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Abstract Logistics in China has grown rapidly; in 2015, the freight volume has reached 41

billion ton, increasing by 4.4% year-on-year. At the same time, the pollutant emissions

from freight cars account for 70% of total emissions of motor vehicles, which severely

affected the air quality. The purpose of this paper is to investigate the effect of logistics on

air pollution; we used a new methodology based on vector autoregression of freight

turnover, gross domestic product, and urban population. We selected Beijing as our test

and created a model using time series data for the period 2000–2014. In this model,

permanent residents, freight turnover, and SO2 emission were used as proxies for popu-

lation size, logistic services, and degree of air pollution. Our analyses showed that the

expansion of logistic services had the biggest effect on air pollution. Moreover, impulse

response analysis revealed that logistic growth caused more serious air pollution over a

short time, with an ongoing negative effect. GDP growth was only weakly correlated with

air pollution, while urban population growth appeared to have little effect.
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1 Introduction

As the increasing of haze weather, the problem of air pollution control has became the

most noteworthy livelihood issue in China. Airborne hazardous substances not only result

in environmental pollution, but also affect human health. In order to reduce the air pol-

lution, the Chinese government has introduced many policies such as The Action Plan For

the Control of Air Pollution since September 2013 and Law of the People’s Republic of

China on the Prevention and Control of Atmospheric Pollution 2015. Despite the many

control measures taken, air pollution in China is extremely serious, especially in industrial

cities, developed areas, and metropolises. Thus, it is necessary to find out the factors which

cause the air pollution. It is pointed by The Chinese Academy of Sciences that the two

main causes of air pollutant emission are coal combustion and automobile exhaust. Zhao

et al. (2011) indicated that the potential of air quality improvement due to structure

adjustment in power plants and heating sectors is limited in Beijing. However, many large

cities have reduced their use of coal and turned their industrial focus to the service

industry. Logistics related to this industry are an important support for urban operations.

However, few studies focus on the impact of such logistic services on air pollution. The

rapid development of China’s economy as well as the daily demand of its increasing

population has increased the circulation of goods. For example, in 2015, the freight

turnover in China reached 17368.9 billion ton-kilometers. However, such logistics involve

heavy transportation stress, forming an important proportion of the total urban automobile

use. It is pointed out by 2015 China’s Motor Vehicle Pollution Control Report that

combustion of fossil fuels during transportation is a main source of air pollution. Mean-

while, the report on government’s work pointed out that in 2015 China’s emissions of SO2

were going to reduce by 3%. These have caused the government to restrict the time of out-

of-town lorries in cities and to plan to adopt EP-type automobiles instead of diesel trucks to

reduce emissions. More recently, the Chinese metropolitan governments suppressed pop-

ulation size because increasing population will bring more traffic pressure and cause more

energy consumption and air pollution. Beijing, as atypical service-oriented city in China,

has a large scale of logistics, with a rapidly growing GDP and large population. Based on a

preliminary calculation, the permanent residents and the GDP of Beijing were 21.52

million and 2133 billion CNY in 2014. Logistic services play a support role in its economic

development, the added value of transportation and warehouse industries accounts for

around 94.8 billion CNY in 2014. Meanwhile, according to the air pollution index, air

pollution in Beijing reached a peak in November 2015, having the most dangerous level in

recent years. Thus, we select Beijing as our test to instigate this study. The VAR (vector

autoregressive) model takes the form of multiple simultaneous equations, and the

endogenous variables in each equation form a regression with the lagged values of all

endogenous variables to estimate the dynamic relationships between all the endogenous

variables. Moreover, it allows us to consider both long-run restrictions and short-run

restrictions. Considering the characteristics of model and available data, we use a VAR

model to estimate relationships between key variables to explore the effect of growth in

GDP, population, and logistics on air pollution.

Air pollutant emission has been discussed extensively from an economic perspective.

Grossman and Krueger (1991) found that SO2 and ‘‘smoke’’ concentrations increase with

886 Nat Hazards (2017) 87:885–897

123



per capita GDP for low levels of national income, but decrease with GDP growth at higher

levels of income. Such results are confirmed by Selden and Song (1994) and Kaufmann

et al. (1998). Selden et al. evaluated the environmental Kuznets curves (EKCs) for

emissions of four important air pollutants using international data. Their results showed

that all four pollutants exhibited inverted-U relationships with per capita GDP, consistent

with the EKC hypothesis. Similarly, Kaufmann et al. demonstrated that there was a

U-shaped relationship between income and atmospheric concentration of SO2. However,

Akbostanci et al. (2009) explored the relationship between income and air pollution using

data from 1992 to 2001 for Turkish provinces. Their results did not support the EKC

hypothesis. Saidi and Mbarek (2016) examined the impact of financial development,

income, trade openness, and urbanization on CO2 emissions in 19 emerging economies.

Results showed a positive monotonic relationship between income and CO2 emissions.

None of their models supported the EKC hypothesis. Farhani and Ozturk (2015)found a

positive monotonic relationship between real GDP and CO2 emissions in Tunisia. Like-

wise, Fodha and Zaghdoud (2010) found that there was a long-term relationship between

the per capita emissions of CO2 and SO2 and the per capita GDP in Tunisia. In contrast,

Fosten et al. (2012) found support for the inverse U-shaped relationship between CO2 and

SO2 emissions and GDP. Other studies explored an even wider range of economic vari-

ables. Kivyiro and Arminen (2014) examined co-integration relationships between CO2

emissions, energy consumption, economic development and foreign direct investment in

six sub-Saharan African countries. Dogan and Turkekul (2016) found that there was

bidirectional causality between CO2 emission and GDP in the USA. Zakarya et al. (2015)

found that foreign direct investment had a co-integration relationship with CO2 emission in

BRICS countries (Brazil, Russia, India, China, and South Africa). Al-mulali (2012) found

that total primary energy consumption, foreign direct investment net inflows, GDP, and

total trade were important factors in increasing CO2 emission in various countries. Jova-

nović et al. (2015) explored the impact of agro-economic factors on greenhouse gas

emissions in European developing and advanced economies. Asongu et al. (2015) used an

autoregressive distributed lag approach to examine the nexus between energy consump-

tion, CO2 emissions, and economic growth in 24 African countries. Their findings showed

that there was a long-term relationship between energy consumption, CO2 emissions, and

GDP. Salahuddin et al. (2016) estimated short- and long-term effects of Internet usage and

economic growth on CO2 emissions in Australia. Their findings indicated that a higher

level of economic growth was associated with a lower level of CO2 emissions. Studies

carried out in China (e.g., Wang et al. 2016) show support for an inverted U-shaped

relationship between economic growth and SO2 emission. Alper and Onur (2016) inves-

tigated the validity of the EKC hypothesis for the period between 1977 and 2013. Wang

et al. (2015) undertook a decomposition study of energy-related CO2 emissions from

industrial and household sectors during 1996–2012; their results showed that the expansion

of economic activity was the dominant stimulatory factor for the increase in CO2 emissions

in China. Hao and Liu (2014) investigated the relationship between FDI, foreign trade, and

CO2 emissions. Hao et al. (2015) found that per capita GDP was positively correlated with

per capita SO2 emission.

Few studies have explored the influence of logistic growth related to goods and services

on the environment. Zhao et al. (2014) established a SO2 emission measurement model for

provincial-scale logistics in China. Their study found that the SO2 emission of unit freight

turnover for provinces in the western region was higher than for provinces in the east. Tian

et al. (2014) examined different regions’ freight turnover and energy consumption with

respect to various transport modes (i.e., railway, highway, waterway, aircraft, and oil
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pipeline) in China between 2000 and 2011. This study showed that the two highest

transport modes in terms of the greenhouse gas emission intensity were aircraft and

highway. Liao et al. (2011) estimated that the CO2 emission from Taiwan container

transport during 1998–2008, using a multiple regression model. Their analyses showed that

GDP and oil price were key factors affecting CO2 emissions. Yang et al. (2013) proposed a

bilinear non-convex mixed-integer programming model to help city logistic operators cut

their CO2 emissions by around 54.5%. More generally, Wang et al. (2014) analyzed major

technology and policy barriers to improve China’s transport energy output. Xiao et al.

(2015) found that the energy intensity and carbon intensity of logistics related to industry

remained at high levels. Liu et al. (2015) analyzed the CO2 emission differences among

China’s four transport sub-sectors. Xu and Lin (2015) used a vector autoregressive (VAR)

model to analyze the factors affecting changes in CO2 emissions in the transport sector.

Their results showed that reducing private vehicles had more impact on emission reduction

than reducing cargo turnover. Thus, logistics related to industry clearly affect the envi-

ronment, especially air quality. However, there is no clear understanding of how air

pollution reflects growth in freight turnover, GDP, and permanent residents.

VAR models have been widely used in environmental contexts. Yu and Liu (2015)

investigated the relationship between six standards of the air quality index in Wu Han

using a VAR model. Yang et al. (2009) explored the dynamic character of correlated

economic variables with air pollution. Soytas et al. (2007) investigated the effect of energy

consumption and output on carbon emission in the USA. Xu and Lin (2016) used a VAR

model to analyze the influence of the changes in CO2 emissions in the industry sector. In

this study, impulse response analysis and variance decomposition also are used to explore

relationships between economic variables and air pollutant emissions.

2 Materials and methods

2.1 Vector autoregression model

The VAR model can be used to analyze the dynamic interaction of time series and the

dynamic impact of random disturbances on the variable system. As such, it explains the

influence of various impacts on variables, and it is one of the relatively extensive appli-

cations in multivariate time series models. It can easily handle multiple variables and

dynamically analyze their statistical properties. We used the VAR model to dynamically

analyze the influence of freight turnover, GDP, and population size on SO2 emission.

The mathematical expression of a general VAR (P) model is:

yt ¼ A1yt�1 þ � � � þ Apyt�p þ Bxt þ et t ¼ 1; 2; . . .; T ; ð1Þ

where yt is a K 9 1 vector of time series t = 1,2,…,T; A is a K 9 K parametric matrix; xt

is a D 9 1 vector of exogenous variables; and B is the K 9 D coefficient matrix to be

estimated. et represents the random error term, while p represents the lag period.

Akaike information criterion (AIC) and Schwarz Criteria (SC) are used to select the lag

periods of the VAR model in this study. The AIC and SC are computed as follows:

AIC ¼ �2l=T þ 2n=T ; ð2Þ

SC ¼ �2l=T þ n lnT=T ; ð3Þ

where n represents the total number of estimated parameters and T represents the sample

length. l is determined using:
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In practice, the unit root test is used to measure the stationary case, while the co-integration

test is used to check whether any correlations exist. If the VAR model is stable, then our

analysis can continue with an impulse response analysis and variance decomposition.

2.2 Data

Logistics is a general designation, covering many activities, such as freight transportation,

distribution, and packaging, related to supply and demand of products or services. Because

we aimed to study the effect of logistics on air pollution, freight transportation was selected

as its proxy. Freight transport involves production of a number of harmful gases, con-

tributing to air pollution; freight turnover is its most useful data descriptor. Freight turnover

addresses not only the amount of transportation targets, but also their transportation dis-

tances, comprehensively showing the size of urban logistics. In 2014, the freight turnover in

Beijing reached 67.28 billion ton-kilometers. Air pollutants related to freight transport

include the harmful substances: nitrogen oxide, sulfur oxides, and particulate matter. Sulfur

dioxide (SO2) is a pollutant recorded as part of air quality measurements in the city with

complete data and some papers showed the relationship between logistics service and SO2

emissions. Zhao et al. (2014) established a SO2 emission measurement model for provin-

cial-scale logistics in China. Their study found that the SO2 emission of unit freight turnover

for provinces in the western region was higher than for provinces in the east. Xu et al. (2011)

analyzed the SO2 emissions from China’s railway transport from 1975 to 2007. Their study

found that SO2 emissions from railway transportation were getting reduced gradually for

33 years. Thus, sulfur dioxide was selected to be representative of harmful substances in the

air. Moreover, the permanent residents are an urban population. To have practical signifi-

cance, this study selected the fastest economic growth period of Beijing, covering from

2000 to 2014, with information sourced from the Beijing Social Development Database. To

reduce the differences among values of variables and heteroscedastic effects, logarithmic

processing was carried out on all data; thus, freight turnover is given as LOGF and SO2

emission as LOGS, GDP as LOGG, and population size as LOGP.

3 Results

3.1 Unit root test results

Before using the VAR model, it was necessary to guarantee the stationary data to prevent

spurious regression. Table 1 shows the results of augmented Dickey–Fuller unit root tests.

Our results show that the null hypothesis was not rejected. In fact, while all the variables

are first-order difference stationary, rejection of the null hypothesis occurs at the 10%

level. Thus, it can be concluded that all the variables are first-order difference stationary,

and can proceed with co-integration test.

3.2 Co-integration test results

Since most time series of variables are non-stationary, the transformed time series often do

not have direct economic significance. Engle and Granger (1987) proposed the co-
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integration theory and methods, providing another way for non-stationary series modeling.

The co-integration test is used on multiple variables. Although they may have independent

long-term variation, if they are co-integrated, then there exists a long-term and stable re-

lationship between these variables (e.g., Xu and Lin 2015). We use the method of mul-

tivariate co-integration proposed by Johansen and Juselius (1990), based on the VAR

model, and our co-integration tests are carried out on data, using the first-order lag. Test

results are shown in Table 2.

Trace statistics show that at the confidence level of 95%, there are two long-term co-

integration relationships between freight turnover, SO2 emission, population, and GDP.

3.3 Construction of our model

A VAR model is built based on the statistical properties of the data. It is constructed by

taking each endogenous variable in the system as the lag value function of all the

endogenous variables in the system. In this way, a single-variable autoregression model is

expanded to a ‘‘vector’’ autoregression model, comprising a multivariate time series

variable.

An important aspect of the VAR model is the determination of lag order. The bigger the

lag period, the greater the need for estimated parameters, and the greater the reduction in

the degrees of freedom of the model, while an insufficient lag period will not reflect the

dynamic characteristics of the model. AIC and SC are used to evaluate lag order in this

study. Lag order for our VAR model is given in Table 3, reflecting AIC and SC.

Table 1 ADF unit root test results

Variable ADF test statistic Prob. 1% Level 5% Level 10% Level Conclusion

LOGF -0.687084 0.8191 -4.004425 -3.098896 -2.690439 No stationary

DLOGF -2.984.39 0.0704* -4.297073 -3.212696 -2.747676 Stationary

LOGG 1.287212 0.9997 -4.992279 -3.875302 -3.388330 No stationary

DLOGG -3.749014 0.0601* -4.992279 -3.875302 -3.388330 Stationary

LOGP -1.805951 0.3614 -4.057910 -3.119910 -2.701103 No stationary

DLOGP -2.866796 0.0837* -4.297073 -3.212696 -2.747676 Stationary

LOGS 0.403647 0.9750 -4.004425 -3.098896 -2.690439 No stationary

DLOGS -2.745937 0.0903* -4.057910 -3.119910 -2.701103 Stationary

D represents the first difference of variables

* 10% significant level

Table 2 Cointegration test results

Hypothesized no. of CE(s) Eigenvalue Trace statistic Max–Eigen statistic

None* 0.988486** 103.7394** 58.03473

At most 1* 0.927321** 45.70470** 34.08220

At most 2 0.563886 11.62250 10.78807

At most 3 0.062171 0.834433 0.834433

* 10% significant level

** 5% significant level
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Estimates, along with their t values and standard errors, are given in Table 4. Clearly,

the equation has high R-square values.

To ensure our model was well-specified, it was necessary to conduct a stability test. If

the VAR model is not stable, then an impulse response analysis cannot be carried out.

Stability was assessed using an autoregressive characteristic polynomial. When all the

characteristic roots are less than 1, i.e., they are located within the unit circle, then the

model is stable. VAR roots of this characteristic polynomial are shown in Fig. 1.

3.4 Impulse response functions

Because the VAR model is not a theoretical model, no apriority constraint is made on the

variables. Thus, the dynamic effect on the system is analyzed as the VAR model is

impacted. The impulse response function is an analysis tool used by many researchers to

describe this causality, i.e., the shock generated by the change of one variable in the VAR

model on another variable (e.g., Xu and Lin 2015; Aydin and Cavdar 2015). Analyses are

presented dynamically using graphs, which show the response direction, amplitude, and

persistence of the variables in the model related to a shock. Such changes can be observed

over time. Its advantage is to highlight variable changes over time at a system-scale, i.e.,

when the whole system undergoes external shocks, it will be temporarily unstable, but will

achieve balance with adjustments over time. In impulse response analysis, the VAR model

is transformed into a vector process of infinite order. All other conditions are unchanged.

Thus, the error term impacted by a unit at some time point will impact the endogenous

variable in the model during the current period.

To analyze the influence of freight turnover, GDP, and population size on SO2 emission,

a one-standard-deviation shock was given using these three variables in turn. The resulting

impulse response functions for SO2 emission are shown in Fig. 2. Here, the horizontal axis

shows that the lag period of impact effect is 30. The vertical axis shows the response of

SO2 emission to these three factors; the solid line is the impulse response function, and the

dotted line gives ±2 standard deviations to the response.

Figure 2a shows that a one-standard-deviation shock to the freight turnover increases

SO2 emission for about three periods before it begins to have a negative effect on SO2

emission over the long term, except for a brief rise in the 16th period. The impulse

response shows that the increase in freight turnover during the initial year increases the

SO2 emission; this suggests it would be worthwhile to more extensively introduce the use

of clean energy vehicles in transport companies. Beijing has many preferential policies for

EP-type automobiles. Such measure also reduces air pollution over the long term.

SO2 emission shows a negative response to population size growth in the early stages

(Fig. 2b). This reflects that an increase in the urban population causes industrial enterprises

Table 3 Lag length test results

Lag LogL LR FPE AIC SC HQ

0 58.08565 NA 2.86e-09 -8.320869 -8.147038 -8.356599

1 135.8155 95.66753 2.54e-13 -17.81777 -16.94862 -17.99642

2 189.0616 32.76682* 2.51e-15* -23.54794* -21.98346* -23.86951*

* Lag order selected by the criterion
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to relocate, reducing the emission of SO2 in the metropolitan region over the short term.

However, in the long run, population growth is likely to increase air pollution linked to

traffic, causing SO2 emission to show a positive response over time.

Table 4 Vector autoregression estimates

LOGF LOGG LOGP LOGS

LOGF(-1) 0.022518 -0.237799 -0.134211 0.031426

(0.36765) (0.22753) (0.03804) (0.53331)

[0.06125] [-1.04512] [-3.52847] [0.05893]

LOGF(-2) 0.158091 0.078523 -0.090442 -0.719911

(0.39408) (0.24390) (0.04077) (1.06811)

[0.40116] [0.32195] [-2.21825] [-0.99944]

LOGG(-1) 1.510769 0.804059 -0.047352 -1.067508

(0.73631) (0.45570) (0.07618) (1.06811)

[2.05180] [1.76446] [-0.62159] [-0.99944]

LOGG(-2) -1.608503 0.154985 0.267032 1.831392

(0.90217) (0.55834) (0.09334) (1.30869)

[-1.78293] [0.27758] [2.86092] [1.39941]

LOGP(-1) 0.211466 0.217734 0.046357 -6.519221

(3.87788) (2.39998) (0.40120) (5.62530)

[0.05453] [0.09072] [0.11554] [-1.15891]

LOGP(-2) 1.580906 0.817602 0.686549 3.210431

(3.50886) (2.17160) (0.36302) (5.09000)

[0.45055] [0.37650] [1.89119] [0.63073]

LOGS(-1) 0.673839 0.424172 0.031293 0.619949

(0.28189) (0.17446) (0.02916) (0.40891)

[2.39046] [2.43138] [1.07300] [1.51610]

LOGS(-2) -0.721982 -0.018370 0.087531 -0.239800

(0.29780) (0.18430) (0.03081) (0.43199)

[-2.42443] [-0.09933] [2.84102] [-0.55511]

C 0.638906 -9.510745 2.102589 35.82966

(13.0277) (8.06275) (1.34784) (18.8982)

[0.04904] [-1.17959] [1.55997] [1.89593]

R2 0.988999 0.999194 0.999720 0.988520

Adj. R2 0.966998 0.997582 0.999161 0.965561

Sum sq. resids 0.007100 0.002719 7.60E-05 0.014940

SE equation 0.042130 0.026074 0.004359 0.061115

F-statistic 44.95248 619.9629 1786.499 43.05574

Log likelihood 30.38584 36.62359 59.87734 25.55003

AIC -3.290129 -4.249783 -7.827283 -2.546158

SC -2.899011 -3.858664 -7.436164 -2.155039

Mean dependent 15.39256 9.251120 7.473740 11.78947

SD dependent 0.231915 0.530301 0.150447 0.329325

Standard errors in () and t statistics in []
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Figure 2c shows the impulse response function for SO2 emission related to a one-

standard-deviation shock of GDP growth. SO2 emission fluctuates positively and nega-

tively after this impact, indicating that the effect of increasing Beijing’s GDP on air

pollution is not clear.

3.5 Variance decomposition

Variance decomposition analyzes the contribution degree of each impact on the endoge-

nous variable, highlighting the importance of different structural shocks. Therefore, vari-

ance decomposition can illustrate the relative importance of a given factor in the VAR

model. To quantitatively describe the contributions of freight turnover, GDP and

Fig. 1 VAR roots of
characteristic polynomial

Fig. 2 Responses of the SO2 emission to influencing factors. a Response of LOGS to LOGF. b Response of
LOGS to LOGP. c Response of LOGS to LOG
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population size on SO2 emission, variance decomposition of our VAR model is given in

Table 5. Here, the contributions to changes in SO2 emission standard error are shown for

freight turnover, GDP, population, and SO2 emission.

The initial impact of freight turnover on the forecast error variance of emissions is

approximately 82%, which is much higher than any other variable in this system. Although

it drops to its lowest contribution on the 7th period, it then continues to rise. GDP shocks

ranked second for its relative contribution. This shock accounts for around 12% of the

forecast error variance over the short term and 22% over the long term. Population growth

explains only a small part of the forecast error variance, accounting for around 8% over the

long term. SO2 emission had little independent impact, with a consistent contribution of

about 2%.

4 Discussion and conclusions

We examined some possible factors that increase SO2 emission in Chinese metropolitan

regions, using data from Beijing as our test. Beijing has a high requirement for environ-

mental quality, it has little heavy industry enterprises located within the metropolitan

region, but a high-level of logistic activities related to goods and services. Therefore, it is

representative of other inland cities in China. A VAR model was used explore empirical

effects on SO2 emission linked to various economic factors, covering the period

2000–2014.

First, our model showed that expansion of logistic services has a strong effect on air

pollution. Growth in logistic services, especially freight turnover, had an initial positive

impact on air pollution, but became negative over the long term. This implies that the

effects on air pollution related to future the expansion of logistic services need to be

addressed. Preferential policies for clean energy automobiles need to continue to be

implemented. However, because serious air pollution can result from increased logistic

activities, the Beijing government should adopt appropriate measures to control urban

logistics. Such measures will mitigate air pollution becoming more serious during busy

economic periods.

The second finding of our model is that population growth had only a small effect on air

pollution. This confirms the findings of Zhu and Peng (2012). Our analysis showed that the

increase in population only aggravated air pollution directly after the initial impact, with

Table 5 Variance decomposi-
tion analysis

Period SE LOGF LOGG LOGP LOGS

1 0.061115 82.34859 11.92836 3.536216 2.186834

2 0.078807 70.46897 16.05348 11.65692 1.820639

3 0.082842 64.74967 22.70501 10.61068 1.934644

4 0.087635 58.30472 29.77016 9.933365 1.991746

5 0.088829 58.07134 29.53758 10.42259 1.968482

6 0.089754 56.88119 30.97131 10.21545 1.932048

7 0.091507 57.32958 30.91373 9.895572 1.861120

8 0.099253 63.06811 26.45126 8.786489 1.694135

9 0.107194 67.11203 22.71016 8.578541 1.599269

10 0.110291 68.37115 21.69609 8.408220 1.524538
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time it became a positive effect. This supports the government policy to shift industries that

contribute metropolitan region to reduce urban air pollution. However, the rapid growth in

transportation and private vehicles related to population growth still affects air quality.

Thus, it is reasonable to continue to control population growth in Beijing.

Finally, growth in GDP in Beijing caused both positive and negative fluctuations in air

pollution. However, Yu et al. (2015) pointed out that GDP growth rate has a great influence

on the carbon emissions in Beijing. Our inconclusive trend could reflect that a positive

shock to the economy would raise oil prices, increasing costs of rail transport. At the same

time, growth in GDP may increase logistic services and transportation, resulting in a

positive response. Hence, the influence of GDP on air pollution is not clear. However,

according to the Variance decomposition analysis, GDP still makes a contribution to air

pollution.

Our study shows that growth of logistics services has a big effect on air pollution.

Currently, the trucks used for most transportation in China use diesel fuel. Although heavy-

duty diesel vehicles only account for about 4% of the motor vehicle inventory, their

emissions of nitrogen oxides and particulate matter account for more than 50 and 90% of

the total emissions of motor vehicles, respectively. Thus, municipal governments need to

make a reasonable future plan for transportation, which mitigates air pollution. Given that

the population of China exceeded 1.36 billion in 2015 and that urban populations account

for 54.7% of this population, it is clear that China needs to set policies to reduce population

size. In particular, attention should be given to distributing the population to least impact

the environment.
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