
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proportions (Hosmer Jr et al. 2013). In our proposed model, we divide the case histories

into 10 groups for evaluation (see Tables 7 and 8). The p values for the H–L test are 0.04

for Model A and 0.41 for Model B. This suggests that Model A has a worse performance

(as its p value is the less than 0.05), whereas Model B provides better results for more

reliable future predictions.

4.2.3 Confusion matrices

Rock burst prediction is a two-class prediction problem, so that there are four possible

situations which can be conveniently recorded as confusion matrices (Fawcett 2006). If the

actual outcome is positive (i.e., ‘‘rock burst’’), and it is classified as positive, it is counted

as a true positive (TP); if it is classified as negative (i.e., ‘‘non-rock burst’’), it is counted as

a false negative (FN). If the actual outcome is negative and the prediction is also negative,

it can be defined as true negative (TN); if it is classified as positive, it is counted as a false

positive (FP).

Table 7 H–L test for Model A

Group Probability
zone

Observed no rock
burst cases

Observed rock
burst cases

Expected no rock
burst cases

Expected rock
burst cases

1 [0.149,0.25] 12 0 9.58 2.42

2 (0.25,0.357] 6 3 6.07 2.93

3 (0.357,0.548] 3 7 5.52 4.48

4 (0.548,0.713] 2 8 3.49 6.51

5 (0.713,0.824] 2 8 2.21 7.79

6 (0.824,0.902] 4 6 1.41 8.59

7 (0.902,0.927] 0 10 0.83 9.16

8 (0.927,0.965] 0 10 0.58 9.42

9 (0.965,0.982] 1 9 0.24 9.76

10 (0.982,0.998] 0 10 0.06 9.94

Table 8 H–L test for Model B

Group Probability zone Observed no rock
burst cases

Observed rock
burst cases

Expected no rock
burst cases

Expected rock
burst cases

1 [0.003492,0.04859] 10 0 9.74 0.26

2 (0.04859,0.2093] 7 3 8.71 1.29

3 (0.2093,0.5667] 9 1 6.52 3.48

4 (0.5667,0.8969] 1 9 1.80 8.20

5 (0.8969,0.94] 0 10 0.78 9.22

6 (0.94,0.9867] 1 8 0.35 8.65

7 (0.9867,0.9961] 0 10 0.06 9.94

8 (0.9961,0.9986] 0 10 0.03 9.97

9 (0.9986,0.9999] 0 10 0.005 9.996

10 (0.9999,1] 0 10 0.0003 9.9997
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Based on these definitions, and using the class separation lines (or planes) computed

with our trained classifiers in Models A and B, we obtain the performance results illus-

trated by the confusion matrices listed in Tables 9 and 10. The error rates for Model A and

Model B are 19.8% and 6.1%, respectively. As expected (because it has only two

parameters), Model A has a higher error rate, which decreases when additional ‘‘rock

intrinsic’’ parameters are considered (see Table 4), showing that considering UCS can

significantly improve the predictions. Therefore, Model B is proposed as an improved

logistic regression classifier that can provide better estimations, while still using simple

input information.

4.2.4 Relative operating characteristic curve

The relative operating characteristic curve (ROC; Metz 1978) is a simple empirical

description that indicates all possible combinations of the relative frequencies of correct

and incorrect decisions. A model with no discrimination ability will generate a ROC curve

that follows the 45� line, whereas a perfect discrimination is when the ROC curve follows

the left hand and top axes of the unit square with the true positive rate equals one and the

false positive rate equals zero (Pearce and Ferrier 2000).

The ROC curves of our proposed models are presented in Fig. 6. The areas under the

curve (AUC) are 0.873 and 0.961 for Model A and Model B, respectively. (Hosmer Jr et al.

2013 proposed that the AUC values above 0.9 represent an outstanding discrimination,

whereas values between 0.8 and 0.9 represent an excellent discrimination.) Therefore, our

proposed Model B is also better when its performance is assessed using ROC curves and

their corresponding AUC values.

Table 9 Confusion matrix of ‘‘Rock burst’’ prediction with Model A

Predicted

Yes No

61(TP) 10(FN) Yes Actual

10(FP) 20(TN) No

‘‘Actual’’ indicates the real rock burst condition recorded in the database, and ‘‘predicted’’ indicates the
predictions of our proposed model. ‘‘Yes’’ represents rock burst occurrence, and ‘‘No’’ represents non-rock
burst

Table 10 Confusion matrix of ‘‘Rock burst’’ prediction with Model B

Predicted

Yes No

67(TP) 4(FN) Yes Actual

2(FP) 26(TN) No

‘‘Actual’’ indicates the real rock burst condition recorded in the database, and ‘‘predicted’’ indicates the
predictions of our proposed model. ‘‘Yes’’ represents rock burst occurrence, and ‘‘No’’ represents non-rock
burst
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4.2.5 Cross-validation

At the same time, a k-fold cross-validation exercise (with k = 9) is employed to validate

Model B and to further test its performance. For such combination of input parameters (H,

Wet, and UCS), there are 99 case histories in the initial database, so that they can be

randomly divided into nine groups of data. Then, for each group, the model is trained using

the other eight groups, and the originally selected group is used to predict rock burst

occurrence with the trained logistic classifier model, and to compare its predictions with

the observations within the group. If this process is repeated for the nine groups, a nine-

fold cross-validation exercise is obtained. Results are reported in Table 11, showing that

Model B maintains a low average error rate of 9.1% (Note that, although some groups have

higher error rates, the key result of the validation is the average error rate.)

4.3 Use for risk analyses

We can use two additional case histories to illustrate the applicability of the developed

model to estimate the probability of rock burst occurrence, given a set of input parameters

corresponding to a new rock underground project: the first one has the following set of

representative input parameters: H = 700 m, Wet = 2.87, and UCS = 70.68 MPa; the

second has H = 630 m, Wet = 0.88, and UCS = 59 MPa. Then, given the set of fitted

model parameters listed in Table 5 (h1 = -8.8064, h2 = 0.0641, h3 = 0.6812, and

h4 = 0.0048), we can use Eq. (2) to compute the probability of rock burst occurrence, f(x),

resulting values of 73.9% and 19.8%, respectively. Such probability values can then be

incorporated, with the corresponding estimates of costs associated to such failures (whose

discussion is outside the scope of this work), into risk analyses.

ROC curve of Model A

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

ROC curve of Model B

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) (b)

Fig. 6 ROC curves of Models A and B
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5 Discussion

Based on the results presented in Figs. 3, 4, and 5, we can observe that, as expected and in

agreement with previous research (see, e.g., Dou et al. 2006), the new classifier predicts

higher rock burst probabilities as H, UCS, or Wet increase. Results also illustrate that, in

this case, significantly better results are obtained when an additional input parameter is

Table 11 Nine-fold cross-vali-
dation results of Model B

Group Error rates (%) Confusion matrices

No. 1 9.1 Predicted

Yes No

6 0 Yes Actual

1 4 No

No. 2 0 Predicted

Yes No

9 0 Yes Actual

0 2 No

No. 3 18.2 Predicted

Yes No

7 1 Yes Actual

1 2 No

No. 4 0 Predicted

Yes No

9 0 Yes Actual

0 2 No

No. 5 18.2 Predicted

Yes No

7 1 Yes Actual

1 2 No

No. 6 18.2 Predicted

Yes No

6 1 Yes Actual

1 3 No

No. 7 9.1 Predicted

Yes No

4 0 Yes Actual

1 6 No

No. 8 9.1 Predicted

Yes No

9 1 Yes Actual

0 1 No

No. 9 0 Predicted

Yes No

10 0 Yes Actual

0 1 No

Average 9.1
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included in the model: the predictive performance is significantly improved in Model B—

using both the original set of case histories and the ninefold cross-validation exercise—,

when the UCS is added to Model A as an additional input parameter.

The validity of predictions obtained with the model proposed can be further assessed

using the available observations. For instance, the 50% rock burst probability line in the

Wet–H space of Model A produces a total of 20(10 ? 10) misclassifications, as ten false

positives and ten false negatives are produced. Similarly, there are 6(2 ? 4) misclassifi-

cations in the Wet–UCS–H space of Model B (see Table 4), and such misclassifications are

almost balanced with respect to the 50% probability plane. Therefore, both models produce

(almost) unbiased classifiers that are beneficial in risk analyses. And the rock burst

probability lines (or planes) computed for other probability values—1%, 10%, 25% , 50%,

75%, 90%, and 99%—also suggest that the rock burst misclassifications tend to stay within

the expected ranges.

For comparison, Table 12 presents the prediction results of the proposed logistic

regression classifier, together with the outcomes expected with some other common

empirical methods for rock burst prediction presented in Table 1. Our model has the lowest

error rate among those considered, while still maintaining a simple equation that only

needs simple information commonly available in the initial stages of a project.

To assess the significance of the predictors and that of the model, the usual approach of

hypotheses testing is employed. To that end, the Wald test statistics are computed using the

R software (R Core Team 2014), obtaining that the p values for the H, UCS and Wet

coefficients are 0.00567, 0.0000702, and 0.04441, respectively. The multivariable Wald

test statistic is also employed to test the whole model significance, obtaining a final p value

of 0.00007354. These results show that our proposed Model B has a significant relationship

with the selected predictors (Hosmer Jr et al. 2013). Therefore, our proposed model is

considered reliable in the prediction work, so that we could consider Model B as the

optimal classifier for rock burst prediction, due to its simplicity of use (or its small

requirements for input parameters), to its goodness of fit and to its low error rate and

unbiased predictions, which provide a better predictive ability than previous empirical

methods.

Finally, it is important to remind readers that the trained parameters shown in the model

presented in Eq. (12) cannot be considered as the final solution to the problem of rock burst

prediction. The reason is that, as more case histories become available in the future, the

database should be extended and the classifier should be updated so that better models can

be developed. Similarly, the collected database has limits that affect the applicability of the

Table 12 Comparison of error rates with four different empirical methods and with the logistic regression
classifier of Model B with all data and with cross-validation

Methods Unavailable
cases

Available
cases

Error rate
(%)

Stress coefficient (Russenes 1974) 15 84 10.7

Stress coefficient (Wang et al. 1998) 15 84 17.9

Rock brittleness coefficient (Wang et al. 1998) 11 88 22.7

Elastic energy index (Kidybiński 1981; Wang et al.
1998)

0 99 13.1

Model B with all data 0 99 6.1

Model B with cross-validation 0 99 9.1
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proposed model. For instance, the values of H in the database range between 100 m and

1140 m, and the use of the classifier for prediction should also be confined to such limits.

6 Conclusions

We present a novel logistic regression classifier for long-term prediction of rock burst. It is

based on simple input data that are commonly available at the early stages of design of

civil or mining underground structures. Its main difference with traditional alternative

methods is that results are computed probabilistically; hence, they can be naturally

incorporated into risk analyses. Five parameters are considered: two are ‘‘environmental’’

or ‘‘non intrinsic’’ parameters (the depth of the excavated underground facility, H; and the

maximum tangential stress, MTS); and three are ‘‘rock intrinsic’’ parameters (the elastic

energy index, Wet; the uniaxial compressive strength, UCS; and the uniaxial tensile

strength, UTS).

Several combinations of two and three parameter models were trained and tested using a

database compiled with 135 case histories, and they were further validated using goodness-

of-fit tests and nine-fold cross-validation. Results suggest that the classifier in the H–Wet–

UCS (Model B) space should be preferentially employed in practice, as it shows signifi-

cantly better goodness of fit and predictive performance (which is probably adequate for

practice). In addition, the proposed model improves previously available methods, because

it produces a reduced number of misclassification cases, and because it provides proba-

bilistic boundaries to estimate the probability of rock burst.

Finally, the reader should be reminded that the proposed method is only an empirical

solution to a complex problem, and that the classifier has been trained using a limited

database, so that it should not be used outside such range of data. Similarly, this method is

only an additional item within a wider ‘‘toolbox’’ of methods employed to deal with rock

burst hazards, such as numerical simulation, field testing, and seismic monitoring (see, e.g.,

Sun et al. 2007; Patynska and Kabiesz 2009; Fan et al. 2012).
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