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Abstract Using data for 30 provincial panels in China from the period 1997–2014, this

study analyzes the impact of multi-dimensional industrial structures and technological

progress on carbon emissions in the STIRPAT framework. A spatial autocorrelation test

demonstrated that there were significant positive global spatial correlations and local

spatial agglomerations among the regions that were assessed. The dynamic spatial

regression results show that industrial structure rationalization, industrial structural

transformation and industrial structural upgrading significantly reduced carbon emissions.

Industrial structural transformation provided the greatest contribution to carbon emissions.

Technological progress was also conducive to reducing carbon emissions. Furthermore,

efficiency improvements and technological innovation reduced carbon emissions, and

efficiency improvements played a relatively greater role. There was an inverted U-shaped

relationship between regional affluence and carbon emissions. The energy consumption

structure, population and urbanization had significantly positive effects on carbon dioxide

emissions, but the impact of foreign direct investments on carbon reduction was

insignificant. Finally, some policy recommendations are given.

Keywords Industrial structure � Technological progress � Carbon emissions � China

1 Introduction

In industrialization processes, extensive patterns of economic development have caused huge

amounts of energy consumption and serious environmental problems. Because economic

development has led to sharp increases in carbon emissions, China has surpassed the United

States to become the largest carbon emitter in the world and is facing tremendous pressure to

reduce carbon emissions. In 2009, the Chinese government announced that by 2020 the
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national carbon emissions per unit of gross domestic product will be reduced by 40–45%

compared with that in 2005. In the ‘‘Paris Climate Agreement’’, China committed that carbon

emissions will reach their peak in China by the year 2030. Trends in gross domestic product,

total energy consumption and carbon emissions in China from 1997 to 2014 are shown in

Fig. 1. From Fig. 1, we find that the economic growth rate is less than that of carbon emis-

sions. Energy shortages and environmental problems are increasingly severe, and energy

conservation and carbon reduction have therefore become extremely urgent issues (Stigson

et al. 2009). How to simultaneously achieve sustainable economic growth and carbon

reduction goals is the most important issue we face (Fang et al. 2013). In fact, the Chinese

government has realized the importance of energy conservation and carbon reduction for

sustainable development and taken a number of measures to reduce emissions.

To effectively achieve carbon emission reduction targets, we need to analyze some key

influencing carbon emissions factors, which are various. Studies have shown that economic

development, technological progress, energy structure, international trade, urbanization and

geographical features have an impact on carbon emissions (Kang et al. 2016; Xu and Lin

2015; Li et al. 2012; Wang et al. 2016; Kang et al. 2016; Ozbugday and Erbas 2015). The

existing works focus on industrial structure and technological progress. However, the existing

analyses of industrial structure or technological progress are not profound and are thus unable

to reveal deep impacts on carbon emissions. In this paper, we report on a multifaceted analysis

of industrial structure and technological progress to more deeply analyze their impacts on

carbon emissions. Research has shown that the IPAT model is a suitable method for studying

carbon emissions (Sadorsky 2013). Carbon emissions have a spatial spillover effect (Yang

et al. 2014). Therefore, we incorporated the multi-dimensional industrial structure and

technological progress into a dynamic spatial panel model under the STIRPAT framework.

We analyzed the influence of industrial restructuring and the paths of technological progress

on carbon emissions to provide a reference for carbon emission reductions.

2 Literature review

Due to global climate change, carbon emissions have been an issue of great concern to the

public. Many studies have addressed the factors that influence carbon emissions. In gen-

eral, the discussions have primarily adopted the perspectives of industrial structure

adjustment and technological progress.
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1. Industrial structure adjustment

Grossman and Krueger (1995) found that economic development influences the environment

through industrial structure. Carbon emissions are mainly attributed to fossil fuel combustion.

Secondary industries are a major source of carbon emissions (Cole et al. 2008; Fisher-Vanden

et al. 2006; Talukdar and Meisner 2001). The levels of energy consumption in different

sectors are quite different. Changes in industrial structure affect carbon emissions. These

especially include changes between industries and services as well as internal structural

changes in industries (Xu et al. 2014). Some scholars have analyzed the impact of industrial

structures on carbon emissions using index decomposition models (Ang 2005; Xu et al. 2015;

Li and Wei 2015; Hoekstra and van den Bergh 2003) and input–output models (Xiang et al.

2013; Liu et al. 2015a, b; Chi et al. 2014). Alternatively, some scholars have used proxy

variables to analyze the impacts of industrial structures on carbon emissions, including the

added value proportions of secondary industries (Liu et al. 2015c) and services and industrial

ratios (Zhou et al. 2013) and proportion of service to gross domestic product (Li and Lin

2016). The existing studies’ conclusions differ from each other to a great degree. Some

researchers argue that industrial structural adjustments would result in increasing carbon

emissions because of the dominant positions of high-carbon industries in the industrial

revolution (Geng et al. 2013; Zhang and Da 2015). Others believe that carbon emissions

reduction is attributable to adjustments in industrial structures to low-carbon industries and

services (Tian et al. 2014). The conclusions differ partly because the regions, time periods,

variables, selected data and empirical methods differ in the available literature.

2. Technological progress

Technological progress affects carbon emissions by increasing economic output or

reducing energy consumption. Technological progress is an effective way to reduce carbon

emissions and promote economic development (Long et al. 2016; Hua and Wang 2015).

The following methods are used to measure technological progress. The first method is to

select proxy variables based on the perspective of research and development, for example,

the number of patents, scientific personnel and R&D expenditures (Yang et al. 2014; Wang

et al. 2011; Ang 2009; Liu et al. 2015c). In the second method, total factor productivity

(TFP) is used as a proxy variable of generalized technological progress using data

envelopment analysis (DEA) or stochastic frontier analysis (SFA) (Wu et al. 2016; Fei and

Lin 2016; Yu et al. 2016; Weng et al. 2015; Guesmi et al. 2015). Comparing the above

methods, we find that the use of R&D to measure technological progress is insufficiently

general, whereas TFP can more comprehensively generalize technological progress.

Research and development is merely a factor that influences technological progress rather

than the technological progress itself. Most studies have shown that technological progress

reduces carbon emissions through energy efficiency improvements (Wang et al. 2011; Ang

2009). However, some scholars have arrived at opposite conclusions. In their opinion,

technological progress has resulted in an increase in total energy consumption and carbon

emissions due to the rebound effect (Khazzoom 1980).

The studies on the influence of industrial structure and technological progress on carbon

emissions have gained fruitful achievements. However, shortcomings remain. (1) In the

existing literature, the descriptions of industrial structures are not rich, and the studies of

industrial structure adjustment are not comprehensive. In addition, regarding carbon emissions,

industrial structure is measured mainly from the aspect of the sophistication of industrial

structures but not industrial structure rationalization. In fact, industrial structure adjustments

affect carbon emissions in a variety of ways. First, the rationalization of industrial structures can
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reduce carbon emissions. Proper factor allocations and resource flows among industries pro-

mote regional input–output efficiencies and thereby reduce carbon emissions (Chang 2015).

Second, industries can reduce carbon emissions by being transformed into the service sector.

Service industries produce less energy consumption and carbon emissions because they play a

positive role in decreasing environmental pollution (Chi et al. 2014). Third, evolution towards

low-carbon and high-tech industries can reduce carbon emissions. High-tech industries with

knowledge-intensive characteristics reduce the proportion of highly polluting and energy-

intensive industries. In high-tech industries, carbon emissions are reduced because of research,

the development of environmental technologies and the use of cleaner production equipment

(Tian et al. 2014). We therefore analyzed the impact of industrial structure on carbon emissions

from three aspects: industrial structure rationalization, industrial structural transformation and

industrial structural upgrading. (2) In existing studies, technological progress has been esti-

mated using only a single indicator and without in-depth decomposition analyses. In fact,

technological progress includes technology innovation and improvements in efficiency (Fare

et al. 1994). These factors have different carbon emissions reduction mechanisms and effects.

Efficiency improvements reduce carbon emissions by improving management efficiency, and

technological innovations reduce carbon emissions by enhancing scientific and technological

innovation capabilities (Du et al. 2014; Fan et al. 2015). Therefore, we further decomposed

technological progress into efficiency improvements and technological innovations to analyze

their impacts on carbon emissions. (3) From an empirical perspective, regression analyses are

performed using ordinary dynamic panel models or Tobit models. The spatial evolutionary

mechanisms of carbon emissions are not truly reflected due to neglecting the spatial spillover

effect on carbon emissions and the spatial heterogeneities of industrial structures and techno-

logical progress among regions. We therefore used a dynamic spatial panel model that was

significantly superior for analyzing the impacts of multi-dimensional industrial structures and

technological progress on regional carbon emissions under environmental constraints. The

model’s regression results became more accurate and reliable by taking into account the spatial

spillover effects on carbon emissions.

Based on existing research, we used the dynamic spatial panel model to analyze the

influences of industrial structural adjustments and technological progress on carbon emis-

sions to find the critical path to realizing the goal—maintaining growth and reducing carbon

emissions. The rest of the study is organized as follows. Section 3 describes the research

models and data employed in our study. Section 4 analyzes the spatial autocorrelations and

spatial heterogeneities of the carbon emissions. Section 5 provides an analysis and discussion

of the results. Section 6 concludes the study and provides policy recommendations.

3 Model, variables and data

3.1 Variables and data

3.1.1 CO2 emissions

CO2 emissions can be calculated using the following formula:

CE ¼
X

k

Ek � ek � ck � ok �
44

12
;
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where Ek represents the consumption of fuel k, ek is the net heat value of fuel k, ck is the

carbon emission factor of fuel k, and ok is the carbon oxidation rate of fuel k. According to

the ‘‘China Energy Statistical Yearbook,’’ there are eight fuel categories: raw coal, coke,

crude oil, gasoline, diesel oil, kerosene, fuel oil and natural gas (see Appendix Table 4).

The net heat values were taken from the ‘‘China Energy Statistical Yearbook’’, and the

carbon emission factors and carbon oxidation rates are from the IPCC.

3.1.2 Industrial structure

Industrial structure adjustment is an important factor that affects carbon emissions. We

analyze the impacts of changes in industrial structures on carbon emissions from three

dimensions. Industrial structure rationalization (ISR) refers to the collaborative develop-

ment capabilities of different industries and the efficiencies of resource allocation among

industries. ISR results in higher input–output efficiencies and lower carbon emissions. The

Theil index (1967) is often used as a measure of the income gaps (or inequalities) among

individuals or regions. Following the study of Gan et al. (2011), in this paper, the Theil

index is used to measure the level of industrial structure rationalization and is calculated by

ISR ¼
Xn

i¼1

Yi

Y

� �
ln

Yi

Li

�
Y

L

� �
;

where ISR is the rationalization level of the industrial structure; Y, L, and n, respectively,

represent the gross domestic product, total employment and total number of industrial

sectors; i is the type of industry; and Yi and Li are the added value and employment for

industry i, respectively. If the labor force allocations among the industry sectors are

rational, ISR ¼ 0, which indicates that the economic system is in equilibrium and that the

industrial structure is rational. If ISR 6¼ 0, the economic system deviates from the equi-

librium state, and the industrial structure is irrational. The larger the value of ISR, the more

irrational the industrial structure and the more likely the economic development will

deviate from equilibrium.

Industrial structural transformation (IST): According to the Petty-Clark’s Law (1940),

economic activities are divided into primary industries (including farming, animal hus-

bandry, hunting, fisheries and forestry), secondary industries (including mining, manu-

facturing, supply, and construction) and tertiary industries (services). As an economy

develops, the relative proportion of the national income to the labor force of the first

industry gradually decreases, whereas the corresponding relative proportion of second

industries increases. As the economy develops yet more, the relative proportion of the

national income to the labor force of tertiary industries begins to rise. The difference in

carbon emissions from secondary industry and services is significant. When industries are

transformed into the services sector, carbon emissions are reduced. The experiences of

developed countries and regions suggest that industries tend to restructure towards a ser-

vice-oriented economy. The ratio of tertiary industrial output to secondary industrial output

is used to reflect the level of industrial structural transformation.

Industrial structural upgrading (ISU): Considering all industries, the secondary indus-

tries accounted for the largest proportion of carbon emissions in China (Geng et al. 2013).

According to the definition of high-tech industry from China’s high-tech industry statistical

yearbook, high-tech industries include pharmaceutical manufacturing, aviation, spacecraft

and equipment manufacturing, electronics and communications equipment manufacturing,

computer and office equipment manufacturing, medical equipment and instrumentation
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manufacturing, and information chemical manufacturing. Regarding secondary industries,

high-tech industries produce more added value while discharging relatively less carbon

dioxide. When industries upgrade from low to high technology levels, carbon emissions are

reduced. If the proportion of high-tech secondary industries increases, it indicates that the

secondary industries are upgrading in a low-carbon and high-tech direction. The proportion

of high-tech to secondary industries is used to measure the level of secondary industries’

structural upgrading.

3.1.3 Technological progress

In this paper, environmental total factor productivity (ETFP) is used to characterize the level

of technological progress (Chung and Heshmati 2015). According to Tone (2001) and

Fukuyama and Weber (2009), we define slack-based directional distance functions with

constrained resources and establish a production possibility set comprising the desired and

undesirable outputs. Furthermore, we adopt the Malmquist–Luenberger productivity index

proposed by Chung et al. (1997) to calculate ETFP. On that basis, we decompose techno-

logical progress into efficiency improvements and technology innovations. Efficiency

improvements, which are mainly brought about by management innovations and institutional

reforms, involve the movement of decision units to the production frontier but not the

movement of the production frontier. Technology innovation, which includes scientific and

technological inventions and patents can capture the movement of the production frontier.

Supposing that each region is a production decision unit. According to Tone (2001) and

Fukuyama and Weber (2009), the slacked-based measure directional distance function

based on the resource environment is defined as

S
!t

cðxt;k
0
; yt;k

0
; bt;k

0
; gx; gy; gbÞ ¼ max

sx;sy;sb

1
N

PN
n¼1

sxn
gxn
þ 1

MþI

PM
m¼1

s
y
m

g
y
m
þ
PI

i¼1

sbi
gb
i

h i

2

s:t:
XK

k¼1

ztkx
t
kn þ sxn ¼ xtk0n; 8n;

XK

k¼1

ztky
t
km � sym ¼ ytk0m; 8m;

XK

k¼1

ztkb
t
ki þ sbi ¼ btk0i; 8i;

ztk � 0; 8k; sxn � 0; 8n; sym � 0; 8m; sbi � 0; 8i;

where the vector ðxt;k0 ; yt;k0 ; bt;k0 Þ is the input, desired output and undesired output at time t

in region k0, ðgx; gy; gbÞ is the direction vector of the input compression, expansion of

desired outputs and reduction of undesired outputs, which has a positive value. ðsxn; sym ; sbi Þ
represents the input and output slack variables.

Using the directional distance function, the environment Malmquist–Luenberger (ML)

productivity can be constructed. According to Chung et al. (1997), from period t to period

t ? 1, the ML productivity index of ETFP can be obtained using a four directional distance

function:

ML ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ S

!t

c xt;k
0 ; yt;k0 ; bt;k0 ; gx; gy; gbð Þ

1 þ S
!t

c xtþ1;k0 ; ytþ1;k0 ; btþ1;k0 ; gx; gy; gbð Þ
� 1 þ S

!tþ1

c xt;k
0 ; yt;k0 ; bt;k0 ; gx; gy; gbð Þ

1 þ S
!tþ1

c xtþ1;k0 ; ytþ1;k0 ; btþ1;k0 ; gx; gy; gbð Þ

vuuut :
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Furthermore, technical progress can be decomposed into a pure technical progress index

(TI) and efficiency improvement index (EI):

ML ¼ TI � EI;

TI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ S

!tþ1

c xt;k
0 ; yt;k0 ; bt;k0 ; gx; gy; gbð Þ

1 þ S
!t

c xt;k
0 ; yt;k0 ; bt;k0 ; gx; gy; gbð Þ

� 1 þ S
!tþ1

c xtþ1;k0 ; ytþ1;k0 ; btþ1;k0 ; gx; gy; gbð Þ
1 þ S

!t

c xtþ1;k0 ; ytþ1;k0 ; btþ1;k0 ; gx; gy; gbð Þ

vuut ;

and

EI ¼
1 þ S

!t

c xt;k
0
; yt;k

0
; bt;k

0
; gx; gy; gb

� �

1 þ S
!tþ1

c xtþ1;k0 ; ytþ1;k0 ; btþ1;k0 ; gx; gy; gbð Þ
:

We used the MATLAB 2010b to calculate ETFP and its decomposition. The relevant

input and output indicators and data processing for the above formulas are now described.

Labor input is the employment figures at the end of the year. Energy inputs are the annual

energy consumptions in each region. We converted the consumption of coal, coke, crude

oil, gasoline, diesel oil, kerosene, fuel oil and natural gas to ‘‘tons standard coal’’. In this

paper, capital stock represents capital investment. We estimated capital stock using the

perpetual inventory method and set the depreciation rate to 10.96%. Desired output is the

gross regional product (GRP), which was adjusted to constant 1997 prices according to

each provincial GRP deflator. Undesired output is CO2 emissions.

3.1.4 Control variables

In addition to the above factors, energy consumption structure, foreign direct investment

and urbanization level affect regional carbon emissions. (1) Energy consumption structure

(ES). Energy consumption structure has a significant impact on carbon emissions because

the carbon emissions of coal, coke, crude oil, gasoline, diesel oil, kerosene, fuel oil and

natural gas are quite different. Compared with other energy sources, the carbon intensity of

coal is greater. In primary energy structures, dirty coal accounts for a high proportion.

Although the use of other energy increases continuously during recent years, the proportion

of coal consumption in China’s primary energy structure is still very high. The change of

the coal-dominated energy structure is the mean point to reduce carbon emissions (Lin

et al. 2010). Therefore, in this paper, the proportion of coal consumption to total energy

consumption is used to characterize the structure of energy consumption. (2) Foreign direct

investment (FDI). Compared with domestic enterprises, foreign enterprises have more

advanced technologies that can directly reduce carbon emissions. The ratio of the actual

use of foreign investment to gross domestic product is used to measure foreign direct

investment. (3) Urbanization level (UL). In the process of urbanization, huge energy

consumption results in large amounts of carbon emissions. Urbanization level is the pro-

portion of the non-agricultural population to the regional total population. (4) Affluence is

represented by per capita gross domestic product of the regions. (5) Population size (P) is

the total population of each region.

3.1.5 Data sources

In view of data availability and effectiveness, we selected relevant data for 30 provinces in

China from 1997 to 2014. Tibet was eliminated due to a lack of data. The data were mainly
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taken from the ‘‘China Statistical Yearbook’’ (1998–2015), ‘‘China Energy Statistical

Yearbook’’ (1998–2015), ‘‘China Statistical Yearbook on High Technology Industry’’

(1998–2015) and ‘‘China Population Statistics Yearbook’’ (1998–2015).

3.2 Model specification

The IPAT framework proposed by Ehrlich and Holdren (1971) is an important approach to

analyzing the impacts of population, affluence and technology on the environment. Dietz

and Rosa (1997) actually reformulated the IPAT equation as Stochastic Impacts by

regression on population, affluence and technology (STIRPAT). They analyzed the impacts

of population, affluence and technology on CO2 emissions for the first time and established

the values and status of the IPAT model for the analysis of global climate change prob-

lems. Compared with the IPAT model, the STIRPAT model has a good additive property

and can capture the complexities and interactions among variables. In recent years, the

STIRPAT model has been widely used and extended in analyses of carbon emissions

(Shahbaz et al. 2015; Alegrı́a et al. 2016; Noorpoor and Kudahi 2015).

Dietz and Rosa investigated the environmental impact I from a population of size P,

affluence A and technological progress T using the STIRPAT model. For region i, the

environmental impact I is

Ii ¼ aPb
i A

c
i T

d
i ei; ð1Þ

where b, c, and d are the elasticities to environmental impacts from a population of size P,

affluence A and technological progress T. a is a parameter, and ei is the error term. Taking

the logarithm of Eq. (1), we obtain

lnðIiÞ ¼ a0 þ b lnðPiÞ þ c lnðAiÞ þ d lnðTiÞ þ zi; ð2Þ

where a0 and zi are the logarithms of a and ei, respectively, and b, c, and d reflect the

driving levels of the impacts on environment I due to a population of size P, affluence

A and technological progress T. Because of the additive property, this model can be

expanded by adding more variables to analyze the impact of these factors on the envi-

ronment. In this paper, this model is used to analyze the impacts of industrial structure and

technological progress on regional carbon emissions. Because there may be an inverted

U-shaped relationship (EKC) between per capita income and carbon emissions (Jalil and

Mahmud 2009), we introduce quadratic terms of per capita income into the model.

Therefore, Eq. (2) can be extended to Eq. (3):

ln CEit ¼ a0 þ a1 ln ISRit þ a2 ln ISTit þ a3 ln ISUit þ a4 ln MLit þ a5 ln GDPit

þ a6ðln GDPitÞ2 þ a7 ln Pit þ a8 ln ESit þ a9 ln FDIit þ a10 ln ULit þ eit;
ð3Þ

where i and t represent the region and year. CE represents carbon emissions. ISR is

industrial structure rationalization. IST is industrial structural transformation. ISU is

industrial structural upgrading. ML is technological progress (we substitute EI and TI for

ML, wherein EI denotes efficiency improvement, and TI is technology innovation). P is the

total population. GDP is per capita gross domestic product. ES is energy consumption

structure. FDI represents the foreign investment level. UL is the level of urbanization. a is

a coefficient.

The regression analysis is performed in three steps. For the first step, without consid-

ering the spatial relationships among the variables, an ordinary dynamic panel model is
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used for the regression analysis. The regression equation is shown in Eq. (4), where s is the

regression coefficient of the lagged carbon emission.

ln CEit ¼ a0 þ s ln CEiðt�1Þ þ a1 ln ISRit þ a2 ln ISTit þ a3 ln ISUit þ a4 ln MLit þ a5 ln GDPit

þ a6ðln GDPitÞ2 þ a7 ln Pit þ a8 ln ESit þ a9 ln FDIit þ a10 ln ULit þ eit

ð4Þ

Anselin (1995) found that each region might be variously affected by its adjacent

regions. Spatial econometrics can identify the spatial evolution of regulations and key

influencing factors of CO2 emissions. In comparison with traditional econometric models,

spatial econometric models reduce estimation error. Therefore, for the second step, a static

spatial panel model will be used to analyze the impact of industrial structure and tech-

nological progress on regional carbon emissions. Static spatial panel models include spatial

autoregressive models (SAR) and spatial error models (SEM). Equations (5) and (6) are

the SAR and SEM models:

ln CEit ¼ q
XN

j¼1

Wij ln CEit þ a1 ln ISRit þ a2 ln ISTit þ a3 ln ISUit þ a4 ln MLit þ a5 ln GDPit

þ a6ðln GDPitÞ2 þ a7 ln Pit þ a8 ln ESit þ a9 ln FDIit þ a10 ln ULit þ bi þ vt þ eit

ð5Þ

lnCEit¼a1 lnISRitþa2 lnISTitþa3 lnISUitþa4 lnMLitþa5 lnGDPitþa6ðlnGDPitÞ2

þa7 lnPitþa8 lnESitþa9 lnFDIitþa10 lnULitþeitþbiþvtþ eit;

eit¼k
XN

j¼1

Wijeitþlit;

ð6Þ

In Eqs. (5) and (6), q and k represent regression coefficients of spatial items that reflect

the spatial spillover effect of carbon emissions. bi is a regional effect. vt is the time effect,

and eit is a random disturbance term. They represent random disturbances that have dif-

ferent dimensions. W ¼ ðWijÞ is a spatial weight matrix, which reflects the spatial rela-

tionships among the various regions. If regions i and j are adjacent, Wij ¼ 0, and if regions

i and j are not adjacent, Wij ¼ 1.

In fact, carbon emission is a dynamic process, as it is not only affected by current

factors but also lagged factors. Thus, in the third step, we use a dynamic spatial panel

model to examine the impact of industrial restructuring and technological progress on

carbon emissions. Compared with a static panel model space, a dynamic spatial panel

model has significant advantages. Estimation results are more accurate and reliable

because the model takes into account both spatial spillover effects and the dynamic

effects of carbon emissions and offers the opportunity to control for independent

variables lagged in time (Elhorst 2012). Therefore, we construct the following dynamic

spatial panel model:
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ln CEit ¼ h ln CEiðt�1Þ þ q
XN

j¼1

Wij ln CEit þ a1 ln ISRit þ a2 ln ISTit þ a3 ln ISUit

þ a4 ln MLit þ a5 ln GDPit þ a6ðln GDPitÞ2 þ a7 ln Pit þ a8 ln ESit

þ a9 ln FDIit þ a10 ln ULit þ bi þ vt þ eit

eit ¼ k
XN

j¼1

Wijeit þ lit

ð7Þ

In Eq. (7), ln CEiðt�1Þ is the lagged carbon emission in the province. h is the regression

coefficient of lagged carbon emissions. It reflects the impact of relevant factors from the

previous period to the current period.

4 Spatial autocorrelation and spatial heterogeneity of carbon emissions

4.1 Global spatial autocorrelation analysis

Economists and ecologists have realized that the spatial correlations among variables have

an important influence on regional issues (Tian et al. 2012; Krugman and Venables 1995).

A characteristic of carbon emissions is spatial correlation (Yang et al. 2014; Cheng et al.

2017). To further excavate important information and rules underlying spatial interactions,

Moran’s index (Moran’s I) is used to test the spatial autocorrelations of carbon emissions

(Dong and Liang 2014; Black et al. 2014; Zhang et al. 2016). Moran’s I is the preferred

means to test whether the characteristics or properties of the adjacent regions (provincial

carbon emissions in the paper) are dependent or not. Moran’s I includes the global auto-

correlation Moran’s I and local autocorrelation Moran’s I. The former describes the spatial

characteristics of global distributions for the entire study area, whereas the latter charac-

terizes the spatial relationship of local distributions. The global Moran’s I is defined as

I ¼ N
PN

i¼1

PN
j¼1 Wij

PN
i¼1

PN
j¼1 WijðYi � �YÞðYj � �YÞ
PN

i¼1 ðYi � �YÞ2
;

where N is the total number of provinces,Yi and Yj are the carbon emissions in provinces i

and j, �Y is the average value of all the provincial carbon emissions, and Wij is the spatial

weight matrix. We use the standard statistic Z to test the significance level of Moran’s

Index. The standardized value of the test statistic Z is

Z ¼ 1 � EðIÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðIÞ

p :

Moran’s I ranges from -1 to 1. When I[ 0, a positive spatial correlation indicates that

provinces that have similar carbon emissions cluster together. When I\ 0, a negative

spatial correlation means that provinces that have adverse carbon emissions cluster toge-

ther. When I = 0, there are no spatial correlations among provinces.

We calculated global Moran’s Index using ARCGIS10.2.2. As we can see from Table 1,

the results indicate the following spatial distribution characteristics of regional carbon

emissions in China. (1) From 1997 to 2014, the Moran’s I of the regional carbon emissions

exceeded 0 and passed the significance test at a 1% level. The spatial dependence of the
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carbon emissions was significant, and regions with similar carbon emissions had relatively

stable spatial agglomerations. (2) Between the years 1997 and 2014, Moran’s I fluctuated

but increased overall, reached a peak in 2008, and then decreased while continuing to

fluctuate, which shows that the effects due to the spatial correlation of carbon emissions in

China gradually decreased after previously increasing.

4.2 Local spatial autocorrelation analysis

To clarify the similar and contrasting clusters in the local regions, we used the local

indicators of spatial association (LISA) proposed by Anselin (1995) to measure the degree

of correlation between a region i and its adjacent regions. According to LISA, local spatial

autocorrelations can be divided into four types: High–High, High–Low, Low–High and

Low–Low. High–High indicates that a region with high carbon emissions is surrounded by

regions with high carbon emissions. High–Low means that a region with high carbon

emissions is surrounded by regions with low carbon emissions. Low–High attests that a

region with low carbon emissions is surrounded by regions with high carbon emissions.

Low–Low denotes that a region with low carbon emission is surrounded by regions with

low carbon emissions.

We used GeoDA to draw a LISA agglomeration map of regional carbon emissions in

China for 1997 and 2014 (see Fig. 2). The results show that the spatial structure of the

regional carbon emissions was stable from 1997 to 2014. The High–High agglomeration

regions mainly included eight provinces. The carbon emissions in the High–High regions

accounted for approximately 48% of the total carbon emissions. The Low–High

agglomeration regions included Beijing and Tianjin. The carbon emissions in the Low–

High regions were low because of the high level of social development as well as strict

environmental requirements. The High–Low agglomeration region was Guangdong, whose

Table 1 Moran’s I index of
regional carbon emissions from
1997 to 2014

*** Index passed the significance
test at the level of 1%

Year Moran’s I Z-score p value

1997 0.284835*** 2.834809 0.004585

1998 0.285757*** 2.84534 0.004436

1999 0.322204*** 3.16155 0.001569

2000 0.309941*** 3.056914 0.002236

2001 0.340821*** 3.336701 0.000848

2002 0.340309*** 3.35352 0.000798

2003 0.322213*** 3.190636 0.00142

2004 0.370676*** 3.611152 0.000305

2005 0.401296*** 3.909302 0.000093

2006 0.410042*** 3.991106 0.000066

2007 0.40278*** 3.939676 0.000082

2008 0.412609*** 4.035883 0.000054

2009 0.346719*** 3.491738 0.00048

2010 0.400559*** 3.929507 0.000085

2011 0.409268*** 3.985129 0.000067

2012 0.331352*** 3.57541 0.00035

2013 0.39375*** 3.847717 0.000119

2014 0.382189*** 3.7638 0.000167
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total economic output ranks first in China. It has a large amount of energy consumption and

carbon emissions. Hainan and Guangxi are Low–Low agglomeration regions that have

poor economic development and low carbon emissions.

In short, carbon emissions in China have significant global spatial autocorrelations and

spatial heterogeneity. This indicates that geographical factors have important impacts on

carbon emissions. Therefore, when analyzing carbon emissions in China, geographic

factors should be accounted for. It is feasible to perform the empirical analysis with a

spatial econometric model.

5 Results

We selected panel data for 30 provinces in China from 1997 to 2014, excluding Tibet,

whose data are seriously deficient. A total of 540 observations are considered in this paper.

Table 2 lists the descriptive statistics of the variables. Traditional regression methods

without spatial effects produce estimation errors due to spatial autocorrelations and the

spatial heterogeneity of carbon emissions. We therefore used the dynamic spatial panel

model to perform the empirical analysis. In addition, the ordinary dynamic panel model

and static spatial panel model were used to perform the comparative analysis and

robustness test.

There are two estimation methods for dynamic panel models: the difference generalized

method of moments (DIF-GMM) and the system generalized method of moments (SYS-

GMM). Compared to DIF-GMM, SYS-GMM greatly improves the effectiveness and

consistency of estimates because it corrects biases by paying attention to the extra vari-

ations in small samples. Therefore, ordinary dynamic panel and dynamic spatial panel

models use SYS-GMM to make estimates. In SYS-GMM, the lagged values of all the

explanatory variables are used as instrumental variables (Elhorst 2012). Sargan test was

used to identify the effectiveness of the instrumental variables in the SYS-GMM estima-

tion. The Arellano–Bond test statistic AR (2) was used to test whether there were residual

correlations. The SAR and SEM models were selected by comparing the corresponding

Lagrange multipliers (LM) and their robustness. A SAR model should be selected if LM-

LAG is more significant than LM-ERR and Robust-LM-LAG passes a significance test,

Fig. 2 LISA agglomeration map of regional carbon emissions in 1997 and 2014
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whereas Robust-LM-ERR does not. Otherwise, an SEM model is selected. The regressions

were conducted via Stata12.0. The estimation results are shown in Table 3. Models (1) and

(2) are ordinary dynamic panel models. Models (3) and (4) are static spatial panel models.

Models (5) and (6) are dynamic spatial panel models.

As seen from the AR (2) test results in Table 3, the ordinary dynamic panel models (1)

and (2) were valid because the residual sequence was not a second-order serial correlation.

For static spatial panel models (3) and (4), model SEM was used to make estimates

because LM-ERR was more significant than the LM-LAG, and Robust-LM-ERR passed

the significance test, whereas Robust-LM-LAG did not. As for dynamic spatial panel

models (5) and (6), firstly, model SEM was used for estimation because LM-ERR was

more significant than the LM-LAG, and Robust-LM-ERR passed the significance test,

whereas Robust-LM-LAG did not. Secondly, the AR (2) test showed that the residual

sequence was not a second-order serial correlation, and finally the Sargan test showed that

instrumental variables were valid. Therefore, model SEM was used to estimate the static

and dynamic spatial panel models. The ordinary dynamic panel and dynamic spatial panel

models were estimated using SYS-GMM.

From the regression results in Table 3, we can see that the coefficients of the

explanatory variable basically had the same sign, although their values and significance

levels differed. This indicates that the results of the regression model were robust. The

regression results of the ordinary dynamic panel and dynamic spatial panel models were

significantly different. The coefficient of the lagged term in the dynamic spatial panel

model was higher than that for the ordinary dynamic panel model. The coefficient of the

spatial term in the dynamic spatial panel model was significant. The significance of

industrial rationalization, industrial structural transformation, industrial upgrading and

urbanization in the dynamic spatial panel model was superior to that in ordinary dynamic

panel model. This indicates that the regional carbon emissions were influenced by the

surrounding regions through the spatial spillover effect. The ordinary dynamic panel model

ignores spatial spillover effects and increases estimation error. After adding the carbon

emission spatial term, its coefficient was positive and passed the significance test at the 1%

level. This fully verifies the spatial characteristics of the carbon emissions. The regression

results of the static spatial panel and dynamic spatial panel models were quite different.

Table 2 Descriptive statistics of
variables

Variables Average value SD Maximum Minimum

ln CE 9.89067 0.89119 11.76551 6.56893

ln ML 0.00150 0.02139 0.15307 -0.10939

ln EI 0.00364 0.02833 0.22783 -0.20431

ln TI -0.00214 0.01693 0.12876 -0.09210

ln ISR 1.65264 0.84937 6.43639 0.02644

ln IST -0.18091 0.30283 1.23644 -0.70446

ln ISU -2.90521 1.12051 -0.64734 -6.09605

ln GDP 0.33249 0.71466 2.00858 -1.44729

(ln GDP)2 0.62029 0.76813 4.03437 0.00001

ln P 1.22770 0.76624 2.37248 -0.68717

ln ES -0.92766 0.34953 -0.04214 -2.20522

ln FDI -3.98704 1.01718 -1.85792 -7.28957

ln UL -0.80168 0.31876 -0.10981 -1.51914
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The coefficient of the spatial term in the dynamic spatial panel model was far less than that

of the static spatial panel model because carbon emission is a continuous dynamic process

and technological level and human capital in the previous period influence production

Table 3 Estimation results affecting CO2 emissions

Ordinary dynamic panel
model

Static spatial panel
model

Dynamic spatial panel
model

Model (1) Model (2) Model (3) Model (4) Model (5) Model (6)

ln ML -0.838**
[-1.98]

-0.477*
[-1.87]

-1.009***
[-7.24]

ln EI -0.953***
[-2.26]

-0.477*
[-1.87]

-1.005***
[-7.16]

ln TI -0.849**
[-2.06]

-0.047
[-0.11]

-0.935***
[-3.91]

ln ISR 0.045**
[2.34]

0.045**
[2.33]

0.026**
[2.29]

0.028**
[2.44]

0.025***
[3.36]

0.025***
[3.34]

ln IST -0.087
[-1.12]

-0.093
[-1.22]

-0.400***
[-9.47]

-0.399***
[-9.44]

-.079**
[-2.15]

-0.084**
[-2.27]

ln ISU -0.055
[-1.53]

-0.058
[-1.62]

-0.059***
[-2.60]

-0.059***
[-2.67]

-0.032**
[-1.98]

-0.033**
[-2.00]

ln GDP 0.333***
[3.10]

0.339***
[3.16]

0.579***
[17.27]

0.578**
[17.25]

0.270***
[6.14]

0.275***
[6.26]

(ln GDP)2 -0.160***
[-3.94]

-0.161***
[-3.96]

-0.092***
[-6.55]

-0.093***
[-6.67]

-0.102***
[-9.38]

-0.104***
[-9.52]

ln P 0.250***
[3.00]

0.259***
[3.13]

1.215***
[10.29]

1.220***
[10.35]

0.531***
[5.32]

0.546***
[5.49]

ln ES 0.446***
[4.53]

0.449***
[4.54]

0.740***
[14.44]

0.741***
[14.47]

0.334***
[8.85]

0.339***
[8.98]

ln FDI -0.008
[-0.58]

-0.009
[-0.63]

-0.002
[-0.18]

-0.004
[-0.29]

-0.009
[-0.96]

-0. 010
[-1.36]

ln UL 0.170
[0.80]

0.162
[0.75]

0.586***
[5.69]

0.588***
[5.71]

0. 216**
[2.09]

0.236**
[2.29]

s (dynamic factors) 0.670***
[8.17]

0.663***
[8.19]

0.686***
[19.14]

0.681***
[18.97]

q (spatial factors) 0.073***
[4.12]

0.073***
[4.12]

0.029***
[5.18]

0.029***
[5.08]

Adj-R2 0.985 0.975

Number of samples 480 480 510 510 480 480

LM-Lag test [0.011] [0.010] [0.155] [0.167]

Robust LM-Lag test [0.617] [0.702] [0.322] [0.334]

LM-Error test [0.001] [0.001] [0. 001] [0.001]

Robust LM-error test [0.034] [0.048] [0.003] [0.004]

AR(2) test [0.471] [0.363] [0.396] [0.298]

Sargan over-
identification test

[0.997] [0.997] [0.999] [0.999]

The values in brackets are the T statistics of the corresponding parameters

* Statistical significance at 10% level; ** Statistical significance at 5% level; *** Statistical significance at
1% level
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activities and carbon emissions in the current period. The static panel model spatially

neglects dynamic effects and results in estimation errors. The coefficient of the lagged term

was positive and passed the significance test at the 1% level. This fully verifies the

dynamic characteristics of the carbon emissions. After a comprehensive consideration of

the ordinary dynamic panel model, static spatial panel model and dynamic spatial panel

model, we chose the dynamic spatial panel model as the final explanatory model.

From the regression results of dynamic spatial panel models (5) and (6), we found that

industrial structure had a significant effect on carbon emissions. The regression coefficient

of the industrial structure rationalization was significantly positive. Carbons emissions

decreased with increasing industrial structural rationality. The regression coefficients for

industrial structural transformation and industrial structural upgrading were both signifi-

cantly negative. Carbon emissions decreased with increasing levels of industrial structural

transformation and industrial structural upgrading. The absolute value of the coefficient of

industrial structural transformation was the highest of the three coefficients. This shows

that three types of industrial structure adjustments are conducive to reducing carbon

emissions. The contribution of industrial structural transformation on carbon emissions

reduction was greatest. Industrial structure reduces carbon emissions mainly because of the

following three aspects. (1) Industrial structure rationalization. Regional productivity

increases continuously because factors and resources flow from low productivity sectors to

higher productivity sectors. Improvements in resource allocation efficiencies among

industries cause improvements in regional input–output efficiencies and decreasing

regional carbon emissions. (2) Industrial structural transformation. Tertiary industries,

which are low-input and high-output industries, consume less energy and release less

carbon dioxide. Therefore, vigorously developing modern service industries and gradually

optimizing service sector structures can reduce the sector’s proportion to a certain degree.

Industrial structural transformation has a positive effect on reducing environmental pol-

lution. (3) Industrial structural upgrading. Upgrading primarily means the optimization of

interior secondary industry structures. Developing high-tech industries can increase the

proportion of technology-intensive and knowledge-intensive industries and promote

technological progress. High-tech industries can also reduce the proportion of highly

polluting, high-energy consumption industries and encourage investment in environmental

technologies and clean production equipment. All of the above can control the generation

and emission of carbon dioxide at the source.

The coefficient of technological progress was significantly negative. Carbon emissions

decreased with increasing levels of technological progress. The coefficients of technology

innovation and efficiency improvement were both significantly negative. In addition, the

coefficient of efficiency improvement was less than the coefficient of technology inno-

vation. This suggests that technological progress is conducive to carbon emission reduction

in China. In the process of carbon emission reductions under technological progress,

improving efficiencies and technological innovations have played important roles, among

which improvements in efficiency have made greater contributions than have technology

innovations. Improvements in efficiency causes decision-making units to move towards the

technology frontier through continuous improvements in the abilities of technology

applications and enterprise management levels. Efficiency improvements reduce carbon

emissions and increase economic output by reducing energy consumption and production

costs. Technological innovation causes the technology frontier to move and reduces carbon

emissions by improving production techniques, energy-conserving techniques and carbon-

reduction technologies.
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The coefficient of per capita gross domestic product was significantly positive, whereas

the coefficient of quadratic per capita gross domestic product was significantly negative.

There is therefore an inverted U-shaped relationship between affluence and carbon emis-

sions. Carbon emissions are low at lower per capita incomes. Carbon emissions increase

and ecological environments deteriorate with increasing per capita income. When per

capita income reaches a certain threshold, carbon emissions peak. Beyond the threshold,

carbon emissions decrease and ecological environments improve with increasing per capita

income. Energy consumption structure has a significantly positive impact on carbon

emissions. This indicates that decreases in coal consumption ratios are beneficial to carbon

emission reduction, which is mainly because carbon emissions per unit of output from coal

are higher when compared with those of oil, electricity and natural gas. Energy con-

sumption structural transformation, which was coal-dominated in the previous period, is

therefore an important way to reduce carbon emissions. Population growth leads to

increasing carbon emissions. Urbanization worsens the carbon emissions problem, showing

that urbanization in China results in large amounts of carbon emissions because of an

extensive growth mode based on high investments and emissions. Foreign direct invest-

ment has a negative impact on carbon emissions, but the impact is insignificant. This may

be the reason why foreign direct investment businesses in China still focus on labor-

intensive and resource-intensive industries such as low-tech processing, assembly, and

manufacturing. Foreign direct investment does not play an important role in carbon

emissions reduction because it does not bring obvious knowledge and technology

spillovers.

6 Conclusions and implications

In this research, a dynamic spatial panel model was used to analyze the impacts of

industrial restructuring and technological progress on carbon emissions from multiple

perspectives. The conclusions confirm that carbon emissions have significant global spatial

autocorrelations and heterogeneities. Shandong, Hebei, Liaoning, Henan, Shaanxi, Shanxi,

Anhui, and Jiangsu are high carbon emission agglomeration regions. Carbon emissions in

those regions account for approximately 48% of total carbon emissions. Industrial structure

rationalization, industrial structural transformation and industrial structural upgrading

reduce carbon emissions, and industrial structural transformation makes the greatest

contribution to carbon emission reductions. Efficiency improvements and technological

innovation can reduce carbon emissions, and efficiency improvements play a relatively

greater role than technological innovations. There is an inverted U-shaped relationship

between affluence and carbon emissions. Energy consumption structure, population and

urbanization have significant positive influences on carbon emissions. Foreign direct

investment has a negative impact on carbon emissions, but the impact is not significant.

The following policy recommendations are based on the above conclusions.

1. Carbon emissions should be reduced by industrial structural transformation. It is

advised that effective policies be implemented to encourage the development of a

modern service industry and to limit the excessive development of secondary

industries with high energy consumptions. For example, services can be expanded

through taxes and subsidies. Energy conservation and emission reductions for

secondary industries should be promoted through carbon tariffs and emission quotas.

The opening-up of the service industry should be expanded, and development
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environment of the service industry should be optimized. Producer services should be

developed into specialized and more advanced value chains. Consumer services should

be converted to fine processing and focus on superior quality. Policies should

comprehensively promote the transformation of difficult regions that suffer resource

depletion, industrial decline and serious ecological degradation. It is advisable to

promote innovations and transformations in resource-based regions and to form a new

pattern of multi-point support and diversified development.

2. Carbon emissions should be reduced by upgrading industrial structures. Policies

should change the patterns of industry in industrial areas to develop new industri-

alization paths. Policies should encourage the development of low-carbon, environ-

mentally friendly and high-tech industries to achieve industrial upgrading and

efficiency improvements. The excessive growth of energy-intensive and carbon-

intensive sectors should be restricted, and backward production capacities should also

be phased out in manufacturing industries. The development of high-tech industries,

including information, electronics and equipment manufacturing, should be acceler-

ated to increase their percentage. Steel, nonferrous metals, coal, electricity, oil,

petrochemicals, chemicals, building materials and other carbon-intensive industries

should also be adjusted.

3. Carbon emissions should be reduced through industrial structure rationalization.

Policies should make industry structures more reasonable and avoid low-level

repetitive construction and disorderly competition while considering environmental

capacity, natural resources, economic base, market demands, and location advantages

in different regions. It is advised to perfect exit mechanisms for excess capacity

industries and guide the rational distribution and ordered transference of industries.

The rationalized development of industrial structures should be promoted by

optimizing allocations of production factors and resource mobility among industries

to reduce carbon emissions.

4. Carbon emissions should be reduced through efficiency improvements. Enterprises

should establish scientific management systems to improve information levels and

operational efficiencies. Energy management systems and online carbon emission

monitoring systems should be constructed to strengthen the management of energy

conservation and emission reductions. Governments should encourage enterprises to

carry out integrated and imitative innovations to constantly improve energy

efficiencies and reduce carbon emissions.

5. Carbon emissions should be reduced through technological innovation. Low-carbon

technologies and the manufacturing capacities of environmentally friendly equipment

should be improved through development, demonstration and promotion. Policies

should encourage R&D technologies for clean, renewable energy and exploration

technologies for natural gas, coal bed methane and shale gas. For energy structures, the

proportion of renewable and newly emerging energy—winds, solar, hydro, nuclear,

biomass, and geothermal—should be continuously improved, and the proportion of

fossil fuel consumption should be reduced.
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Appendix

See Table 4.
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