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Abstract Short-duration extreme rainfall and flash floods are the major natural hazards in

small Carpathian catchments. Quantifying forcing rainfall, hydrological responses and

geomorphological impacts is the key to mitigating the negative impacts of flash floods.

This article focuses on the hydrometeorological aspects of a flood event, the geomor-

phological changes of hillslopes and the river valley, in the Kasiniczanka catchment—

48 km2 (Outer Carpathians, Poland). Results revealed that the flood in 2014 was generated

by 6-h rainstorm with a total of 95.2 mm, and the mean intensity ranging from 7.1 to

31.3 mm h-1. The flood peak ranged from 60 to 171 m3 s-1, and it was approximately two

times higher than an 0.1% flood. The unit peak flow ranged between 3.6 and

4.6 m3 s-1 km-2, and the K index (which is non-dimensional measure and allows the

comparison of flood magnitudes in catchments of differing size), ranged from 3.9 to 4.1.

These two measures revealed that this flood was among the worst, recorded in catchments

ranging from 13 to 48 km2 in the Carpathians as a whole. The most significant geomor-

phological changes were observed in unmanaged channel reaches (the upper and middle

parts of the catchment), contrary to lower part, where the river channel was protected by a

hydrotechnical infrastructure. Flood analysis enabled the evaluation of the flood risk

management process, related to flash floods in small catchments. In this context, some

proposals to reduce flood risk level are presented and discussed.
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1 Introduction

Flash floods are the most destructive phenomena among natural disasters in terms of

people affected (Barredo 2007). In inland, continental Europe, typical flash floods result

from locally restricted, heavy rainstorm zones. The zone is usually less than 100 km2 and

most frequently 25 km2 (Lenart 1993; Bryndal 2015). Floods generated by this type of

precipitation include local flash floods, and usually affect catchments smaller than 40 km2

(Bryndal 2014a, b, 2015).

Although local flash floods are among the most destructive disasters, relatively little is

known about these natural phenomena (Gaume et al. 2009). This is mainly because they

develop in space and time scales that conventional measurement networks of rain and river

discharges are not able to sample effectively (Creutin and Borga 2003). Consequently, the

atmospheric, hydrological and geomorphic controls of these hydrogeomorphic processes

are poorly understood, leading to highly uncertain warning and risk management processes

(Borga et al. 2014). Therefore, the description and analysis of every flood event are

extremely important. Quantifying forcing rainfall, hydrological responses and geomor-

phological impacts is the key to mitigating the negative impacts of flash floods.

On August 5–6, 2014, an extraordinary rainstorm occurred over the middle part of the

Beskid Wyspowy (Outer Carpathian, Poland—see Fig. 1a for location). The rainfall

generated flash floods in several tributaries (Kasiniczanka, the headwater of Stradomka and

Krzyworzeka) of the Raba river system (Fig. 2b). This event created an opportunity to

assess the impact of extreme rainfall and flash flood on the geomorphological changes of

small flysch Carpathian catchment and flood risk management process.

The goals of this study were to describe: (1) the meteorological setting of the heavy

rainfall and the hydrological response of the catchment (2) the geomorphological changes

of hillslopes, floodplain terraces, and the river channel. Based on this research (3) certain

aspects of the flood risk management process were analyzed and discussed.

2 Materials and methods

2.1 Meteorological settings

The meteorological settings were described using a synoptic map developed by the

Institute of Meteorology and Water Management-Polish Research Institute (IMIGW-PIB)

and by daily commentary on the synoptic situation (Tomczuk and Dąbrowska 2014). The

precipitation was reconstructed based on telemetry-type rainfall network stations managed

by the IMGW-PIB. The rainfall data are presented in near real time on the IMGW-PIB

official weather service Web site. The hourly rainfall intensity (mm h-1) was downloaded

directly from this Web site (http://monitor.pogodynka.pl, Accessed 06-08-2014).

2.2 Hydrological analyses

The largest flash flood event occurred in the Kasiniczanka river catchment. Therefore, it

was selected for detailed investigation. The Kasiniczanka is an ungauged catchment. The

nearest hydrological station (Kasinka Mała) is located on the Raba river, above the

Kasiniczanka river outlet (Fig. 3). There are two hydrological stations located at tributaries

of the Raba river (Lubień—Lubieńka river and Krzczonów—Krzyczonówka river) and one
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Fig. 1 Study area. Location and
hypsometry of the Kasiniczanka
catchment (a), slope gradient
(b) and land cover (c)
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station (Stró _ze) located downstream on the Raba river (see Fig. 3—for location). The

hourly flow data recorded on these gauges was obtained from the IMIGW-PIB monitoring

Web site (http://monitor.pogodynka.pl, Accessed 06-08-2014) and used to assess spatial

differences in flood wave magnitude.

The flood peak in the Kasiniczanka catchment was obtained after the flood event. The

hydrological data obtained as a result of post-flood investigations is uncertain, and the

sources of uncertainties were discussed in the literature many times (e.g., Gaume and

Borga 2008; Lumbroso and Gaume 2012). In spite of the uncertainty, post-flood investi-

gations are the primary source of hydrological data for flash floods in small catchments

(Gaume and Borga 2008). In order to minimize uncertainties related to flood peak

assessment, the field studies data verification process were performed in accordance with

the flash flood post-flood field investigation guidance (Gaume and Borga 2008; Lumbroso

and Gaume 2012). A field campaign was launched immediately after the flood event, and

the highest floodwater stages were marked at 5 cross sections (Fig. 1a), where water flow

had not been disturbed, and geomorphological changes of a channel and floodplain had not

contributed to errors related, e.g., to flood cross-sectional area assessment. This allowed the

use of the slope-area method for maximum flow calculation and reduced the errors related

to flow calculation as much as it was possible. Geodesy measurements were taken 1 month

later and included: the cross sections and the slope of the highest flood water stage. Flow

water velocity was calculated using Manning’s gravity flow formula (Lambor 1971), and

the roughness coefficient was estimated based on field observations and tables (Chow

1959)—channel bed and riparian vegetation mainly. Flow velocity was verified by cross-

check comparison with flow velocities reported by Marchi et al. (2010) and Lumbroso and

Gaume (2012) for flash floods in Europe.

Flood peak calculated in 5 cross sections was compared to p-probable floods in order to

evaluate the flood magnitude. The p-probable floods were calculated using the so-called

rainfall formula, a regional type of equation used in Poland for catchments of up to 50 km2

(Biernat et al. 1991).

The hydrological modeling approach complements the hydrological investigation in an

ungauged catchment (Gaume and Borga 2008). Based on previous flash flood studies in the

Polish Carpathians (Bryndal et al. 2010a, b, c), two hydrological models namely: Soil

Conservation Service-Curve Number (SCS-CN) and Soil Conservation Service-Unit

Hydrograph (SCS-UH), were used (Mistra and Singh 2003; Hydrologic Modeling System

HEC-HMS 2015). These two models (in spite of their limitations and uncertainty discussed

in the literature many times, e.g., Feldman 2000; Mistra and Singh 2003) have yielded the

best results in terms of flood peak reconstruction (Bryndal et al. 2010a, b, c).

Spatial distribution of rainfall intensity was evaluated on the basis of hourly Surface

Rainfall Intensity (SRI) products, distributed to the public by the IMGW-PIB monitoring

Web site www.pogodynka.pl/radary (Accessed 06-08-2014). The hourly SRI products are

developed based on 10 min of SRI radar images. The nearest radar station (Brzuchnia) is

situated roughly 80 km from the Kasiniczanka catchment. The catchment is located in a

medium–high-mountain region, and the distance from the radar antenna reached the

threshold value for the SRI product usage. Therefore, it was decided that the hourly rainfall

data from Węglówka telemetry-type rainfall station were used to provide the input data to

bFig. 2 Meteorological settings of a heavy rainstorm generating a flash flood in the Kasiniczanka catchment.
The synoptic chart (2014-08-06 00:00 UTC) (a), rainfall intensity distribution (b), hourly rainfall in the
Węglówka (1) telemetry-type rain gauge station (c), (2) boundary of the Kasiniczanka catchment. Source:
Based on meteorological data obtained from the IMGW-PIB official weather service Web site www.
pogodynka.pl; (Access 2014-08-06)
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Fig. 3 Locations and
hydrographs recorded at flow
measurement stations: Kasinka
Mała (Raba river) (a),
Kasiniczanka—C5 cross section
(results of the hydrological
modeling) (b), Lubień (Lubieńka
river) (c), Krzczonów
(Krzczonówka river) (d) and
Stró _za (Raba river) (e). SWQ—
multiannual mean high flow.
Source: Based on hydrological
data obtained from the
hydromonitor Web site of the
IMGW-PIB weather service
http://monitor.pogodynka.pl (ac-
cess 2014-08-06)
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SCS-CN model. The station was located in the centroid part of the catchment, where the

rainfall intensity was the highest (Fig. 2b). The small size of the catchment (48 km2) and

the spatial distribution of the rainfall were the reasons that uniform rainfall distribution was

assumed. The CN curve was calculated according to Antecedent soil Moisture Conditions

(AMC), evaluated on the basis of a 5-day period (Mistra and Singh 2003). In this case, the

III AMC level and a 0.15 coefficient of initial loss were assumed. The lag time (Tlag)

required for the SCS-UH model was calculated according to the equation (National

Engineering Handbook 2010):

Tlag ¼
L� 3:28 � 103ð Þ0:8� 1000

CN
� 9

� �0:7

1900 �
ffiffi
I

p ð1Þ

where L—length of the longest drainage path (km), I—the average catchment slope (I%),

CN—the CN parameter (–).

The quality of the hydrological data obtained as results of hydrological modeling and

post-flood field investigation was verified by cross-check comparison. Hydrologically

simulated flood peak (Qfs—m3 s-1) was compared to the flood peak calculated using the

slope-area method (Qf—m3 s-1), and percentage difference (%) was calculated. The

quality of the hydrological data was also verified by comparison between the runoff depth

(mm h-1) and the precipitation depth (mm h-1) for the time when the rainfall intensity

was the highest (Gaume and Borga 2008). The ratio between these two values should not

lead to the runoff rate greater than one. A higher value may suggest that model-computed

flood peak/post-flood surveyed flood peak is overestimated. The errors may result from

hydrological modeling or field-surveys. For example, in catchments heavily impacted by

geomorphic changes, post-flood surveys are more uncertain and finally, may lead to larger

errors in flood peak calculations. If calculations of peak flow are correct, the runoff rate

higher than one, may result from hydrotechnical infrastructure destruction, e.g., reservoirs,

dams, etc., release a massive amount of stored water (Gaume and Borga 2008). However, it

was not a case of this study; therefore, cross-check comparison should lead to the runoff

rate lower than one. The input data required for the hydrological models were obtained

from a geodatabase consisting of a raster-type digital elevation model (20 9 20 m), a land

cover map 1:50,000 and a soil cover map 1:25,000 in scale. The parameters required for

hydrological models (catchment size, relief conditions, the CN parameter, variable of

Eq. (1), a percentage of unpaved areas), were calculated using Arc-GIS 9.3 software,

whereas hydrological modeling was performed in HEC-HMS software (Hydrologic

Modeling System HEC-HMS 2015).

Flood magnitude recorded in the Kasiniczanka river catchment was compared to other

local flash floods in the Carpathians. The K flood index developed by Françou and Rodier

(1969) was used as a first measure. The authors, on the basis of flood peaks recorded on the

rivers extending over the entire globe, developed a set of envelope curves, characterized by

the equation:

Qmax

Q0

¼ A

A0

� � 1�K
10ð Þ

ð2Þ

where Qmax—the flood peak (m3 s-1), Q0—the threshold flow (106 m3 s-1), A—the

catchment area (km2), A0—the threshold catchment area (108 km2). Adaptation of this

formula allows for the calculation of the K variable according to the equation:
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K ¼ 10 � 1 � LogQmax � 6

LogA� 8

� �
ð3Þ

The K variable is known as the Françou–Rodier index or the K flood index.

The K flood index is a non-dimensional measure, and therefore it allows the comparison

of flood magnitudes in catchments that differ in terms of area. According to Françou and

Rodier (1969), this method of envelope curves can be considerably useful for the study of

exceptional floods in regions, where observation data are insufficient, especially for rivers

with very heavy floods. The second measure, used for flood magnitude comparisons, was

the unit flood peak (m3 s-1 km-2).

2.3 Mapping of geomorphological changes

The most significant geomorphological changes occurred on the valley floor; therefore,

detailed geomorphological mapping was performed in this part of the catchment. Field

investigations were performed during two campaigns. Photographic documentation was

made on 6 August immediately after the flood event, whereas detailed geomorphological

mapping was performed between 10–18 August 2014.

A methodology developed by the Department of Physical Geography of Jagiellonian

University in Cracow (Kamykowska et al. 1999) was adapted for geomorphological

mapping. The methodology allows for the collection of quantitative and qualitative data

derived from fieldwork mapping, which is then complemented by analyses of thematic

(topographical, geological, etc.) maps and aerial photographs. The data, among others,

include information about: (1) river channel (e.g., geology, morphometry, hydrotechnical

infrastructure, types and dimensions of landforms); (2) hydrological and meteorological

settings during fieldwork; (3) morphometry of a catchment.

The field measurements were taken with a GPS receiver and laser rangefinder. Land-

forms such as river bars and cut banks, developed in the river channel and floodplain, were

characterized by: area, length and width (river bars), and length (cut banks). Apart from

previously mentioned measurements, the width of the river channel was also measured

(one measurement per approximately 100 m).

Landforms mapped after the flood event were loaded onto topographical maps (using

ARC-GIS software) and then, reaches of the river channel (15 reaches) were established on

the basis of the number and dimensions of river bars and cut banks. This enabled the

characterization of morpho-dynamic (erosive, and accumulation) type of a reach. The

mean and the maximum width of the river channel were then calculated for these reaches,

allowing for an evaluation of geomorphological changes of the river channel and flood-

plain terrace after the 2014 flood.

Comparative analysis was performed to evaluate the spatial and temporal geomor-

phological changes of the river channel. The analysis was carried out within 15 reaches,

determined after the 2014 flood. The number and dimensions of the river bars and cut

banks, as well as the width of the river channel before the flood event (in 2014), were

reconstructed on the basis of ortho-photomaps (from 2009), developed by the Head Office

of Geodesy and Cartography. Comparison analyses were performed using ARC-GIS

software.

The impact of flood water on river channel was also expressed quantitatively by stream

power X (W m-1) and unit stream power x (W m-2) indexes. The first measure, which

represents the rate of energy expenditure per unit channel length, was computed as:
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X ¼ c� S� Qf ð4Þ

where c (9810 N m-3) is the specific weight of water, S (m m-1) is the energy slope of a

channel and Qf (m3 s-1) is a flood peak.

The second measure, which represents the energy expenditure per unit area of a channel

bed, was computed as:

x ¼ c� S Qf=wð Þ ð5Þ

where w (m) is a channel width corresponding to flood water stage.

2.4 Flood hazard assessment

In order to evaluate flood hazard in the catchment, 1.0, 0.5 and 0.2% probable flood

inundated areas marked on the flood risk maps 1:10 000 in scale (Flood risk maps 2014)

were analyzed and compared to an inundated area mapped after the 2014 flood event. The

inundated area was delineated after the flood using a GPS receiver. The mapping area

extended from the Kasiniczanka river outlet to the boundary of Kasinka Wielka village

(5.67 km from the Kasiniczanka river outlet).

2.5 The study area

The Kasiniczanka catchment is 48.5 km2 in area. The bedrocks are composed of flysch

sandstones and shales of Magurska Naple, and they are covered by a 0.3–1.5 thin mantle

rich in clay minerals—usually exceeding 30%. The valley bottom is terraced and consists

of fluvial deposits (usually composed of gravel mixed with clay).

The catchment has short and steep hillslopes. Average hillslope length is 0.2 km, and

over 49% of the catchment has a slope gradient exceeding 11%. The width of the Kasi-

niczanka valley floor usually ranges between 100 and 400 m, with several small basins,

where the width reaches up to 700-800 m (Fig. 1b).

The river channel is incised (1–4 m) into alluvial terraces and flysch bedrocks are

usually uncovered. Numerous grade-control and hydraulic drop structures prevent bed

erosion of the river. Some reaches of the river bank, especially in the middle and lower

parts of the catchment, contain gabions and rip-rap. The tributaries of the Kasiniczanka

river are deeply incised into hillslopes and their density reaches 1.8 km km-2.

Land cover is predominantly arable land (58.5%). Pastures and meadows prevail in the

headwater part of the catchment, as well as in the valley floor. The upper parts of the

hillslopes are covered by forest areas (41%). Croplands usually cover the middle and lower

parts of hillslopes (Fig. 1c). There are two villages located in the catchment, namely:

Kasinka Mała and Kasinka Wielka, with a total population c.a. 3400 citizens. The built-up

areas (0.5%) cover the bottom part of the valley and are located on fluvial terraces which

should not be over-flooded. Several dozens of farmsteads are scattered on the slopes

(Fig. 1c). The predominance of arable land and scattered farmsteads results in a high

density of road network (on average 3.8 km km-2).
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3 Results

3.1 Meteorological settings

On 5 August, a trough of low pressure between anticyclones developed over northern

Russia and the Azores Anticyclone, with a cold front system was spreading over Poland

(Fig. 2a). This created dry and hot continental tropical air in the eastern part of Poland and

cold, humid, maritime air in the western part. The cold front moved slightly eastward,

leading to good weather conditions in western Poland, but full cloud cover and rainstorms

in eastern Poland. In the Carpathians, the highest precipitation was recorded in the Beskid

Wyspowy, near the town of Mszana Dolna. Taking into account the spatial distribution of

rainfall intensity (mm h-1) presented on the radar-derived picture (Fig. 2b), the Węglówka

telemetry-type rainfall station, located in the middle of the heavy rainstorm zone, is the

most representative for rainfall field characteristics.

The first rainfall event was recorded between 12:00 and 14:00 UTC (local time LT in

summer: UTC ? 2 h), and the mean rainfall intensity was 7 and 21 mm h-1, respectively.

The second rainfall event occurred between 22:00 (5.08.2014) and 04:00 (6.08.2014) UTC

and the mean rainfall intensity reached: 8.6, 18.6, 31.3, 18.3, 11.3, 7.1 mm h-1 (Fig. 2c).

A total of 95.2 mm of precipitation was recorded during the second heavy rainstorm.

3.2 Hydrological response

The largest flash flood was observed in the Kasiniczanka catchment. According to eye-

witnesses from the Kasina Mała village, located in the lower part of the catchment

(Fig. 1c), the bank-full stage was reached 1 h after the heavy rainstorm started (c.a. 01:00

LT). Between 02:30 and 03:30 LT, the water stage rose quickly and flood water overflowed

the valley floor (Fig. 7). The inundated areas ranged between 120 and 220 m, with a

maximum of c.a. 260 m. The flood water stage reached an elevation of about 2.5 m above

the floodplain terrace, and more than 5 m above the bottom of the river channel. Two hours

later (c.a. 05:00 LT), the water did not exceed bank-full stage.

The flood peak and the unit flood peak calculated after flood event are presented in

Table 1. Flow velocity calculated using Manning’s equation ranged between 1.6 and

2.0 m s-1, what is comparable to flow velocities reported for other flash floods in Europe

(Marchi et al. 2010; Lumbroso and Gaume 2012).

The flood peaks were compared to p-probable floods (i.e., the 1% probable flood cor-

responds to the 100 year return period), in order to evaluate flood magnitude (Table 1).

The flood peak in the headwater part of the catchment (Fig. 1a, C1–C2 cross sections)

ranged between 60.1 and 72.2 m3 s-1, and it was about 1.3 times higher than the 0.1%

(44.8 m3 s-1—C1; 54.4 m3 s-1—C2) flood (Table 1). In the middle part of the catchment

(Fig. 1a, C3 cross section), the flood peak reached 105.5 m3 s-1 and was about double the

0.1% flood (Table 1). In the lower part of the catchment (Fig. 1a, C4–C5 cross sections),

the flood peak ranged between 163.9 and 171.5 m3 s-1, and it was almost double the 0.1%

flood (Table 1). The unit flood peak ranged between 3.6 and 4.8 m3 s-1 km-2 (Table 1).

The spatial diversity of the flood magnitude was evaluated by looking at the flood peaks

recorded at the flow measurement stations. It was the Raba river (Fig. 3, sites a, e) and its

tributaries: Lubieńka (Fig. 3, site c) and Krzczonówka (Fig. 3, site d). The flood peak

recorded at the Kasina Mała flow measurement station (the Raba river Fig. 2, site a),

located above the Kasiniczanka river outlet, reached approximately 201 and was 63 m3 s-1
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higher than the multiannual mean high flow (138 m3 s-1). The flood peak recorded at

Lubieńka and Krzczonówka rivers (tributaries of the Raba river) did not exceed

2.9 m3 s-1. The flood peak recorded at the Stró _za flow measurement station (several

kilometers downstream), reached 370 m3 s-1 and was 147 m3 s-1 higher than the multi-

annual mean high flow (223 m3 s-1). Taking into account the spatial diversity of the flood

magnitude, the value calculated at the C5 cross section (171 m3 s-1) seems to be correct.

Hydrological modeling was performed in order to complement the post-flooding

investigations and to verify the hydrological data by cross-check comparison. The input

data required for hydrological models and the results of the modeling process are presented

in Table 2. The flood peak simulated with the SCS-CN and SCS-UH hydrological models

(Qfs), is similar to the data obtained during the post-flooding investigation (Qf). The

differences ranged from 4% (C1, C4 cross sections) to 13% (C3—cross section)—Table 2.

It is notable, that time to peak simulated by hydrological models (3 A.M. L.T.—Fig. 3b)

for the C5 cross section located in Kasina Mała (Fig. 1a), is comparable to eyewitness

reports. The comparison of the runoff depth (21.3 mm h-1) and the precipitation depth

(31.3 mm h-1) for the time, when the rainfall intensity was the highest, amounted to 0.68.

This runoff rate is comparable to values reported during flash flood events in Europe

(Gaume and Borga 2008; Surian et al. 2016). Taking into account that: (1) hydrologically

simulated (Qfs) and flood survived (Qf) peaks are comparable (the differences are lower

than 13%), and (2) the runoff rate is comparable to other flash flood events reported in the

literature (Gaume and Borga 2008); the quality of hydrological data can be considered as

‘‘fair.’’ Therefore, the magnitude of this flood can be compared/evaluated to other floods

reported in the Carpathians.

3.3 Geomorphological changes of the catchment

The geomorphological changes of the flysch Kasiniczanka catchment were mainly related

to a river channel and floodplain terrace. Changes observed on hillslopes were moderate.

3.3.1 Erosional changes of the river channel

Erosional changes of the river channel were related to the development and rejuvenation of

cut banks. Landforms resulting from bed erosion were rarely observed. The general ten-

dency observed after the 2014 flood event was an increase in the number of cut banks, in

relation to 2010 (Fig. 4a). The highest number of cut banks ([15) occurred in the middle

part of the catchment (reaches 5–8) where the river channel is not managed—not modified

Table 2 Input data required to hydrological models and results of modeling process. Source: this study

Cross section
number

A (km2) I (%) Lmax

(km)
CN
(–)

Qf

(m3 s-1)
Qfs

(m3 s-1)
Percentage differences
between flows (%)

C1 13.1 16.9 7.1 85 60.1 57.6 4

C2 17.9 17.2 8.4 85 72.2 77.7 -8

C3 22.2 17.3 10.3 85 105.5 91.9 13

C4 41.1 20 13.3 85 163.9 157.6 4

C5 48.0 20.0 15.2 85 171.5 179.9 -5

A, catchments area; I, mean catchments slope; Lmax, maximum length; CN, curve number; Qf, flood peak
calculated by slope-area method; Qfs, hydrologically simulated (SCS-CN and SCS-UH) flood peak
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by hydrotechnical infrastructure (Fig. 4a). In lower part of the catchment (reaches 9–15),

where some reaches of the river channel were protected by gabions, rip-rap, and grade-

control structures, several newly developed cut banks (up to 5), appeared after the 2014

flood (there were no diagnosed cut banks in 2010)—Fig. 4a.

The mean and cumulative lengths of cut banks enable quantitative assessment of the

river channel changes. A higher number of cut banks, generally corresponds to the increase

in mean and cumulative lengths of these landforms (Fig. 4b, c). The highest values

occurred in reaches 5 and 6 (Fig. 4c) and resulted from significant changes of unmanaged

parts of the river channel (Fig. 5b). In the lower part of the catchment (9–15 reaches), a

few newly formed and several dozen meter long cut banks were developed after 2014

flood. The mean length of these landforms exceeded 70 m (Fig. 4b), with the highest value

reaching 135 m (reach 13). This increase resulted from extensive lateral erosion, which

occurred over rip-rap (Fig. 5c). As a result of lateral erosion, after 2014 flood, the river

channel was widened (Fig. 5a). The highest increases were observed in the middle and

lower parts of the catchment and may be explained by erosional effects, quantified by the

number and length of cut banks (Figs. 4, 5). The erosional effects correspond to higher

values of unit stream power index. The reaches 5–7, 12 (Fig. 4), where the geomorpho-

logical changes were the most intense, have higher values of the unit stream power index

(Table 4).

3.3.2 Accumulation changes in the river channel

Geomorphological changes of river bars were observed both in the river channel and on the

floodplain terrace. Generally, a significant increase in the number and area of river bars,

after 2014 flood, was observed (Fig. 4d–f).

In a river channel, the number of bars usually corresponded to the number of cut banks,

because the mineral material eroded from the river banks was usually deposited in the

vicinity of cut banks. Before 2014 flood, river bars were usually observed in the upper,

unmanaged reaches of the river channel. The cumulative area covered by these landforms

(reaches 5, 6) amounted c.a. 9500 m2 in 2010. After the 2014 flood, this value increased

approximately fourfold (37,200 m2). Before the 2014 flood, in the lower, managed part of

the channel, river bars occurred rarely and the cumulative area of these landforms (reaches

12–15) reached 1530 m2. After 2014 flood, many newly developed river bars were

observed. The cumulative area covered by river bars increased approximately 11 times,

reaching 15,400 m2. Taking into account the whole river channel, after 2014 flood the area

covered by river bars increased from 13,900 to 65,625 m2—about 5 times (Fig. 4e).

3.3.3 Erosional/accumulation changes on the floodplain terrace and hillslopes

Evaluation of temporal changes related to bars accumulated on the floodplain terrace was

hampered. Before 2014 flood, these landforms were not identifiable on ortho-photomaps,

because they were covered by grass. Therefore, only geomorphological changes after 2014

flood were analyzed. Fieldwork revealed that many bars were formed (Fig. 6b) and the

cumulative area amounted 8000 m2 (reaches 8, 10–11, 15)—Fig. 4f. Many bars were

composed of coarse-grained material mixed with organic substances, including tree logs. A

relationship between the morphometric characteristics of the floodplain, the distribution of

these bars and erosional changes of the floodplain terrace, was observed. If a bar was

located in a wider part of the floodplain, flood water flowed next to this bar, and erosional

changes in the floodplain terrace did not occur. However, if a bar was located in a narrow
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part of the valley, flood water overflowed this bar, and huge plunge pools (up to 1.5 m)

were developed (Fig. 6a).

Heavy rainfall resulted in the moderate geomorphological changes of hillslopes. The

changes were mainly related to the unpaved road network system where concentrated

overland flow incised (even up to 0.7 m) and widened some sections of roads. Eroded

material was deposited at the outlets of roads, as a debris fan composed of coarse-grained

mineral material. The largest fan reached 750 m2 (Fig. 6c).

3.4 Flash flood and its economic impact

The 2014 flood extent is presented in Fig. 7. The maximum flow was nearly double the

0.1% and resulted in huge economic damage. They were estimated at approximately 5

million euro. More than 164 buildings, including 75 residential buildings, 15 production

and trading buildings, and 4 service public buildings, were flooded. Flood damage was

reported in approximately 70 farm buildings. Seven bridges, several dozen culverts, water

supply systems and roads were partially or completely destroyed (Fig. 6d, f, g).

4 Discussion

4.1 Meteorological and hydrological aspects

The flash flood in the Kasiniczanka catchment occurred as a result of heavy rainstorms that

developed in the cold front zone. The front separated the polar maritime air from the

Atlantic Ocean and continental tropical air. Many local flash flood events reported in

Poland have been recorded under similar synoptic conditions (Parczewski 1960; Bryndal

2015). In authors’ opinion, they can be considered as likely to trigger local flash floods in

this geographical region.

Comparison of the flood magnitude is important from the cognitive and practical point

of view. Table 3 presents the flood peak, the unit flood peak, and flood index K reported for

10 greatest flash flood events in the Carpathians. The floods occurred in catchments

comparable to Kasiniczanka in terms of area (13–48 km2). These hydrological data have

been published in the literature (Bryndal 2010; Bryndal et al. 2010a, b, c; Zoccatelli et al.

2010) and the Hydrate flash flood data center (www.hydrate.tesaf.unipd.it, Accessed on

01-09-2012). The data were refined, and only one cross section, representing the highest

value in terms of the K index, was selected for each flood. The unit flood peak in the

Kasiniczanka catchment was enclosed between 3.6 and 4.8 m3 s-1 km-2, and reached the

top position in the Polish Carpathians. The unit flood peak was usually higher compared to

the values reported for the Slovak and Romanian Carpathians (Table 3). Only three values

in the Slovak Carpathians and two values in the Romanian Carpathians exceeded the

highest unit flood peaks recorded in the Kasiniczanka catchment. It is worth noting that the

unit flood peak in smaller catchments can reach significantly higher values. The highest

values published in the literature for the Carpathians (Bryndal 2014a, b; Bryndal et al.

cFig. 4 The geomorphological changes of the Kasiniczanka river channel in 2010 and 2014. Number (a),
mean width (b) and cumulative length (c) of cut banks. Number (d), cumulative area of bars (e). Area of
bars deposited on terrace over floodplain (f). 1 river, 2 cut banks, 3 grade-control structures, 4 river channel,
5 bars, 6 numbers of investigated reaches
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2010a, b, c) and the Hydrate database are enclosed in the range 12.9–15 m3 s-1 km-2, and

were recorded in catchments ranging from 4 to 6 km2.

The flood index K developed by Françou and Rodier (1969) allows the comparison of

flood magnitude regardless of catchment area. This measure calculated for the Kasi-

niczanka river was enclosed between 3.9 and 4.1. It reached the highest position for the

local flash floods in the Polish Carpathians, in catchments ranging from 13 to 48 km2 in

area. In the Slovak and Romanian parts, the K index was usually enclosed between 2.5 and

3.6 (Table 3). The value 4.1 was exceeded during four flash floods (Slovakia—2; Roma-

nia—2). The K index also enables the evaluation of a river to flood formation. The higher

the index, the more susceptible is a river to a large-scale flood occurrence (Bartnik and

Jokiel 2015). Taking into account the values reported in Table 3, and comparing them with

world records (Bryndal et al. 2015), the susceptibility of small Carpathian catchments to

flood generation may be evaluated as ‘‘an average.’’

4.2 Geomorphological changes

Extreme rainstorms in headwater catchments may trigger liquid floods, debris floods or

debris flows (Borga et al. 2014). The type of process triggered depends on several char-

acteristics, including (1) the hydrologic, geomorphometric and geotechnical features of the

hillslopes, (2) the source materials and the availability of sediments, and (3) the frequency-

magnitude characteristics of the precipitation event (Borga et al. 2014). In the Polish

Carpathians, rainfall exceeding 20 mm h-1 is considered a threshold value triggering

liquid flash floods (Parczewski 1960; Ostrowski et al. 2012). However, such rainfall and

flooding generally result in the moderate geomorphological changes of a catchment.

Fig. 5 Changes in the mean and maximum width of the Kasiniczanka river channel in 2010 and 2014 (a),
modifications of the river channel not protected (b), and protected by hydrotechnical infrastructure (c). The
number of reaches corresponds to Fig. 4
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Fig. 6 Geomorphological changes of floodplain terrace (a, b, d) and hillslopes (c). Influence of
hydrotechnical infrastructure such as grade-control (d) and hydraulic drop structures (e) on geomorpho-
logical changes of the river channel. Destruction of bridges (f) and culverts (g) as a result of erosional
processes and organic material transportation. 1—places where erosion occured
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Significant changes usually resulted from rainfall exceeding this value many times over;

often P[ 80 mm (Izmaiłow et al. 2006; Gorczyca et al. 2013; Kowalczuk et al. 2013;

Verez et al. 2013; Pekalova et al. 2015). The flood in the Kasiniczanka river catchment in

Fig. 7 Maximum extend of flooding in Kasiniczanka catchment after flood event in 2014, on the
background of 0.2% flood inundate area
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Table 3 The flood peak (Qf), unit flood peak (q) and K indexes for local flash flood events in the Polish
Slovakian and Romanian Carpathians (ordered according to the K index). Source: this study on the basis of
Bryndal 2010, Hydrate flash flood data center (www.hydrate.tesaf.unipd.it) access at 2012-09-01; Zoccatelli
et al. (2010)

Lp River Cross section A (km2) Qf (m3 s-1) q (m3 s-1 km2) K (–)

Poland

1 Niedźwiedź Porąbka Uszewska P3 18.1 28.0 1.5 3.2

2 Ryjak Zabartówka 14.5 31.3 2.2 3.4

3 Targaniczanka Targanice 23.0 43.0 2.0 3.4

4 Tarnawka Kalnica 13.7 37.8 2.7 3.6

5 Wątok Szynwałd P6 14.9 44.9 3.0 3.6

6 Niedźwiadka Niedźwiada Dolna P2 13.7 43.3 3.2 3.6

7 Niedźwiedź Porąbka Uszewska P2 14.4 47.0 3.3 3.7

8 Osławica Radoszyce 31.0 84.5 2.7 3.7

9 cbn Brzeziny P1 26.8 81.5 3.0 3.8

10 Barbarka Czystochorb 13.4 67.0 4.7 3.9

11 Kasiniczanka C1 13.1 60.1 4.6 3.9

Kasiniczanka C2 17.9 72.2 4.0 3.9

Kasiniczanka C3 22.2 105.5 4.8 4.0

Kasiniczanka C5 48.0 171.5 3.6 4.0

Kasiniczanka C4 41.1 163.9 4.1 4.1

Slovakia

12 Sološnický potok Sološnica 10.4 5.7 0.6 2.5

13 Osrblianka Osrblie 27.8 12.8 0.5 2.5

14 Stupavka Borinka 33.8 16.84 0.5 2.6

15 Chvojnica Lopašov 31.1 24.6 0.8 2.9

16 Belá Košická Belá 23.1 36.4 1.6 3.3

17 Hutná L’ubietová 39.0 63.9 1.6 3.5

18 Biela Ždiar 14.1 75.0 5.3 4.0

19 Biela below Ždiarsky creek 22.1 100.0 4.5 4.0

20 Malá Svinka Jarovnice 35.4 230.0 6.5 4.4

21 Dubovický potok (creek) confluence 15.2 160.0 10.5 4.4

Romania

22 Crisul Negru Poiana 29.9 20.5 0.7 2.8

23 Valea Grosenilor Archis 29.2 29.0 1.0 3.1

24 Nimaiesti Budureasa 23.0 24.8 1.1 3.1

25 Valea Galbena Pietroasa 36.0 34.5 1.0 3.1

26 Teuz Ignesti 17.0 28.1 1.7 3.3

27 Sacele Sacele 32.0 45.0 1.4 3.3

28 Poicu Vanatori 37.0 52.2 1.4 3.3

29 Valea Cerbului Busteni 26.0 54.2 2.1 3.5

Valea Cerbului Busteni 26.0 62.3 2.4 3.6

30 Clit Arbone 36.0 175.0 4.9 4.2

31 Hauzeasca Orb Confluence 29.0 320.0 11.0 4.7

A, catchment area; K, the flood index
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2014 is one such example. This was generally a liquid-type flood, however, high rainfall,

and discharge exceeding the 0.1% flood, resulted in the significant geomorphological

changes of the river channel and floodplain terrace.

4.2.1 Erosional type of changes and their reduction opportunities

Erosional changes of river banks and river bed were generally related to bank undercutting,

rarely to plunge pools development. Lateral bank erosion was usually more significant in

unmanaged, ‘‘more natural’’ reaches of the river channel, where river banks had retreated

up to 30 m (reach 6, Fig. 5b). Significant geomorphological changes of a river channel,

after flash floods, were reported in other small Carpathian catchments (e.g., Izmaiłow et al.

2006; Siwek et al. 2011; Gorczyca et al. 2013; Kowalczuk et al. 2013; Verez et al. 2013).

The impact on flood water on river channel expressed by stream power index (Table 4) is

comparable to this observed during flash floods in the inland continental part of Europe

(Marchi et al. 2015). However, it is several times lower compared to the Mediterranean

region (Surian et al. 2016; Rinaldi et al. 2016).

Managed reaches of the channel, allowed the assessment of a hydrotechnical infras-

tructure functioning, during flash floods events. In the catchment studied, the infrastructure

includes bank protection, grade-control and bed reinforcement infrastructures that should

prevent lateral and bed erosion of a channel. The flood in the Kasiniczanka catchment

revealed that this hydrotechnical infrastructure could not eliminate erosion definitely, but it

did slightly reduce the process. There was observed the relationship between structural

design and the functioning of this infrastructure during a flash flood event. Lateral erosion

of river banks was reduced effectively in those reaches, where banks were protected by

gabions covering the entire river bank. The reaches, where rip-rap protected the lower part

of a river bank (Fig. 5c), lateral bank erosion undercut higher parts of the bank, and

geomorphological changes were significant. This suggests that gabions covering an entire

part of a river bank more effectively reduce lateral bank erosion. This type of bank

protection infrastructure should be applied in the areas most vulnerable to erosion reaches

of a river channel.

Erosional effects after the flood may be related to the constructional solution of grade-

control structures. Massive hydraulic drop structures, where flood water fell on a race floor

(usually composed of concrete), were able to effectively reduce bed and lateral erosion

(Fig. 6e). The grade-controls composed of concrete steps, without erosion-resistant sec-

tions, failed to function (Fig. 6d). This suggests that grade-control structures with the race

floor effectively prevent erosion and should be applied in practice.

Table 4 Cross-sectional stream power (X) and unit stream power (x) indexes during flash flood in
Kasiniczanka. Source: this study

Cross section number A (km2) Qf (m3 s-1) X (W m-1) x (W m-2)

C1 13.1 60.1 1572 11

C2 17.9 72.2 2122 79

C3 22.2 105.5 10,337 56

C4 41.1 163.9 6424 137

C5 48.0 171.5 6721 62

A, catchments area; Qf, flood peak calculated by slope-area method
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4.2.2 Accumulation-type change and its influence on river conditions

River bars are generally expedient in the river channel. They contribute, among others, to

the increase in biodiversity and river restoration (Korpak et al. 2008). Before 2014 flood,

almost no river bars were in the lower part of the channel, protected by hydrotechnical

infrastructure. After the flood, there was an increase in the number of river bars. This result

may be interpreted as a positive impact of catastrophic flash floods, for example, in the

context of river restoration.

The river bars were usually composed of mineral materials (gravel and boulders up to

150 mm in diameter, mixed with finer material), and they generally developed in the

vicinity of cut banks, in the river channel. This may suggest that this material was moved

only several tens of meters, in spite of the fact, that high flood magnitude occurred. Tree

logs and branches often created wood jams and caused the accumulation of mineral

material. These forms reached several tens of m2 in area and they were generally devel-

oped in the wider part of the floodplain and channel, rather than the narrower parts. Similar

results were observed in larger Carpathian catchments (Wy _zga and Zawiejska 2005). This

distribution mainly results from mechanisms of tree wood transportation and its deposition

(Korpak et al. 2008). It is worth to note, that wood jams usually create favorable conditions

for the accumulation process, but these landforms can also initiate erosional effects. The

wood jams created during flood event function as waterfalls, resulting in the development

of plunge pools (Fig. 6a). This process, observed in the Kasiniczanka catchment, is rarely

reported in other small Carpathian catchments (Izmaiłow et al. 2006).

4.2.3 Geomorphological changes of hillslopes

The geomorphological changes of hillslopes were generally related to the unpaved road

network system, where concentrated, rapid overall flow occurred. As a result of this, roads

were incised, and massive fans composed of coarse-grained rubble material were accu-

mulated near the incised road outlet (Fig. 6c). Similar processes were reported in other

Carpathian catchments after heavy rainstorms (Łajczak et al. 2014; Kroczak et al. 2015).

This suggests that unpaved road networks accelerate geomorphological changes of con-

temporary Carpathian slopes.

4.3 Flood risk management process in small catchments—selected aspects

4.3.1 Flood hazard and exposure—the law regulations and the role of the local
governments

Flash floods are among the most dangerous natural hazards in Europe (Barredo 2007). In

order to mitigate the negative effects of flooding, the European Union’s Flood Directive

(Directive 2007/60/EC) obliges all Member States to conduct preliminary flood risk

assessment to identify areas where potential significant flood risk exists. Where real risks

of flood damage exist, they must develop, flood hazard maps and flood risk maps, for such

areas. Finally, flood risk management plans must be drawn up for these zones. They should

address all phases of the flood risk management process—particularly: prevention, pro-

tection, and preparedness. These European Union regulations are translated into national

legislation by the Member States. In the context of such legislation, two issues deserve

special emphasis. The first concerns the preliminary flood risk assessment process.
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Flash floods occur locally; therefore, there is lack of information/databases regarding

these phenomena (Bryndal 2014a). As a result, many small catchments are not identified at

the preliminary flood risk assessment stage, and finally, there is a lack of flood hazard,

flood risk maps, and flood management plans, to support flood risk management process in

small catchments. Such documents are usually developed for larger catchments (several

tens of km2 in area). The second aspect is related to the definition of low probability flood,

which in practice, usually denotes 0.5 and 0.2% floods. The flood in the Kasiniczanka

catchment revealed that flood peak in small catchment can exceed 0.1% flood.

The abovementioned aspects lead to the conclusion, that flood risk management process

related to flash floods in small catchments is very complicated. The question is: how to deal

with local flash floods in small Carpathian catchments? Taking into account that flash

floods are characterized by a short time to peak and high magnitude of the flood wave, the

way to mitigate the negative impacts of flooding is, in authors’ opinion, the reduction of an

exposure. The exposure generally describes who and what may be harmed by the flooding.

In authors’ opinion, local governments, which are responsible for the preparation of local

development plans, can effectively reduce the exposure to flooding (e.g., restriction in

types of buildings and its parameters, etc.). In this context, the key information is the flood

extent (it characterizes the flood hazard), which should be included to the development

plans. Since flood magnitude can extend 0.1% flood, an inundated area for the Maximum

Probable Flood (MPF) should be delineated in small catchments. The extend of the MPF

and its elevation may allow decision-makers to prepare local development plans, which

contribute to flood mitigation effectively. In authors’ opinion, delineation of the MPF

extent and the law regulations owing to the reduction in exposure (e.g., the local planistic

documents) are fundamental steps to mitigate negative effects of flash floods in small

Carpathian catchments. These are the base for other actions (e.g., preparedness, increase in

awareness, etc.) for citizens and institutions that are involved in mitigating and reducing

the effects of flooding.

4.3.2 Designing and functioning of bridges and culverts

Another issue which deserves special attention, in the context of flood risk management

process, is the design of culverts and bridges. These elements are usually designed for 1%

flood. Many studies (Bryndal et al. 2010a, b, c) reveal that the 0.1% flow is exceeded

during flash floods in small catchments. Under such conditions, many culverts and dams

can be destroyed, as was the case in the Kasiniczanka catchment. Two factors contributed

to the destruction of this infrastructure. The first is related to downward and site bank

erosion by flood water, which overflowed a bridge deck (Fig. 6f, g). The second is asso-

ciated with the movement of organic material such as tree logs, which clogged the culverts

and bridges and contributed to their destruction (Fig. 6f). In this context, the following

conclusion can be drawn: bridge design, especially in small catchments, where flash floods

are expected more frequently, should take into account flows, which may occur during

lower probable floods. Moreover, bridge construction should not limit the movement of

floodwater (e.g., arch-type bridges).

5 Conclusion

The main conclusions of this study are as follows:
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(A) Hydrometeorological aspects

1. The rainfall occurred in a cold front zone, separated the polar maritime air flowing

from the Atlantic Ocean and continental tropical air. Because many local flash flood

events have been recorded under similar synoptic conditions, they can be considered

as likely to trigger local flash flood events in this geographical region.

2. The rainfall event lasted for 3 h, with the mean hourly rainfall intensity ranging from

19 to 31 mm h-1, resulting in an amount exceeding 90 mm. In small Carpathian

catchments, such precipitation usually generates enormous flash floods, as was

confirmed by this study and investigations carried out in other Carpathian catchments.

3. A hydrological post-flooding investigation, complemented using hydrological mod-

eling, enabled the reconstruction of the hydrological parameters of the flash flood.

Hydrological modeling process and the models used in this study have limitations and

the results are burdened with uncertainty, what have been discussed in hydrological

literature many times (e.g., Feldman 2000; Mistra and Singh 2003; Gaume and Borga

2008). However, this study confirms that comprehensive hydrological investigation (in

spite of methodological limits) may be a good approach for collecting hydrological

data about flash floods in small ungauged catchments.

4. Taking into account the maximum flow, the maximum specific flow

(3.6–4.6 m3 s-1 km-2) and the K flood index (3.9–4.1), this flood event is one of

the worst recorded in catchments ranging from 13 to 48 km2 in area, in the

Carpathians as a whole.

(B) Geomorphological changes

5. Flow magnitude exceeding 0.1% flood resulted in the geomorphological changes of a

river channel and floodplain terrace. Detailed analysis of these changes allows

conclude that:

(a) there was an increase in the number and dimension of cut banks and river bars

after the 2014 flood.

• in the river channel, bars were usually composed of gravel (up to 150 mm in

diameter). The bars usually occurred in the vicinity of cut banks, suggesting that

the transport of rubble material was restricted to several dozens of meters, in spite

of high flood peak.

• on the floodplain terrace, bars were composed of coarse-grained material. Many

bars were composed of organic substances (including tree logs) and mineral

material. These bars, reached several tens of m2 in area, and they were generally

developed in the wider part of the floodplain and channel, rather than the narrower

parts.

(b) greater geomorphological changes occurred in unmanaged channel reaches (the upper

and middle parts of the catchment), contrary to lower parts, where river channel is

partially protected by a hydrotechnical infrastructure. The geomorphological changes

correspond to higher values of unit stream power index.

(c) bank protection infrastructure, grade-control and hydrological drop infrastructures,

slightly reduced, but did not fully eliminated lateral and bed erosion. The intensity of

the erosion process was related to constructional solutions in the design of this
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infrastructure. Grade-control structures with the race floor effectively prevent erosion

and should be applied in practice.

(d) the intensity of geomorphological processes on the hillslopes was mainly related to the

unpaved roads system. The conclusion is that that road networks play important role in

geomorphological changes the of contemporary Carpathian slopes.

(C) Flood risk management aspects

6. The flood risk management process in small catchments is complicated and hampered

by: a lack of flood risk maps, and the fact, that the maximum flow recorded during

flash flood events exceeds even the 0.1% flood. The authors’ hold that the extent of the

Maximum Probable Flood in small catchments should be developed and included in

local development plans.

7. Bridge design, especially in small catchments, where flash floods are expected more

frequently, should take into account lower than 1% probable flow. Moreover, bridge

construction should allow for the free movement of flood water.
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Lenart W (1993) Opad atmosferyczny. In: Soczyńska U (ed) Podstawy hydrologii Dynamicznej. Wyd, UW,

Warszawa, pp 101–116
Lumbroso D, Gaume E (2012) Reducing the uncertainty in indirect estimates of extreme flashflood dis-

charges. J Hydrol 414–415:16–30
Marchi L, Borga M, Preciso E, Gaume E (2010) Characterization of selected extreme flash floods in Europe

and implications for flood risk management. J Hydrol 394:118–133
Marchi L, Cavalli M, Amponsah W, Borga M, Crema S (2015) Upper limits of flash flood stream power in

Europe. Geomorphology 272(1):68–77
Mistra SK, Singh VP (2003) Soil conservation service curve number (SCS-CN) Methodology. Kluwer,

Dordrecht
National Engineering Handbook (2010) Part 630, hydrology, chapter 15 time of concentration. United States

Department of Agriculture, Natural Resources Conservation Service
Ostrowski J, Czarnecka H, Glowacka B et al (2012) Nagłe powodzie lokalne (flash flood) w Polsce i skala
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