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Abstract Technological advancement plays a crucial role in CO2 emissions mitigation and

has attracted great attention around the world. A multitude of literatures mainly focused on

single technological impact on environmental issues at national level, while comprehensive

studies concerning technological factors at regional level are rare. This paper employs

environmental learning curve model to investigate the learning effects of different tech-

nological channels on CO2 emissions at the national and regional levels using panel data of

China’s 29 provinces from 1997 to 2014. The technological advancement is disaggregated

into indigenous research and development (R&D), foreign technology import and tech-

nological revolution. Furthermore, to comprehend the characteristics of various provinces

with regard to CO2 emissions and emission efficiency, China’s 29 provinces are divided

into four regions according to the features of ‘‘CO2 emissions-efficiency’’. Empirically

results manifest that technical renovation is the paramount driver to mitigate the national

CO2 emissions. The CO2 learning abilities of indigenous R&D in high emissions regions

are greater than those in the low ones, while boosting the investment of foreign technology

import in low emission regions has significantly positive impacts on CO2 emissions, and

the technical renovation is effective in abating CO2 emissions in all regions. The findings

not only enrich technology innovation theories, but also deserve special attention from

policymakers.
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learning curve � Regional differences � CO2 emissions
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1 Introduction

The global warming and resource restriction have raised widespread concern in the world.

As the country with the largest CO2 emission globally (Liu et al. 2014), Chinese gov-

ernment has faced enormous pressure of trimming down its emission. To ease the pressure

of emission reduction, Chinese government has pledged that by 2030, the CO2 emissions

per unit of GDP would be reduced by 60–65% compared to the level of 2005. In the

conference of China–US joint statement on climate change, China also proclaimed that its

peak for CO2 emissions would be reached and the proportion of non-fossil energy in

primary energy consumption would increase to 20% by 2030. However, economic

development is still the main priority in China. It is widely recognized that controlling CO2

emissions is especially difficult with the premise of ensuring economic growth (Wang and

Li 2016; Zhu et al. 2015; Noailly and Smeets 2015). Under such circumstance, relying on

technological advancement is always the pillar of China’s climate change mitigation

strategy (Yuan et al. 2016). Technological advancement is a primary concern in curbing

CO2 emissions and also plays a crucial role in transforming the Chinese economy toward a

low-carbon pathway.

In light of this, there are increasing studies concerning about the effect of technological

advancement on CO2 emissions. After scrutinizing the literature, this study figures out that

the role of technological advancement in reducing emissions remains controversial. Some

studies reported that the technological advancement played an important role in reducing

CO2 emissions (Wei and Yang 2010; Wang et al. 2012; Yang et al. 2014). Researchers also

found that increasing CO2 emissions are positively associated with technological

advancement, which mainly resulted from the existence of rebound effects (Li and Lin

2015; Wang and Lu 2014). However, other researcher stated technological advancement

had no significant impact on CO2 emissions (Hu and Huang 2008; Teng 2012). The

influences of technological advancement on environmental issues are complicated and

inconsistent because of different factors, models and research samples.

Most studies in this area examined separately the impacts of various technological

channels on CO2 emissions and failed to comprehensively investigate the integrated effect

of a variety of channels which together may influence the performance of CO2 emissions

reduction. Thus, as technological advancement impose complicated and changeable

influences on CO2 emissions, a further and detailed exploration of various technological

channels for CO2 emissions reduction in a unified framework is urgently required.

To fill in this research gap, this paper pays special attention to different technological

channels influencing CO2 emissions and considers different technological channels for

technology progress in one united framework, which can further compare their relative

advantages in abating the CO2 emissions and avoid the estimation bias caused by omitted

variable. In empirical studies, technological advancement can be measured by input

indicators [R&D expenditure (Yang et al. 2014; Boeing et al. 2016)] or output indicators

[patents (Wang et al. 2012; Wu 2016), literature (Wong et al. 2014)]. But there are some

limitations in measuring technological advancement by using output indicators. Taking

patents counts, for example, not all innovations are patentable (Albino et al. 2014), and

patents counts have no clear interpretation (Pakes 1985). In this sense, this study employs

input indicators to measure technological advancement, mainly including indigenous R&D

and foreign technology import (Wei and Yang 2010; Teng 2012). Moreover, technical

renovation is regarded as another important source of technological advancement (Xu et al.

2013). Considering its significant role in improving environmental performance, it is
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expected that technical renovation can effectively trim down the CO2 emissions. However,

the impact of technical renovation on CO2 emissions is still ignored so far. In summary,

this study takes into account the role of indigenous R&D, foreign technology import and

technical renovation, the main channels of technological advancement, in mitigating the

CO2 emissions.

Furthermore, several econometric energy models have been adopted to estimate the

impact of technological advancement on CO2 emissions, which generally involve building

the STIRPAT (stochastic impacts by regression on population, affluence and technology)

model (Lin and Xie 2014; Wang and Zhao 2015), the Kaya equation (Wang and Li 2016)

and Logarithmic Mean Divisia Index (Ang 2004), etc. Besides the aforementioned models,

the environmental learning curve (ELC) model is increasingly applied to estimate the role

of technological advancement in curbing CO2 emissions (Fehr 2003; Sun et al. 2008, 2011;

Yu et al. 2011, 2015; Guo et al. 2016). Moreover, ELC model integrates the concept of

conventional learning curves and depicts the environmental protection progress along with

the development of technology (Yu et al. 2015). This model is thereby more plausible and

internally consistent than the intuition of the modeler (Grübler et al. 1999; Yu et al. 2011).

More importantly, the strong CO2 emissions learning ability of technological advancement

estimated by ELC model indicates the technologies would effectively curb the emissions,

which is crucial for China to achieve the ambitious CO2 emissions reduction target.

Therefore, the ELC model is applied in this paper to address the impacts of different

technological channels on CO2 emissions.

Besides, China has a vast territory and exhibits significant regional differences. Previous

regional research mainly bases on the classification of geographical location (Wang et al.

2012; Zhang and Zhou 2016). However, there are significant differences among regions in

China in terms of CO2 emissions performance (Wang and Zhao 2015). Hence, to analyze

the characteristics of regions with various CO2 emissions and emission efficiency, this

paper divides China into four regions according to the ‘‘CO2 emission-efficiency’’ features.

The rest sections of this paper are organized as follows. Section 2 presents a literature

review; model specification, methodology and data sources are introduced in Sect. 3.

Section 4 presents the empirical results and discussions of CO2 emissions learning curve

through technological advancement; main conclusions and policy recommendations of the

current research are summarized in Sect. 5.

2 Literature review

This paper constructs the environmental learning curve to identify how different techno-

logical channels can influence the regional CO2 emissions, and further makes a distinction

among the four regions. In this section, based on relevant literatures, we analyze the role of

indigenous R&D, foreign technology import and technical renovation in CO2 emissions

reduction.

2.1 The role of indigenous R&D in CO2 emission reduction

Indigenous R&D is recognized as the engine of sustained economic growth in endogenous

growth theory (Romer 1990) and is also found to be a vital channel to promote the

technology innovation and accumulate absorptive capacity. These capacities are crucial for

increasing energy efficiency and curbing CO2 emissions for a long run (IPCC 2006). Many
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related papers have been conducted, including those by Ang (2009), Wei and Yang (2010)

and Yang et al. (2014). Moreover, previous studies have also reported that finite resources

and stringent environmental goals in developing country have facilitated the indigenous

R&D investment for energy-saving technologies, which in turn reduced the CO2 emissions

(Teng 2012, Fisher et al. 2004). Additionally, indigenous R&D, which determines the pace

and direction of the technology transformation, is used to measure the input of techno-

logical innovation. Li and Lin (2016) also confirmed that higher R&D investment in China

has resulted in more energy technology patents and thus accelerated the development of

energy conservation and low-carbon technology. Consistent with these previous studies,

we expect that indigenous R&D could help to reduce CO2 emissions in China. Thus, we

hypothesize:

Hypothesis 1 The indigenous R&D is positively associated with the reduction of CO2

emissions in China.

2.2 The role of foreign technology import in CO2 emission reduction

Technological advancement is costly and risky (Boeing et al. 2016). Compared to

indigenous R&D, foreign technology import is a relatively low-cost R&D activity (Wei

and Yang 2010). Hence, foreign technology import is another key channel for techno-

logical advancement. Importing technologies from abroad causes fierce competition to

domestic firms and promotes domestic firms’ impetus to invest in R&D activities in order

to enhance their competitiveness (Boeing et al. 2016). Therefore, importing foreign

technology not only accelerates the technological advancement, but also generates a series

of beneficial effect, such as vertical linkages (Wei and Yang 2010) and international

cooperation (Boeing et al. 2016). Yet, the empirical evidences concerning whether foreign

technology import is beneficial to the reduction of CO2 emission or not are mixed. Wei and

Yang (2010) implied that foreign technology import played a crucial role in reducing CO2

emissions according to a sample of 29 provinces in China, whereas Teng (2012) suggested

that foreign technology import has a significant negative influence on energy intensity of

the 31 industrial sectors, which in turn may raise CO2 emission. Besides, Teng (2009)

found that the impact of foreign technology import on energy intensity is highly dependent

on the technology level of the provinces in China. Following the intuitions derived from

the above literatures, we develop the research hypotheses:

Hypothesis 2 The learning ability of foreign technology import in CO2 emission

reduction is modified by regional technological capacity in such a way that greater tech-

nological capacity is associated with a higher CO2 learning ability.

2.3 The role of technical renovation in CO2 emission reduction

Technical revolution is different from indigenous R&D or foreign technology import. The

term ‘‘technical revolution’’ in this paper means that the enterprises implement effective

measures to refurbish and retrofit the existing facilities, technological conditions or pro-

duction services, etc. (SCC 2012). For example, replacing low-efficient coal combustion in

industrial and residential heat supply and installing metering equipment for heating energy

use (Xu et al. 2013). Thus, the purposes of technical revolution are to eliminate backward

production capacity, improve production efficiency, reduce pollutions emission, and ulti-

mately achieve the technological advancement. It implied that technical revolution plays

an important role in improving environmental performance. In case of China, technical
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revolution has become the major initiatives of China’s national energy and environment

policy. During the 11th FYP period, pushing clean coal power development in both newly

built and existing fleets mainly relies on the technical revolution (Yuan et al. 2016). In

2014, the Action Plan on Energy Saving and Emissions Reduction Upgrading & Retro-

fitting in Coal Power Plants (2014–2020) was issued by National Development and Reform

Commission (Yuan et al. 2016). The Action Plan aims to build a clean and high efficient

coal power sector through technical revolution in China. Thus, it is necessary to know

whether technical revolution can cut down the CO2 emissions in China. However, only a

few environmental literatures have taken into account the role of technical revolution

(Rodney and Phil 2009; Xu et al. 2013). Thus, this study will place particular emphasis on

the role of technical revolution in mitigating CO2 emissions.

Hypothesis 3 Boosting the investment of the Technical revolution is beneficial to curb

the CO2 emissions in China.

3 Data and methodology

3.1 Multivariable ELC model

The original learning curve model was firstly proposed by Wright (1936) to depict the time

savings (or cost reduction) accompanying the increasing output of aircraft manufacturing.

The learning curve model reveals the gradual manufacturing cost decline with repeating

production process or increasing output in the enterprises. It also reflects that enterprises

succeeded in reducing the manufacturing cost with the experience accumulation or tech-

nological advancement. Later, learning curve has been extended to not only manufacturing

industry, but also engineering technology innovation, products research and development

and other industries (Fehr 2003; Sun et al. 2011). Recently, borrowing from learning curve,

‘‘environmental learning curve’’ has been proposed. Previous related studies have

employed the ELC to explore the energy, water consumption and SO2 emissions (Sun et al.

2008, 2011; Yu et al. 2011). The ELC model introduces a concept of ‘‘environmental

learning’’ that reflects environmental improvements (i.e., CO2 emissions abatement)

through the economic development and technological advancement (Fehr 2003). However,

previous studies in this area only considered the per capita GDP factor (Sun et al.

2008, 2011) and technological factors were ignored. Therefore, the environmental learning

by technological advancement needs to be further explored.

The ELC model is commonly estimated by Alchian multilog model, Cobb–Douglas

multiplicative exponential model and Womer’s variable production rate model (Badiru

1992). Due to the feature of flexibility and concise structure, Cobb–Douglas model has

been multiply utilized (Rubin et al. 2004). The standard Cobb–Douglas model can be

expressed as Eq. (1).

C ¼ A
Yn

i¼1

ðxiÞ�bie ð1Þ

where C denotes the environmental cost; A indicates the initial environmental cost with

fixed value which is determined by the development of society and economy. bi represents

the learning coefficient of the ith factor, which can be estimated by regression; xi stands for

the ith learning factor; and e is the error term.
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Similar to the ELC, the CO2 emissions learning curve reflects that enterprises (i.e.,

industries or regions) succeed in reducing CO2 emissions through experience accumulation

and technological advancement. The CO2 emissions learning by technolocal advancement

implies the technology transformation from carbon-intensive technologies towa low-car-

bon ones, which is important to curb the CO2 emissions in China for a long run.

Above all, this paper explores the CO2 emissions learning by technological advance-

ment in China, and three different technological channels are adopted to construct the

process of technological advancement, including indigenous R&D activity, foreign tech-

nology import and technical renovation. To avoid omitted variable bias, GDP per capita is

also included in the present study due to its important role in influencing CO2 emissions

and technological advancement. By applying the natural logarithms of Eq. (1) to both

sides, an extended ELC was proposed.

lnCEi;t ¼ A0 � b1ilnYi;t � b2ilnRDi;t�1 � b3ilnFTi;t�1 � b4ilnTRi;t�1 þ ei;t ð2Þ

where i is the ith region, and t is the tth year; CE represents CO2 emissions, A0 denotes the

initial CO2 emissions which are determined by the development of society and economy. Y

stands for GDP per capita computed as GDP divided by population at the end of the year t.

RD, FT and TR indicate the knowledge stock of indigenous R&D, foreign technology

import and technical renovation, respectively. Further,RD, FT and TR variables are lagged

by one year to allow their impacts on CO2 emissions to be sluggish. b1i; b2i; b3i and b4i

indicate the learning coefficient of the RD, FT and TR, respectively. Taking the learning

coefficient of indigenous R&D, for example, the larger value of b2i implies the stronger

CO2 learning ability of indigenous R&D in the ith region, while the impact on CO2

emissions reduction associated with indigenous R&D is also greater. Additionally, if

b2i [ 0, it denotes that there exists reverse changes in the relationship between indigenous

R&D and CO2 emissions. That is, if indigenous R&D increases, then CO2 emissions

decrease. If b2i\0, the CO2 emissions change in the same direction as indigenous R&D.

The specific descriptions of the variables are shown in Table 1.

4 Methodology

To avoid the pseudo-regression issue caused by nonstationary panel data, four panel unit

root tests are employed, including Levin, Lin and Chu (LLC) (Levin et al. 2002), Im,

Pesaran and Shin (IPS) (Im et al. 2003) Fisher-ADF and Fisher-PP tests (Maddala and Wu

Table 1 Description of variables used in the analysis for the period 1997–2014

Variable Definition Unit of measurement

CE Energy-related CO2 emissions 104 ton

Y GDP divided by population at the end of the year 108 RMB in constant
1997 price

RD Knowledge stock of indigenous R&D computed by perpetual
inventory method

108 RMB

FT Knowledge stock of foreign technology import computed by
perpetual inventory method

108 RMB

TR Knowledge stock of technical renovation computed by perpetual
inventory method

108 RMB
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1999). Table 2 summarizes the statistics at the national and regional levels. As shown, the

series are nonstationary in levels but stationary in first differences, which indicates that the

series are first-order integrated series. Further, Pedroni (1999) and Kao (1999) cointe-

gration test are adopted to test the long-run equilibrium among variables. In accordance

with the descriptive evidence in Table 3, the null of no cointegration is rejected in our

sample.

Five regression methods are used after building the national-level and regional-level

CO2 learning curve. These methods contribute to gain more reliable regression results,

including fixed effects (FE), linear regression with Newey–West standard errors (N–W),

feasible generalized least squares (FGLS), linear regression with panel corrected standard

errors (PCSE) and linear regression with Driscoll–Kraay standard errors (DK) estimation.

To select the appropriate regression methods for different regions, four statistic tests are

carried out in this study. The robust Hausman test is firstly adopted to choose between the

Table 2 Results of panel unit root tests

Region Variable Difference
order

LLC test IPS test Fisher-ADF
test

Fisher-PP
test

National lnCE 1 -10.665*** -10.489*** 212.648*** 485.658***

lnY 1 -2.563*** -2.650*** 80.176*** 67.143***

lnRD 1 -21.142*** -17.656*** 352.859*** 794.997***

lnFT 1 -13.721*** -140.734*** 198.351*** 719.677***

lnTR 1 -13.686*** -140.660*** 197.678*** 719.716***

H–H region lnCE 1 -1.784** -2.178** 21.965** 18.908*

lnY 1 -3.087*** -2.427*** 24.193** 18.721*

lnRD 1 -6.669*** -5.719*** 53.352*** 68.417***

lnFT 1 -72.739*** -64.166*** 110.524*** 110.524***

lnTR 1 -72.711*** -64.141*** 110.524*** 110.524***

H–L region lnCE 1 -5.312*** -5.247*** 54.679*** 58.475***

lnY 1 -4.544*** -3.173*** 41.898*** 46.613***

lnRD 1 -6.830*** -7.825*** 79.916*** 78.824***

lnFT 1 -83.980*** -74.082*** 147.365*** 147.365***

lnTR 1 -83.930*** -74.037*** 147.365*** 147.365***

H–L region lnCE 1 -6.249*** -5.334*** 60.491*** 79.410***

lnY 1 -3.339*** -2.465*** 32.891*** 29.013***

lnRD 1 -10.115*** -9.060*** 100.203*** 146.925***

lnFT 1 -89.114*** -78.610*** 165.786*** 165.786***

lnTR 1 -89.073*** -78.574*** 165.786*** 165.786***

L–L region lnCE 1 -7.811*** -7.566*** 69.437*** 54.718***

lnY 1 -1.430*** -1.216** 15.859* 11.971**

lnRD 1 -10.510*** -9.171*** 81.547*** 81.677***

lnFT 1 40.241* -5.679*** 48.995*** 110.524***

lnTR 1 -7.811*** -7.566*** 69.437*** 54.718***

The lag lengths are selected using SIC. Newey–West automatic bandwidth selection and Bartlett kernel

* Rejection of the null hypothesis at the 10% significance level

** Rejection of the null hypothesis at the 5% significance level

*** Rejection of the null hypothesis at the 1% significance level
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fixed and random effects models. The results are summarized in Table 4. As we can see, all

the statistics reject the null hypothesis, suggesting that the fixed effects model is more

suitable in both national and regional levels. In addition, modified Wald test (Greene

2000), Wooldridge test (Wooldridge 2002) and cross-sectional dependence test (Pesaran

2004) are conducted to detect the heteroskedasticity, autocorrelation and cross-sectional

dependence in FE models. As shown in Table 5, the three statistics are all significant at

national-level. There exist heteroskedasticity, autocorrelation and cross-sectional depen-

dence among H–H region, H–L region and L–H region, whereas heteroskedasticity and

autocorrelation in L–H region are significant in spite of insignificant cross-sectional

dependence. From the above analysis, the estimation results of FE models could possibly

be biased. To solve these issues, N–W, FGLS and PCSE are used to obtain the more

reliable results. N–W estimation could deal with the heteroskedasticity, autocorrelation

without consideration of cross-sectional dependence (Newey and West 1987). Addition-

ally, FGLS and PCSE estimation are carried out to overcome cross-sectional correlation.

The FGLS estimation could be against the disadvantage of inaccurate standards errors and

will be suitable when the cross-sectional dimension N is smaller than the time dimension T

(Beck and Katz 1995). Nevertheless, in the finite sample, PCSE estimation is poor when

the N is rather large compared to the T (Hoechle 2007). Hence, DK estimation is

implemented to overcome the bias results by modifying the standard nonparametric time

series covariance matrix estimator (Driscoll and Kraay 1998).

In summary, this paper estimates the empirical models (model 4, 6 and 10) by DK

estimation to solve heteroskedasticity, autocorrelation and cross-sectional dependence

Table 3 Results of Pedroni and Kao panel cointegration tests

Statistics National H–H region H–L region L–H region L–L region

Panel v -3.053 0.564 -0.790 -1.794 -1.262

Panel rho 3.628 0.883 1.309 1.865 1.217

Panel pp 0.500 -0.048 -0.174 0.306 -0.282

Panel ADF -3.818*** -1.068*** 0.012** -1.535*** -0.843***

Group rho 4.753 2.000 2.343 3.296 2.338

Group pp -0.219 -0.030 0.286 1.844** 0.362*

Group ADF -3.144*** -1.272*** 0.638** -0.025*** -0.763***

Kao-ADF -3.758*** -3.371*** -1.685** -3.003*** -1.919***

The lag lengths are selected using SIC. Newey–West automatic bandwidth selection and Bartlett kernel. The
null hypothesis is of no cointegration

* Rejection of the null hypothesis at the 10% significance level

** Rejection of the null hypothesis at the 5% significance level

*** Rejection of the null hypothesis at the 1% significance level

Table 4 Results of Robust Hausman test

Statistics National H–H region H–L region L–H region L–L region

F stat 52.041*** 13.063** 25.961*** 27.187*** 18.738***

** Rejection of the null hypothesis at the 5% significance level

*** Rejection of the null hypothesis at the 1% significance level
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issues, and focuses on N–W estimation for L–H regions (model 8) to address the

heteroskedasticity, autocorrelation problems in this region.

4.1 The division of the provinces in China

To further investigate the CO2 emissions learning curve in regions with different CO2

emissions and efficiency, this paper selects the average amount of CO2 emissions as

emission targets and CO2 intensity as emission efficiency indicators, and the 29 provinces

in China are divided into four regions using the method proposed by Shao et al. (2014).

The four regions are high emission–high efficiency region (H–H), high emission–low

efficiency region (H–L), low emission–high efficiency region (L–H) and low emission–low

efficiency region (L–L). The results are shown in Table 6 and Fig. 1.

4.2 Data source and description

This paper includes annual data of China’s 29 provinces covering the period from 1997 to

2014. Hong Kong, Macao, Taiwan and Tibet are not included because of lack of data, and

Chongqing is merged in Sichuan province to ensure the consistency of data. The provincial

data of CO2 emissions are computed according to the Intergovernmental Panel on Climate

Change (IPCC) (IPCC 2006). The calculation is based on the final energy consumption

provided by the China Energy Statistical Yearbook (NBSC 1997–2014b). Three types of

fossil fuels (raw coal, crude oil and natural gas) are included.

GDP per capita is computed as GDP divided by population at the end of year, the panel

data of GDP (in 1997 constant price, Yuan) and population are collected from the China

Statistical Yearbook (NBSC 1997–2014a)

The R&D expenditure has invariably influences on CO2 emissions, so the knowledge

stock of R&D expenditures is more appropriate chosen as a factor in our paper than R&D

expenditure flow. The knowledge stock of R&D expenditures is computed using the

Table 5 Results of group-wise heteroskedasticity, autocorrelation and cross-sectional dependence test

Statistics National H–H region H–L region L–H region L–L region

Wald stat 8959.443*** 1698.626*** 2102.187*** 1206.684*** 3433.994***

F stat 30.270*** 466.290*** 2.889* 42.217*** 18.964**

CD stat 10.112*** 3.891*** 2.235** 1.029 1.960**

* Rejection of the null hypothesis at the 10% significance level

** Rejection of the null hypothesis at the 5% significance level

*** Rejection of the null hypothesis at the 1% significance level

Table 6 ‘‘Emission-efficiency’’ type of provinces in China

Regions Provinces

H–H region Hubei, Shandong, Sichuan, Zhejiang, Jiangsu, Guangdong

H–L region Anhui, Shaanxi, Heilongjiang, Henan, Hebei, Liaoning, Inner Mongolia, Shanxi

L–H region Beijing, Guangxi, Fujian, Shanghai, Hainan, Jiangxi, Tianjin, Yunnan, Hunan

L–L region Qinghai, Ningxia, Gansu, Xinjiang, Jilin, Guizhou

Nat Hazards (2017) 88:1211–1227 1219

123



perpetual inventory method as Ki;t ¼ Ii;t þ ð1 � dÞKi;t�1 where d represents the knowledge

stocks depreciation rate and is assumed by 15% as same as the previous literature (Hall and

Mairesse 1995). Expenditures of indigenous R&D, foreign technology import and tech-

nical renovation are collected from China Statistical Yearbook on Science and Technology

(NBSC 1997–2014a).

The distribution of CO2 emission and emission efficiency in different regions during

1997–2014 is illustrated in Fig. 2. As shown, all emission regions show an ascending trend

in CO2 emissions with different change rates. The average annual growth rate of CO2

emission in L–L region (7.56%) is the highest, following by H–H (7.46%), H–L (6.86%),

L–H region (6.03%). In 2014, CO2 emission of L–L, H–H, H–L and L–H region has been

raised by 237.24, 230.52, 202.63 and 163.99%, respectively. Nevertheless, there is an

obvious upward trend in emission efficiency of four regions during 1997 and 2014 except

L–L region. The emission efficiency in L–L region slightly increases with an average

growth rate of 2.24% and aggregate growth rate of 43.17%. Conversely, the emission

efficiency of the H–H region is 4.40% with a total rapid increase of 104.37%, while that in

H–L and L–H region are 4.27 and 4.31%, respectively, growing by 101.04 and 101.61% in

all.

5 Empirical results and discussion

In current study, CO2 emissions learning curve is adopted to explore the role of three

different technological factors in CO2 emissions reduction with a consideration of regional

differences. The results are shown in Table 7. Additional results based on alternative

regression methods (i.e., FGLS/ PCSE method) are present in supplementary materials
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Tables S1-S5. For the ease of interpretation, the analysis of technological factors is dis-

cussed separately.

5.1 Impact analysis of indigenous R&D

The estimation results for the whole country are clearly shown in Table 7. From model 2, it

can be seen that indigenous R&D has no significant impact on CO2 emissions, indicating

the poor CO2 learning ability for indigenous R&D and insufficient environmental con-

scious across the country, which is inconsistent with Hypothesis 1.

Table 7 shows the results of the H–H, H–L, L–H and L–L region, respectively. As

shown, the learning coefficients of indigenous R&D in the four regions are apparently

different. Indigenous R&D in H–H and H–L region has negatively influences on the CO2

emissions. On the contrary, the elasticity of indigenous R&D in L–L region is -0.346.

This means that the CO2 learning ability in L–L region is rather weak. Furthermore, the

learning coefficient of the indigenous R&D in L–H region is insignificant at the 5% level,

indicating that L–H region cannot benefit from indigenous R&D. In sum, this study finds

an interesting phenomenon that the CO2 learning ability in regions with higher emissions is

much better than the lower ones.

The possible reason is that high emission pressure may motivate indigenous R&D to

invest in the low-carbon technology, and then may promote the technological progress

away from carbon-intensive technologies toward carbon-free technologies. For example,

renewable energy technologies are better developed in the regions with higher CO2

emissions. According to the data from Collection of China Electric Power Statistics, the

cumulative installed capacity of photovoltaic power in H–H region accounts for 48% of the

total capacity in China by the end of 2013. Moreover, the wind power capacity in H–L

region increased much more quickly, such as Inner Mongolia; the cumulative installation
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of wind power sharply increased from 157 to 22,312 MW during the period of 2006 to

2014. However, due to the increasing demand of energy consumption in China, only

regions with high emissions can benefit from the indigenous R&D, which raises the

concern that the CO2 leaning abilities in L–L and L–H region need to be further improved

by increasing emissions reduction pressure. Particularly, the L–L region is rich in

renewable energy resources, such as solar PV power, and the development potential of

renewables technology in this area is tremendous. But the weak learning capacity of

indigenous R&D has severely impeded the development of renewables technologies.

Meanwhile, most of the provinces in L–L region are inland provinces and in the advanced

situation for foreign trade with Central Asia energy-rich countries. Thus, importing foreign

technology from abroad and enhancing the international cooperation may make up the poor

indigenous R&D capacity.

5.2 Impact analysis of the foreign technology import

The estimated results of the impacts of foreign technology import on CO2 emissions for the

whole country are presented in Table 7. The learning coefficient of foreign technology

import for the whole country is greater than zero. Boosting the investment in foreign

technology import will lead to CO2 emissions reduction over the period, which enhances

the confidence of the government in mitigating the emissions through foreign technology

import. This finding is consistent with that of Wei and Yang (2010).

The learning abilities of foreign technology import on emissions abatement also differ

among the four regions. With the exception of H–H region, all influences of foreign

technology import on emissions are statistically significant at 1% level. Learning coeffi-

cient of foreign technology import in H–L regional is less than zero (b31 ¼ -0.522), which

means raising the investment in foreign technology will lead to the increase in the CO2

emissions. Conversely, foreign technology import for the L–H and L–L region makes an

achievement about declining the CO2 emissions during the research period. A 1% increase

in foreign technology import will decrease the emissions of L–H and L–L region by 0.169

and 0.356%, respectively. From the discussions above, we can conclude that the CO2

learning abilities in L–H and L–L region are stronger than that in H–H and H–L region.

This finding does not conform to Hypothesis 2, as L–L region with poor technological

capacity has a relatively stronger CO2 learning ability. Although unexpectedly, the possible

reason for such finding may be that the expenditures of foreign technology import in H–L

and L–L region are spatially more concentrated. Data show that approximately 74.0%

expenditure for importing the foreign technology is concentrated on 50% provinces of the

L–L region. Similarly, 75.3% of that is concentrated on 44% provinces of L–H region.

Nevertheless, H–H and H–L regions are more evenly distributed across provinces. A

higher degree of spatial concentration of expenditure will have better technology capa-

bilities, which benefit the technology transfer and absorbing knowledge from abroad

(Zhang and Zhou 2016), and this is essential for China to improve energy efficiency and

reduce the emissions. This raises the concern that the CO2 emissions gap between low

emissions regions (L–H and L–L region) with high CO2 learning ability and high emissions

regions (H–H and H–L region) with low CO2 learning ability may be broadened. Mean-

while, the H–H and H–L region still face limitations with regard to low-carbon technology

transfer and absorbing knowledge from abroad. Hence, there is a great need to strengthen

technology capabilities in these regions through concentrated for investment of foreign

technology import. Finally, these regions should seek to import low-carbon and energy-

saving technologies due to its energy-guzzling industrial structure.
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5.3 Impact analysis of the technical revolution

The results from Table 7 strongly suggest that technical renovation is the effective measure

for abating CO2 emissions both in the national and regional levels, which is consistent with

Hypothesis 3. The technical revolution is the dominant contributor to the CO2 emissions

reduction in the national level. Furthermore, technical renovation in H–H region has

theoretical maximum CO2 learning ability (b41 ¼ 0.285), followed by L–H region (b43 ¼
0.191), L–L region (b44 ¼ 0.186) and H–L region (b42 ¼ 0.125). This indicates that

throughout the entire period of 1997–2014, emission reduction in H–H region is most

effective in the technical revolution.

Our finding implies that the more investment of technical renovation will result in lower

CO2 emissions, and the reasons mainly lie in the following aspects. Firstly, the main

purpose of technical renovation is to improve the energy efficiency by refurbishing and

retrofitting low-efficient equipment, which can directly cut down the CO2 emissions.

Secondly, the renovation relies less on the technology capabilities, i.e., high human capital

and economics base, to adopt and absorb the new technologies (Xu et al. 2013). Thus,

technical renovation can reduce investment risk and increase the efficiency in a short term

that enables the enterprises to more effectively assimilate low-carbon technology. Finally,

due to indispensable role of coal power, clean and efficient coal power development

through technical renovation has been the priority of Chinese government. The government

has implemented a series of measures concerning energy efficiency retrofitting in tradi-

tional coal-fired generating units (Yuan et al. 2016). Nevertheless, technical renovation

tends to achieve high energy efficient by implementing the mature and efficient tech-

nologies, but cannot promote the development of new renewables technologies. Hence,

apart from the technical renovation, it is crucial to emphasis on the investment of

indigenous R&D and foreign technology import to accelerate the renewables technologies

and achieve the CO2 emissions reduction target for a long run.

6 Conclusion and policy implications

This paper establishes an environmental learning curve model to explore the impact of

technological advancement on CO2 emission in China from 1997 to 2014 by using a panel

data of 29 provinces, with a particular emphasis on different technological channels and

regional differences. There are three technological channels including indigenous R&D

activity, foreign technology import and technical renovation. Furthermore, China’s 29

provinces are decomposed into high emission–high efficiency region (H–H), high emis-

sion–low efficiency region (H–L), low emission–high efficiency region (L–H) and low

emission–low efficiency region (L–L). The empirical results of this study are as follows:

(1) Technological progress accompanied by the indigenous R&D has environmental

learning effect on CO2 emission in H–H and H–L region, while the increase in

indigenous R&D leads to the raise of CO2 emission in L–L region. In terms of L–H

region, it has no significant impact on CO2 emissions.

(2) The environmental learning effects by the foreign technology import are different

among the different regions. Only L–H region and L–L region have a negative

learning effect on reducing CO2 emission. However, the learning effect of foreign

technological import on CO2 emission is not obvious in H–H region, while the

learning ability in H–L region is weak.
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(3) The technical renovation in all regions has positive impact on curbing the CO2

emissions. The environmental learning ability in H–H region is the largest, followed

by L–H region, L–L region and H–L region.

These results not only contribute to enrich the technology innovation theory, but also

proposing specific policies for improving the environmental performance in China, which

are summarized as follows:

Firstly, the results suggest that different regions should take differentiated investment

strategy and policy measures to curb CO2 emissions according to local conditions. Firstly,

CO2 emission learning abilities of indigenous R&D in high emissions regions are stronger

than the low ones, which imply that high pressure of emissions reduction may arouse the

environmental consciousness and facilitate the indigenous R&D in low-carbon technolo-

gies. However, high emissions regions still remain high emissions and it suggests that the

indigenous R&D’s learning abilities in these regions should continually be improved in

order to transform their emissions-efficiency performance to L–H regions. Indigenous

R&D is the source of the creation of new clean technology and mainly relies on the

enterprises. Therefore, in order to encourage them to invest in low-carbon technologies,

China should promulgate more stringent CO2 emissions and efficiency policies to provide

incentives for enterprises to be involved in low-carbon technology innovation. In addition,

designing proper subsidies for firms will be another effective incentive policy and can

ensure compensation for their investment in clean technologies.

Secondly, the CO2 emission learning effects of foreign technology import depend on the

concentrated degree of the local expenditure. The results suggest that H–H and H–L region

should import foreign technology more spatially concentrative, and focus on low-carbon

and energy-saving technologies due to its energy-intensive industrial structure. Meanwhile,

L–H and L–L region should seek to import foreign technology to further reduce emissions.

Furthermore, the government should insist on strengthening competitiveness in energy-

intensive industries and, emphasizing on cultivating technology capabilities, especially for

L–L region, to adopt and absorb advanced foreign technologies.

Thirdly, the excellent learning ability of technical renovation implies that it will

effectively reduce the CO2 emission and improve energy efficiency in China. Thus, it calls

for striving to lessen CO2 emissions through technical renovation. In particular, the

resource-dependent provinces are located in H–L regions, such as Shanxi and Inner

Mongolia, which are rich in resources of coal and major energy exporter through coal

power generation. Thus, the Chinese government should particularly emphasis on the

technical revolution in coal power of H–L region. Besides, the haze smog frequently

occurred in China during recently years. The government should also be cautious of the

strict pollution control standard in the heavy industry and implement the electricity sub-

stitution projects.
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