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Abstract This paper presents laboratory experiments and numerical simulations of effects

of submerged obstacles on tsunami-like solitary wave and its run-up. This study was

carried out for the breaking and non-breaking solitary waves on 1:19.85 uniform slope

which contains a submerged obstacle. New laboratory experiments are performed to

describe the mitigation of tsunami amplitude and run-up under the effect of submerged

obstacles. We are based on experimental results obtained to validate the numerical model.

The numerical modeling using COULWAVE aims essentially to show the effect of the

obstacle on the shape of solitary wave and the limit of this effect. Using a multiple

nonlinear regression, we have determined a model to estimate height of run-up according

to the amplitude of the wave and the obstacle peak depth.
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1 Introduction

Comprehension of wave run-up on beaches is essential for prediction of beach erosion,

coastal impact of tsunamis, and storm surges. This is one reason for the lasting attention

that run-up topics have required in the literature of hydrodynamics and coastal engineering

(Pedersen 2008).

The problem of the run-up of long non-breaking and breaking waves on a plane beach is

well described mathematically within the framework by a nonlinear shallow water theory.
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This approach leads to an analytical solution based on the Carrier–Greenspan transfor-

mation (Carrier and Greenspan 1958). Various shapes of the periodic incident wavetrains,

such as the sine wave (Kaistrenko et al. 1991; Madsen and Fuhrman 2008; Belega 2013),

cnoidal wave (Synolakis 1991), and nonlinear deformed periodic wave (Didenkulova et al.

2006, 2007) have been treated in the literature. The relevant analysis has also been per-

formed for a variety of solitary waves and single pulses, such as soliton (Padersen and

Gjevik 1983; Synolakis 1987; Knouglou 2004), sine pulse (Mazova et al. 1991), Lorentz

pulse (Pelinovsky and Mazova 1992), Gaussian pulse (Carrier et al. 2003; Knouglou and

Synolakis 2006), N-waves (Tadepalli and Synolakis 1994), ‘‘characterized tsunami waves’’

(Tinti and Tonini 2005), and the random set of solitons (Brocchini and Gentile 2001). As is

often the case in nonlinear problems, reaching an analytical solution is seldom possible.

Run-up of solitary pulses is, however, easily implemented experimentally in measuring

flumes, and various experimental expressions about run-up of long waves on plane beach

are available (Synolakis 1987; Briggs et al. 1995; Hsiao et al. 2008) (see Didenkulova

et al. 2009).

Due to the simulation simplicity and similarity of wave hydrodynamics, solitary-type

long waves have been used for decades to investigate tsunami behavior (Liu et al. 1991;

Synolakis and Bernard 2006). Particularly, solitary waves interacting with coastal objects

have garnered considerable attention in terms of wave run-up on a uniform slope (Lin et al.

1999; Carrier et al. 2003; Li and Raichlen 2003; Hsiao et al. 2008; Chang et al. 2009;

Hsiao and Lin 2010; Wu et al. 2012; Jianhong et al. 2013), disintegration and transmission

properties of waves over an abrupt topography (Losada et al. 1989; Liu and Cheng 2001;

Lin 2004), wave–structure interaction between a wave/bore and a vertical/floating barrier

(Ramsden 1996; Liu and Al-banaa 2004; Xiao and Huang 2008), vortex shedding and

advection around a submerged obstacle or a subaerial plate (Chang et al. 2001; Lin et al.

2005), and free surface kinematics of a wave passing over and through a porous structure

(Lee and Lan 1996; Lan and Lee 2010; Wu et al. 2014; in Hsiao and Lin 2010).

This study investigates behavior of tsunami solitary waves impinging and overtopping a

submerged trapezoidal obstacle on a 1:19.85 sloping beach, and the effects of a submerged

obstacles on run-up value. Several series of experiments were carried out in medium-size

wave flume for four different depths of obstacle’s peak. New laboratory data of maximum

run-up height of wave under submerged obstacle effect are presented and discussed. A

numerical modeling of the same case is employed using the FD computing code namely

COULWAVE. A description, of the bottom bathymetry, the experimental set, and the

numerical model, is presented in Sect. 2. Section 3 shows the different results obtained by

numerical and experimental investigations, and also the comparison between the two.

Using least squares method estimation, we established a regression model of maximum

run-up according to wave height and obstacle peak depth. The principal findings are drawn

in Sect. 4.

2 Method

2.1 Bottom profile

The present bottom profile is used to reproduce (Synolakis 1987) cases for non-breaking

and breaking solitary wave climbing up a plane beach; however, we have added to this

beach a submerged obstacle. The bottom profile is one-dimensional, and regular horizontal
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bathymetry comes to end (ended) by a 1:19.85 sloping beach as shown in Fig. 1. The beach

contains in its middle a trapezoidal obstacle, which has a slope on both sides equal to 1:2.5,

where d is water depth, L and H are length and amplitude of solitary wave, respectively, P

is obstacle peak depth, and R is run-up value. S1, S2, and S3 are the gauges which measure

water elevation variation in time. Note that the obstacle peak width is equal to d/10, and

cot b ¼ 19:85.

2.2 Experimental setup

The experiments were carried out in a medium-size flume at Civil Engineering Faculty’s

Hydraulics Laboratory of University of Sciences and technology Houari Boumediene

(USTHB) Algiers. This flume has a dimension of 22 m long, 75 cm wide, and 90 cm deep.

Target solitary waves were generated at one end of the flume by a guillotine system

wavemaker (Goring and Raichlen 1980). A plane beach with 1 vertical to 19.85 horizontal,

consisting of a wooden skeleton covered with plastic, starts 12 m from the vertical

bulkhead wave generator. A mobile trapezoidal obstacle is mounted in a way that its peak

is always in the middle of the submerged part of the slope. The obstacle slopes on both

sides are equal to 1:2.5, and its peak width is equal to 3 cm.

Figure 2 shows a photograph of the laboratory flume and the measurement facilities

employed in the present experiments. The arrangement of measurement apparatus was

deployed with wave gauges and camera. The elevation of local water surface was recorded

by three wave gauges located at (S1) 5 m, (S2) 10 m, and (S3) 16 m from the wavemaker. It

is noted that the wave probe S2 located 10 m from the wave generator is referred to the

reference gauge in all experiments. We note that each wave gauge was mounted at the

middle of the flume width, and thus the viscous effect is negligible. All wave gauges were

calibrated through a standard method which concerns the change of water level to adjust

the response voltage of each gauge before and after the experiments to ensure its linearity

and stability. The linearity of gauge response was given by a correlation coefficient of

0.9999. Note that to write this subsection we followed the same methods used in Hsiao

et al. (2008).

2.3 Numerical model

The model used in this study is the Cornell University Long and Intermediate Wave

Modeling package (COULWAVE) (Lynett and Liu 2002). COULWAVE was developed to

model the propagation and run-up of long and intermediate length waves, using fully

nonlinear and dispersive wave theory (i.e., the nonlinear Boussinesq equations) as

described by many authors (Lynett and Liu 2002, 2005; Lynett et al. 2002; Lynett 2006).

Fig. 1 Definition sketch of bottom profile and the definitions of physical variables
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Because this wave modeling package is computationally intensive, there are also options to

use different approximations, such as weakly nonlinear, linear, and non-dispersive forms of

the wave equations. On the basis of initial tests, the weakly nonlinear ‘‘extended’’ equa-

tions [termed WNL-EXT in Lynett and Liu (2002)] were used to simulate solitary waves

overtopping obstacles even with steep slopes of obstacle (1/2.08) (Tsung et al. 2012), and

fully nonlinear equations in tsunami simulation on real topography (Geist et al. 2009). The

WNL-EXT form of the wave equations described by Lynett and Liu (2002) are derived

from the fully nonlinear form by assuming that the wavelength is much greater than the

water depth and that the wave amplitude and vertical seafloor displacement are much

smaller than the water depth. Specifically, for the dimensionless parameters: [from Geist

et al. (2009)]

Continuity of mass (COM):

gt þr �M ¼ 0 ð1Þ

where

M ¼ ðhþ dgÞ ua þ l2 1

2
z2
a �

1

6
ðh2 � hdgþ d2g2Þ

� �
rðr � u2Þ

�

l2 za þ
1

2
ðhþ dgÞ

� �
r½r � ðhuaÞ�

�
þ Oðl4Þ

ð2Þ

Equation of motion (EOM):

uat þ dðua � rÞua þrgþ l2V1 þ dl2V2 ¼ Oðl4Þ ð3Þ

where

V1 ¼ 1

2
z2
arðr � uatÞ þ zar½r � ðhuatÞ� � r 1

2
ðdgÞ2r � uat þ dgr � ðhuatÞ

� �
ð4Þ

Fig. 2 Prospective view of the flume and the obstacle. (a) Plane beach, (b) obstacle, (c) wave gauge
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V2 ¼ r ðza � dgÞðua:rÞ½r � ðhuaÞ� þ
1

2
z2
a � d2g2

� �
ðua � rÞðr � uaÞ

� �

þ 1

2
r ½r � ðhuaÞ þ dgr � ua�2
n o ð5Þ

d ¼ a0

h0
; l ¼ k0h0 are scales of nonlinearity and dispersion respectively, where a0 and h0 are

typical amplitude and still water depth, respectively.

za ¼ ð1 þ 2aÞ
1
2 � 1

h i
h � �0:531h ð6Þ

a ¼ 1

2

za

h

2

þ za

h

� 	
� �0:39 ð7Þ

ua is the horizontal velocity at z ¼ za and ua ¼ ðr/Þz¼za

3 Results

3.1 Wave shape and amplitude evolution

The obstacle has a steep slope 1:2.5, and thus a significant vertical velocity will be induced

around the obstacle, or even a vortex may be formed behind. To verify the applicability of

the model to the present problem, the comparison of the time histories of the free surface

elevation between mean measurements and numerical results must be demonstrated. As

can be seen in Figs. 3 and 4, one measured wave gauge datum for non-breaking and

breaking wave at downstream of the obstacle (S3 16 m from the wavemaker), is chosen to

compare with numerical results. We only present results for two cases as a mean of

verifying the applicability of the model, one for non-breaking wave and another for

breaking wave. Note that for both non-breaking and breaking wave, the water depth is

(d = 0.3 m) and the depth of the obstacle peak is (P = 0.027 m). Figure 3 shows the

comparison of numerical time history of free surface vertical displacement with laboratory

gauge recording of non-breaking wave (H = 0.025 m). There is no significant difference

among the two profiles, except the perturbations after the mean wave in the experimental

gauge recordings. These perturbations are due to the wave generation device. Figure 4

shows the comparison of numerical time history of free surface vertical displacement with

laboratory gauge recording of the breaking wave (H = 0.1 m). The agreement for the main

Fig. 3 Gauge recording of non-breaking wave (H = 0.025 m) for obstacle depths (P = 0.027 m) in water
depth (d = 0.3 m). Experimental results (solid line), numerical results (dashed line)
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wave form is acceptable. However, discrepancies exist for the small trailing waves,

especially the presence of a small wave just before the main one. This small wave exists

also for non-breaking wave in Fig. 3, and it is due to the volume of water flowing from the

bottom during the opening of the vertical wall of the wave maker.

To obtain a better understanding the effect of submerged obstacle on solitary wave

shape, we made several numerical simulations of non-breaking wave (H/d = 0.0185). The

choice of the non-breaking wave is mainly due to the absence of discrepancies comparing

to the breaking wave, making it easier to distinguish changes in shape due to the obstacle.

We vary the depth of the obstacle peak in each simulation, and we compare the time

histories of the free surface elevation for the gauge (S3), just behind the obstacle, with the

recording of the same gauge, without obstacle. The obtained results are illustrated in

Fig. 5.

Figure 5 shows the comparison of the numerical gauge recording of (S3) (Fig. 1) in

presence and without submerged obstacle, for non-breaking solitary wave (H/d = 0.0185).

The profiles are plotted according to the dimensionless time for different depths of the

submerged obstacle peak, (P/d = 0.01 to P/d = 0.17). The recordings of simulations

without obstacle are presented in dotted line and those of simulations with obstacle are

presented in solid line.

From Fig. 5, the effect of the obstacle on all wave characteristics is obvious, in par-

ticular, on the amplitude. Figure 5a–c shows that the presence of the obstacle clearly

reduces the amplitude of the wave. It is apparent from the profiles shape that the wave is

broken approaching the obstacle. This effect decreases with increasing depth of the

obstacle peak until it disappears completely in Fig. 5d. Figure 5e-f shows an adverse effect

on the amplitude comparing to the previous figures. The only explanation is that going up

the slope of the obstacle, and under the effect of the abrupt decrease in depth, the amplitude

of wave (the potential energy) increases, and it is called the dispersion effect. We can see

also the effect of dispersion caused by the obstacle in the difference between the time made

by the wave to reach the gauge location in presence of obstacle and without obstacle (the

difference between the peaks). This difference becomes smaller when the depth of the

obstacle peak increases, but it still exists even for the large depths. Excepting the effect of

dispersion which goes until the depth P/d = 0.17 (Fig. 5h), all the effects disappear

beyond the depth P/d = 0.9, and the shape of the profiles becomes substantially the same.

Note also the presence of the disturbances after the two main peaks (incident and reflected

wave), and this is due to the reflection of the wave on the downstream slope of the obstacle

and the slope of the plan beach.

Fig. 4 Gauge recording of breaking wave (H = 0.1 m) for obstacle depths (P = 0.027 m) in water depth
(d = 0.3 m). Experimental results (solid line), numerical results (dashed line)
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3.2 Wave run-up

In the practical cases, the obstacles present a barrier against the devastative force of the

tsunami waves which appears in the floods of the continent, because of the run-up. Thus

the effect of the obstacle peak depth on the run-up could guide us in the protection of the

beaches against the floods by the tsunamis. In this fact, we studied the influence of the

obstacle peak depth on the run-up.

Fig. 5 Time series of (H/d = 0.0185) wave for obstacle depths a P/d = 0.01, b P/d = 0.02, c P/d = 0.03,
d P/d = 0.06, e P/d = 0.08, f P/d = 0.09, g P/d = 0.12, h P/d = 0.17. Without obstacle (dotted line). In
presence of obstacle (solid line)

Nat Hazards (2017) 87:757–771 763

123



Figure 6 presents experimental results of the evolution of the run-up according to the

amplitude of wave for several obstacle peak depths. The x-axis presents the dimensionless

value of the amplitude (H/d), and the y-axis presents the dimensionless value of the

maximum run-up (R/d).

The data represented in Fig. 6 encompass the results obtained for the obstacle dimen-

sionless peak depths P/d = 0.03, P/d = 0.06, P/d = 0.09, P/d = 0.12, P/d = 0.5 (without

obstacle) and the experimental results obtained by Synolakis (1987). Figure 6 shows

Fig. 5 continued
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clearly the effect of the submerged obstacle on the run-up values, and this effect is

presented by reducing run-up values in the presence of submerged obstacle comparing to

those without obstacle. As can be seen also in Fig. 6, the peak depth has a great effect on

reducing the run-up. For the small obstacle peak depth, the reduction of run-up value is

very important and vice versa. This effect is limited to the small wave amplitudes, and for

the large wave amplitudes, it becomes insignificant. In another sense, there is obviously no

concordance between the results we have obtained (without obstacle) and the results

obtained by Synolakis (1987). This is probably due to the roughness of the materials used

in the construction of the slope. Synolakis (1987) used aluminum plates, whereas we used

plates of plexiglass. In this case, the friction was able to reduce the value of the run-up by

approximately 20%.

Following validation of the present model, numerical simulations are performed to

reproduce the same cases studied in the experimental investigation. Figure 7 plots the

numerical results of the dimensionless maximum run-up data (R/d) against the dimen-

sionless wave amplitude (H/d). Because of the ease of controlling the wave amplitude

using COULWAVE, Fig. 7 gives us clearer view of the submerged obstacle effect on the

run-up. The obtained numerical results confirm what has been said about the experimental

ones in Fig. 6. Note that the bed friction coefficient used for all numerical calculations is

10-2.

For a good discussion of the results, and to give further clarification, we just have to

separate the graphs by putting each obstacle peak depth in its own graph. Figure 8a–d

Fig. 6 Experimental results of run-up evolution according to the amplitude of solitary wave for several
obstacle peak depths. Without obstacle (plus symbol), experimental results (Synolakis 1987) (times symbol),
P/d = 0.03 (filled diamond), P/d = 0.06 (filled triangle), P/d = 0.09 (filled circle), P/d = 0.12 (filled
square)
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compares the numerical results of maximum vertical run-up to the measured experimental

ones in four cases, representing each one a different obstacle peak depth. A regression

model performed by Eq. (8) is also plotted on the same graphs.

R

d
¼ 1:012 sin

P

d

� 	� 	0:1036

sin
H

d

� 	� 	0:6594

ð8Þ

Equation (8) is a multiple nonlinear model representing the correlation of run-up dimen-

sionless values (R/d) against the dimensionless values of the obstacle peak depth (P/d) and

the dimensionless wave amplitude (H/d). The model has been determined using nonlinear

least squares estimation method with a determination coefficient R2 ¼ 0:981. From the

results illustrated in Fig. 8a–d, it is conspicuous that the present laboratory measurements

of run-up heights are in good agreement with the numerical predictions. We could also

clearly see that the model presented by Eq. (8) can well describe the run-up heights

evolution for both breaking and non-breaking wave.

The significant difference observed between the experimental results obtained by

Synolakis (1987) and our own experimental results without obstacle led us to make an

additional numerical investigation using a bottom friction coefficient f ¼ 10�3. According

to Lynett et al. (2002), which is by the way demonstrated in this case (Fig. 9), the bottom

friction has very important effect on the run-up value. Figure 9 presents the run-up evo-

lution according to amplitude of solitary wave, comparing the experimental results

obtained by Synolakis (1987) to the numerical results using a friction coefficient f ¼ 10�2,

Fig. 7 Numerical results of run-up evolution according to amplitude of solitary wave for several obstacle
peak depths. Without obstacle (plus symbol), P/d = 0.03 (filled diamond), P/d = 0.06 (filled triangle), P/
d = 0.09 (filled circle), P/d = 0.12 (filled square)
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and the experimental results of the present study to the numerical results using friction

coefficient f ¼ 10�2. The bottom friction change explains the difference we have observed

in Fig. 6, especially for the big values of wave amplitude. Figure 9 shows a satisfying

agreement between the experimental and numerical results according to the bottom friction

coefficient, and this agreement comforts what was said before concerning the roughness of

the slope. Note that we tried to make another simulations using bottom friction coefficient

f ¼ 10�4, but it was difficult to ensure the numerical stability.

Based on the previous results, the applicability of the numerical model to the present

problem is verified. Next, we will focus on the effect of obstacle peak depth on non-

breaking wave run-up height. Figure 10 shows the evolution of the run-up according to the

obstacle peak depth. The x-axis presents the dimensionless depth value of obstacle’s peak

‘‘P/d,’’ and in the y-axis the dimensionless value of the run-up ‘‘R/d.’’ The rhombuses (run-

up) represent the values of the run-up corresponding to a defined peak depth for the same

non-breaking wave (H/d = 0.0185), and the series represented by a dashed line is the

formula shown in Eq. (9).

R

d
¼ 0:3469

P

d

� 	
þ 0:0916 ð9Þ

Equation (9) is obtained by linear regression; it presents the line of tendency equation of

the ascending part of the run-up series. The coefficient of determination of the regression

model and the results is R2 ¼ 0:981. Note that the graph contains two essential parts: The

Fig. 8 Experimental and numerical results comparison to regression model of run-up evolution according
to amplitude of solitary wave for several obstacle peak depths. Experimental results (filled triangle),
numerical results (filled square), regression model of Eq. (8) (dashed line). a P/d = 0.03, b P/d = 0.06, c P/
d = 0.09, d P/d = 0.12
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first ascending part represented by Eq. (9) is explained by the effect of the obstacle on the

run-up (P/d = 0.01 to P/d = 0.12), and therefore beyond this depth the obstacle almost

does not have an effect on the wave. The second part is the horizontal part, where the

Fig. 9 Comparison between experimental results (Synolakis 1987, present study) and numerical results

(friction coefficient f ¼ 10�2; f ¼ 10�3) of run-up evolution according to amplitude of solitary wave.
Present study experimental results (plus symbol), experimental results (Synolakis 1987) (times symbol),

numerical results for (f ¼ 10�3) (solid line), numerical results for (f ¼ 10�2) (dashed line)

Fig. 10 Run-up evolution according to the obstacle peak depth for non-breaking wave (H/d = 0.0185).
Run-up value (filled diamond), regression model of Eq. (9) (dashed line)
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obstacle does not have an effect, and therefore the run-up is almost equal to the value

without obstacle (P/d = 0.5).

4 Conclusion

In this paper, tsunami-like breaking and non-breaking solitary waves on 1:19.85 uniform

slope which contains a submerged obstacle are investigated. New laboratory experiments

are presented for five different obstacle peak depths including the slope without obstacle.

The COULWAVE model is successfully validated by experimental data. Numerical

simulation is employed to examine certain wave amplitude, obstacle peak depths, and

bottom friction unavailable in experiments. The experimental and numerical results

include detailed free surface vertical displacement evolution in time, gauge records with

and without obstacle, and maximum run-up height.

In the analysis of evolution of free surface vertical displacement in times (gauge

records), it is clearly demonstrated that the submerged obstacles have a very important

effect on solitary wave shape and run-up. This effect disappears beyond a certain obstacle

peak depth.

It is observed that for non-breaking wave, the evolution of run-up varies linearly with

obstacle peak depth. Using a simple linear regression, we found that it follows this

formula:

R

d
¼ 0:3469

P

d

� 	
þ 0:0916

A predictive method to estimate breaking solitary wave run-up is also examined in this

study. However, reasonably good agreements between this predictive method and the

experimental and numerical results are found. Based on the available results, we proposed

a simple predictive model for solitary wave run-up heights with a wide range of obstacle

peak depth (P=d ¼ 0:01 � 0:5) using nonlinear least squares estimation regression as :

R

d
¼ 1:012 sin

P

d

� 	� 	0:1036

sin
H

d

� 	� 	0:6594

Finally, according to this work, it is obvious that the submerged obstacles have a very

important effect in the reduction of the run-up and thus in the reduction of the risk of floods

and inundations in the coastal areas, without affecting the activity of navigation in these

zones.
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