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Abstract Kayangan Catchment, one of the extremely landslide susceptible areas in

Indonesia, is situated on the eastern flank of Menoreh Mountain in Yogyakarta Province on

the island of Java. Landslides cause land and infrastructure damages because of their

frequency in human settlements. The objectives of this study are twofold: (1) to analyze the

spatial distribution of landslides and its correlation using terrain parameters; and (2) to

analyze landslide susceptibility using both semiquantitative and statistical methods, i.e.,

analytical hierarchy process (AHP) and information value (IV) methods. Nine parameter

maps were introduced to assess landslide susceptibility. The parameter maps and landslide

distribution map were spatially overlaid to calculate the contribution of each parameter to

landslide susceptibility. The landslide susceptibility map encompassed four different cat-

egories: very high, high, medium, and low susceptibility. The map was validated through a

success rate curve by determining the area under the curve using existing landslide events.

The success rate curves indicated that the IV was more accurate than the AHP, although

both of them had high correlations. Both methods show that the precondition factors

represented approximately 80% of the influence on landslide occurrence, with the

remaining 20% attributed to the triggering factors, primarily rainfall and seismic factors.
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1 Introduction

Landslides are major natural hazards that often result in human and economic losses as a

consequence of natural forces and human actions. Due to their high magnitude, rates of

recurrence, and their high variability of reporting and documenting in different nations, the

economic losses and casualties caused by landslides are greater than commonly known

(Sidle and Ochiai 2006; Garcı́a-Rodrı́guez et al. 2008). In addition, the loss of property is

greater than that from any other natural disaster, including earthquakes, floods, and

windstorms (Garcı́a-Rodrı́guez et al. 2008). In Java, for example, more than 1400 land-

slides have been inventoried during the period 1981–2007. They have caused estimated

2095 casualties and 552 human injuries (Hadmoko 2009; Hadmoko et al. 2010).

At present, loss of life and properties because of landslides in Java as well as in many

areas in the world appears to be increasing, mainly because of an increase in population

and urbanization in hazardous locations; thus, a landslide hazard mitigation program is

necessary. The reduction in the impacts of landslides is therefore a topic of major interest

for both geoscientists and engineering professionals as well as for the community and the

local administrations in many parts of the world (Aleotti and Chowdhury 1999). To per-

form proper landslide mitigation, comprehensive information regarding landslides, such as

occurrence, spatial distribution, and susceptibility, is needed. This information is essential

for determining landslide zones before any human activities or infrastructures are installed,

so that adequate control measures can be properly implemented.

Landslides are the result of two sets of factors: precondition factors, which are generally

naturally induced and relatively constant over time and which govern the stability con-

ditions of slopes; and preparatory and triggering factors, which are relatively dynamic,

induced either by natural factors or by human intervention (Glade and Crozier 2005).

Precondition factors are generally related to slope, lithology, geological structure, soil, and

vegetation, whereas the preparatory and triggering factors are associated with a variety of

external stimuli, such as intense rainfall, earthquake shaking, water-level change, storm

waves, or rapid erosion, which decrease in the stability of the slope material (Dai et al.

2002).

To understand where future landslides will occur, an area may be divided into sub-areas

that have homogenous properties, which are classified and ranked according to the degrees

of potential hazard due to mass movements by considering the previously explained pre-

condition factors (Varnes 1984). A map of this type is generally called landslide suscep-

tibility zonation (LSZ) (Saha, et al. 2005). In the last 20 years, various methods have been

developed and applied to the assessment of landslide hazards and risks, from the simplest

method using the limited number of parameter and qualitative assessment to very

sophisticated methods, using a large number of landslide parameter and quantitative for-

mulas (van Westen 1993; Terlien 1996; Saha et al. 2005). One of the simplest approaches

for analyzing landslide susceptibility is the qualitative method. In this method, subjective

assessment rules are used to delineate the susceptible areas. The weighting and rating of

landslide-influencing factors were decided based on expert knowledge (Saha et al. 2002).

This method is widely used for the very remote areas for which landslide inventory maps

remain unavailable. To remove the subjectivity of expert opinion in the determination of

landslide susceptibility, a statistical approach is used. The approach considers both a

landslide inventory map and landslide-influencing-factor maps.

The tremendous development of landslide hazard research is supported by the avail-

ability of remote sensing and geographic information system (GIS) technologies. GIS and
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remote sensing have proven to be a versatile tool to manage spatial data and have become

the current state of the art in landslide hazard and risk assessment (Van Westen et al. 2008).

Through the appropriate use of GISs, most approaches to landslide susceptibility mapping

enable the total automation of assessment and the standardization of data management

techniques and allow us to build more efficient and accurate maps (He and Beighley 2008).

This is because it is possible to acquire, store, query, manipulate, analyze, and display a set

of spatial and non-spatial data regarding the influencing factors of landslides through these

technologies (Carrara et al. 1991; Saha et al. 2002, 2005).

Some landslide studies were conducted in Indonesia with different perspectives and

approaches, ranging from mapping spatiotemporal landslide occurence in Java Island (e.g.,

Marfai et al. 2008; Hadmoko 2009) to assessing landslide triggering mechanism (e.g.,

Ahmed et al. 2013; Faris and Fawu 2014). These researches deal with the role of seismic

and rainfall on landslide triggering process. However, very limited studies have been

conducted on quantitative assessment of landslide susceptibility in Indonesia except some

papers dealt with some natural factors (e.g., slope gradient, slope aspect, curvature map,

and distance from stream) without incorporating any human intervention (e.g., Oh et al.

2010). This present contribution attempts to provide more comprehensive factors by

coupling the natural factors as well as human interventions as the main predisposition

factor for landslide susceptibility. Particularly in the study area, several researches have

been conducted by some scientists (e.g., Hadmoko 2009; Hadmoko et al. 2009, 2010). A

study on landslide distribution analysis and its relation with some parameter maps (e.g.,

DEM and its derivative maps, geology, land use at Kayangan Catchment were done at 1:

25,000 scale (Hadmoko et al. 2009). Another study was also conducted at 1:50,000 scale

for the entire area of Menoreh Mountains on landslide risk assessment and its implication

on mitigation measure (Hadmoko et al. 2010). A semiquantitative method was applied in

this research through scoring and weighting approach. A validation process was done by

calculating the landslide density for entire research area. In spite of some studies conducted

in the research area, a research focus on quantitative approach is still missing. This

approach is very rarely applied in Indonesia because the data on landslide inventory map

are still limited. This present contribution therefore provides a new insight on how to assess

the landslide susceptibility by quantitative approaches with complete landslide dataset.

The aims of the study were to determine the spatial distribution of landslides and to

compare them with the preconditioning factors to build landslide susceptibility maps by

combining both natural and human factors. Special attentions were given on the applica-

tion and comparison between semiquantitative method and bivariate statistical methods,

i.e., the analytical hierarchy process (AHP) method and the information value model.

These both methods have been widely applied by many scientists; however, no researcher

has given attention to comparative study of both methods. This study also highlighted

accuracy and reliability assessment in the classification of areas prone to landslides.

2 Study area

Situated approximately 30 km west of Yogyakarta City, Kayangan Catchment is posi-

tioned on the eastern flank of the Menoreh Mountains, Yogyakarta Province, on the island

of Java (Fig. 1). With an area of 35.5 km2, the study area is characterized by complex

terrain and dominated by hilly and mountainous areas; it extends from an elevation of 49 m

a.s.l. in the southern part, in the plain area of Tegalsari village, to 825 m a.s.l. in the
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northern part, in the Ngori mountainous area (Hadmoko et al. 2009). The upper part of the

catchment is characterized by steep, near-vertical slopes ([70�) within very deep valleys

due to very intense denudational processes.

The climate of Kayangan is characterized by a humid tropical environment, as in other

areas of Java. There are two pronounced seasons: a rainy season fromNovember to April and

a dry season from May to October. The annual rainfall ranges between 1500 and 3000 mm,

and the average annual temperature is 29 �C. There is no significant difference between the
temperature in thewet season and in the dry season, as in other areas in the tropics. This humid

tropical climate accelerates the weathering of materials and landslide events.

Kayangan catchment consists of 6 geological formations: (1) the Kebobutak Formation

(Tmok) consists of tertiary andesitic breccias, tuff, lapilli tuff, agglomerates, and andesitic

lava flows; (2) the Jonggrangan Formation (Tmj) is dominated by conglomerated, tuffa-

ceous marl and calcareous sandstone, limestone, and coralline limestone; (3) the Nang-

gulan Formation (Teon) is characterized by the presence of sandstone with intercalation of

lignite, sandy marl, claystone with limonite concretion, intercalations of marl and lime-

stone, sandstone, and tuff; (4) the Sentolo Formation (Tmps) consists of limestone and

marly sandstone; (5) Qolluvium (Qc) consists of unsorted debris from Kebobutak For-

mation, and (6) the Old Andesite Formation (a) consists of weathered lava andesite

Fig. 1 Landscape of Kayangan Catchment of Central Java; the study area is marked by red rectangle (left-
hand side, a) and red polylines showing the boundary of the catchment (b)

Fig. 2 Geological cross section of the study area consisting of (a) Jonggrangan Formation (Tmj),
Kebobutak Formation (Tmok), Nanggulan Formation (Teon), Colluvium (Qc) and Old Andesite Formation
(A)
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covering the major part of study area (Rahardjo et al. 1995) (Figs. 2, 5e). Colluvial and

alluvial deposits are primarily distributed across the middle and lower Kayangan Catch-

ment as the result of depositional processes from eroded soils and regolith. The area is

tectonically active as suggested by a number of active major and minor faults (Rahardjo

et al. 1995). The density of deeply incised streams, temperature, and the high intensity of

the rainfall are the major factors that contribute to the intense weathering and erosion

processes in the study area.

On top of those geomorphic and geological setting, the study area is also characterized

by human intervention that are represented by the presence of road networks, settlements,

and agricultural area. Slope modification is very common in this area that triggers erosional

process as well as landslides. Rice field is also very important land-use type of the study

area that was host of some destructive landslide processes.

The study area was chosen for several reasons. The first reason is the frequent recur-

rence of landslides. A total of 131 shallow landslides during the time span of 2007–2009,

which caused damage to houses and roads, were mapped for the entire area of Kayangan

(Hadmoko 2009). Several types of landslides were inventoried (e.g., rockfall, sliding,

slump, and soil creep) by their physical appearance, such as the morphology of the sliding

surface, the landslide materials, the impacts on infrastructure, and the presence of a nearly

vertical slope. Landslide in the study area becomes annual events that occur mainly during

the peak of rainy season (December–February). Second, this study would provide spatial

information of landslide as the primary input for a disaster risk reduction program. Third,

the settlement area is expanding due to population growth; thus, correct information

regarding safe areas is absolutely required.

3 Materials and methods

This study was performed in four major steps: (a) landslide data inventory, (b) spatial

database management, (c) landslide susceptibility assessment, and (d) map validation

(Fig. 3). The data, data sources, and methods are summarized in Table 1.

3.1 Landslide data inventory

Landslide data inventory was the first step performed in this study (Fig. 3a). Intensive

fieldworks were undertaken from 2007 to 2009 to map and measure the spatial distribution

of shallow landslides occurring during 2007, 2008, and 2009. These landslides were

characterized by having a sliding surface that was located within the root zone or soil

mantle. The landslides occurred during 2007 and 2008 were used for the susceptibility

assessment (131 events), and the landslide occurred during 2009 was introduced for val-

idation (46 events).

3.2 Spatial database management

Spatial information of landslide and factors that cause landslides, such as the slope, ele-

vation, aspect, lithology, fault line, drainage network, road network, and land use was used

as the main factors controlling landslides (Chau et al. 2004). These thematic maps were

used in this study because they were observed in the field as the primary factors influencing

landslides. The next step was to build and incorporate these parameters into our database

(Fig. 3b). Various GIS procedures were applied, e.g., spatial interpolation to build the
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DEM and its derivative maps (slope map and aspect map); map overlaying and map

calculation procedures to build landslide susceptibility map.

Topographic maps of scale 1: 25,000 were used as base maps for mapping. All the

thematic maps were then converted into raster formats. A Digital Elevation Model (DEM)

(cell size: 5 m 9 5 m) and its derivative maps (e.g., slope, aspect, and slope form) were

Fig. 3 Flowchart of research methodology
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developed from elevation data extracted from a 1:25,000 topographic map. These maps

were then used to determine the influence of the terrain morphology on landslide occur-

rences. Derivative maps from DEM were developed in Integrated Land and Water

Information System (ILWIS). The detail technique on developing the DEM and derivative

Table 1 Summary of data required for landslide susceptibility zonation

No. Aims Methods and data sources Tools

I Landslide
inventory map

1. Aerial photographs and SPOT image interpretation
2. Landslide report from local government, interview with
local peoples

3. Fieldworks: landslide morphology and size measurement

Stereoscopes,
PC with
ILWIS

Camera,
questionnaires

Laster telemetry,
GPS

II DEM

Building
parameter maps

1. Contour interpolation by using kriging method from
topographic map at 1: 25,000 scale

2. Cell size is 5 m 9 5 m

ILWIS

Slope map Derived from DEM by using ‘‘map calculation’’ module and
classified by using ‘‘map slicing’’

ILWIS

Aspect map Derived from DEM by using ‘‘map calculation’’ module and
classified by using ‘‘map slicing’’

ILWIS

Slope form Derived from DEM by using ‘‘filter operation’’ and
classified by using ‘‘map slicing’’

ILWIS

Lithology Digital geological map from Directorate of Geological
Survey and checked by field work

ILWIS

Buffer map of
drainage network

1. Digital topographic map at 1: 25,000 scale,
2. Map classification (\25, 25–50, 50–75, 75–100, 100–125,
125–150,[150 m) by using ‘‘buffer analysis’’ in ArcView

ArcView and
ILWIS

Buffer map of
fault line

1. Digital geological map at 1: 25,000 scale
2. Map classification (\25, 25–50, 50–75, 75–100, 100–125,
125–150,[150 m) by using ‘‘buffer analysis’’ in ArcView

ArcView and
ILWIS

Buffer map of
road network

1. Digital geological map at 1: 25,000 scale
2. Map classification (\25, 25–50, 50–75, 75–100, 100–125,
125–150,[150 m) by using ‘‘buffer analysis’’ in ArcView

ArcView and
ILWIS

Land-use map Digital topographic map at 1 : 25,000 scale, SPOT 5 image
(13/05/2006)

ILWIS

III Susceptibility analysis

Independency
analysis

Cramers’ V independence test SPSS

Density analysis Map crossing between landslide inventory map and
parameter maps

ILWIS

Analytical hierarchy process ILWIS

Susceptibility Information value ILWIS

IV Comparison and validation

Map comparison Map crossing and histogram analysis ILWIS

Validation Success rate ILWIS and
Excel
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maps can be seen on ILWIS documentation (ftp://ftp.itc.nl/pub/ilwis/ilwis30/pdf/chap10.

pdf).

The closeness of the slope to drainage, fault line, and road networks is also important

factor for landslide susceptibility assessment. The closeness of the slope to drainage, fault

line, and road networks is also an important factor for landslide susceptibility assessment.

Drainage network control landslide occurrence by incision processes along the riverbank

and saturation of the material along the river. Fault lines represent the weakened part of the

rock formation and characterized by heavily fractured rocks. It triggers more weathering

process since the fault line can be host of any stream water in long-term hydrologic

process. Distance to the road is also important factor to landslides. Oversteeping along the

road due to excavation process for road construction may increase the stress state to the

slope and decrease the strength of the slope.

Buffer maps were therefore developed from three different raw maps (drainage network,

road network, and fault line) to assess the influence of each distance of these maps onto

landslide occurrence. Six classes of buffer zones were used with an interval distance of

25 m. The same interval of 25 m was chosen because the influences of the road, fault line,

and drainage networks are maximum at that distance. The latter was due to the presence of

cutting and filling for road construction and decrease with increasing interval distance. In

addition, the same interval of 25 m was selected due to the pixel size of the map

(5 m 9 5 m). It would make easier for data handling. The lithological map was derived

from the geological map (e.g., Rahardjo et al. 1995), whereas the land-use map was

obtained from an Indonesian topographic map.

3.3 Conditional independence test

In order to ensure that the parameters controlling landslides are independent each other, a

conditional independent test (Schicker and Moon 2012) was performed. The values of Chi-

square (v2) were calculated to test the independency among parameters based upon pair-

wise comparison of all predictor parameters. In this case, landslide occurrence map was

overlaid to all predictor parameters in order to extract the pixels as the samples for

independent analysis. The value of Chi-square was then used as the input for determining

the Cramer’s V (Kendall and Stuart 1979; Van Den Eeckhout et al. 2006). The Cramer’s V

value was introduced to remove the effect of large sample size used in the analysis that

probably causes a significant relationship (Thiery et al. 2007; Schicker and Moon 2012).

The Cramer’s V values vary from 0 to 1 with higher values reflecting a stronger associ-

ation. In this study, the parameters were considered as dependent among them by the

Cramer’s value more than 0.5.

3.4 Landslide susceptibility assessment

Landslide susceptibility assessment was defined as determining the spatial probability of

landslides through calculating the relation between the locations of past landslides and

their influential factors, in order to predict the potential location of future landslides that

have similar combinations of factors without considering the temporal probability (Van

Westen et al. 2005). This susceptibility represents the spatial probability of landslides for a

certain area. In this study, two different methods were applied: semiquantitative method by

using analytical hierarchy process (AHP) and bivariate statistical approach by applying

information value. As shown in Fig. 3c, the landslide inventory map must be analyzed with

each parameter map separately, and this analysis must be repeated for all parameter maps
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to determine their correlation and then build the landslide susceptibility index. Both of

these methods were applied in this study for the following reasons: (1) the landslide

susceptibility map resulted from AHP is based upon the expert opinion that is suitable for

the area where the landslide data are absent, (2) AHP was applied to bridge between

qualitative and quantitative approaches; (3) the bivariate statistical approach is relatively

simple compared with the multivariate ones, since the bivariate statistical analysis incor-

porates one dependent variable and one independent variable. The importance of each

variable to landslide is analyzed separately (Van Westen 1993). Simple map crossing can

be done to conduct the bivariate method, while in the multivariate statistical analysis,

multiple variables should be incorporated and analyzed simultaneously to determine the

landslide susceptibility (Van Westen 1993). Bivariate statistical methods therefore can be

applied to other areas in Indonesia more easily by governmental agencies, engineers,

geoscientists, and decision makers.

3.4.1 Analytical hierarchy process (AHP)

To predict the location of future landslides, it is assumed that landslide occurrence is

determined by landslide-related factors and that future landslides will occur under the

similar conditions as previous landslides by assuming there is no extreme change from the

present condition (Lee and Talib 2005). AHP can be used to determine the influence of

landslide-related factor to the future landslides. AHP is one of methods comprising a multi-

objective, multi-criteria decision-making approach to determine different alternatives of

decisions (Saaty 1980; Saaty and Vargas 2001). AHP is widely used for many years on

different applications in socioeconomic science, political science, and earth science. One

of the most common uses of AHP is on landslide susceptibility zonation (e.g., Barredo

et al. 2000; Castellanos Abella and Van Westen 2007, 2008; Yalcin and Bulut 2007; Yalcin

2008). This semiquantitative approach can be an alternative to bridge between qualitative

and quantitative methods by evaluating the importance of parameters in the generation of

landslide hazard maps (Van Westen et al. 2003; Hadmoko et al. 2010). AHP become one of

the solutions for determining landslide susceptibility for the area that landslide data are

very limited even unavailable. The proposed method was applied based upon the relative

contribution of parameter maps to landslide occurrence that can be easily assessed. It

makes more applicable in large region and developing countries like Indonesia (Hadmoko

et al. 2010).

The AHP consists of five following steps: (a) determining the problems and brake them

down into structured component factors, (b) develop the hierarchy of component factors,

(c) decide the value of each parameters to determine the relative contribution of each factor

to landslide based upon expert judgment and experience and present them into a com-

parison matrix, (d) determine the normalized eigenvector representing the scores and

weight of each factor to landslides, (e) conduct validation process by using the consistency

ratio (CR) (Saaty and Vargas 2001; Pourghasemi et al. 2012; Kayastha et al. 2013).

Relative contribution of parameter to landsides was determined by assigning the value

between 1 and 9 (Table 2) in a pairwise comparison matrix.

The consistency ratio allows us to verify whether the assignment of relative contribution

of parameters is consistent. The assessment can be acceptable the CR is lower than 0.1.

The CR can be determined by using the following formula:
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CR ¼ kmax � n=n � 1ð Þ
RI

ð1Þ

where kmax is the largest eigenvalue of the matrix that can be calculated from the matrix

and n is the number of parameters used in the matrix. RI is the average of resulting

consistency index depending on the order of the matrix (see Saaty 1980). Finally, the

landslide susceptibility map can be determined by using the formula:

LSM ¼ Elevation� W1ð Þ þ Slope� W2ð Þ þ Aspect� W3ð Þ þ Slope morphology� W4ð Þ
þ Geology� W5ð Þ þ Buffer of drainage networks� W6ð Þ
þ Buffer of fault lines� W7ð Þ þ Buffer of road networks� W8ð Þ
þ Landuse� W9ð Þ

ð2Þ

where Wn is the weighted value of each parameter map.

3.4.2 Information value method

The information value method is a bivariate statistical method for spatial prediction of

landslide event based on given parameter (Yin and Yan 1988; Jade and Sarkar 1993).

Information value method was applied due its simplicity and become the solution when the

variables introduced in landslide susceptibility assessment are combination of numerical

variables and alphanumeric variables (Van Westen 1993). This combination is generally

problematic in statistical analysis. This can be solved by using two binary variables such as

the presence (1) and absence of landslide (0). The basic principle of this method is that the

landslide susceptibility depends on the spatial density that can be considered as spatial

probability of landslide event on specified parameter map. Landslide susceptibility map

was resulted from relationship between the spatial distribution of landslide events and

parameter map. The information value is the product of log natural of the landslide density

of each parameter map used. The formula used for calculating susceptibility is as follows:

Table 2 Relative contribution of parameters in AHP (Saaty 1980)

Score of
parameter

Degree of
contribution

Description

1 Equally Two factors contribute equally to the objective

3 Moderately Experience and judgment slightly to moderately favor one factor over
another

5 Strongly Experience and judgment strongly favor one factor over another

7 Very strongly The contribution of one factor is very strongly over another and its
dominance is showed in practice

9 Extremely
strong

The contribution of one factor is extremely strong over another and it
presents the highest degree of affirmation

2, 4, 6, 8 Intermediate Used to represent compromises between the preferences in weights 1, 3,
5, 7, and 9

Reciprocal Opposites Used for inverse comparison
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IV ¼ ln
Li=L

Ai=A
ð3Þ

Li is the area of parameter class i covered by landslides; L is the area of landslides for the

entire area; Ai is the area of the parameter class i; A is the area of Kayangan Catchment

(35.5 km2).

The susceptibility index (S) can be calculated using the following formula:

S ¼
Xj¼n

j¼1

IVij ð4Þ

IVij is the information value of variable i for parameter j; n is the number of variables.

In some cases, the areas having no landslide provides undefined value (?) of the log

natural; therefore, the result has to be assigned to zero (Yalcin 2007).

3.4.3 Map validation

The map validation was the comparison between the resultant map and the independent

landslide inventory map for 2009. Several methods of map validation have been used by

scientists, from qualitative or visual methods to a simple quantitative method of calculating

the area covered by landslides for every susceptibility level to a complex method using

success rate curves (Remondo et al. 2003; Chung et al. 1995; Hadmoko 2009).

Success rate can be determined by calculating the area under the curve (AUC) from the

number of pixels of the susceptibility map in a certain number of classes, from the high

values to the low values (on the x-axis), based on the histogram with the corresponding

number of landslides (on the y-axis). The x-axis represents the cumulative surface of the

susceptibility index, and the y-axis represents the cumulative surface of landslides of each

portion of the susceptibility index (Remondo et al. 2003).

4 Results

4.1 Spatial distribution of landslides

A total of 131 and 49 landslides were inventoried for the entire area of Kayangan

Catchment for the periods of 2007–2008 and 2009, respectively (Fig. 4). They are pri-

marily distributed in the upper and middle parts of the study area due to the very rough

topographic comprising gentle to very steep slope. The absence of landslide events across

the lower catchment is due to the flat terrain, which is dominated by alluvial plain and river

terraces. The landslide surface area for the entire catchment is 0.127 km2, with a landslide

density of 4.21 events/km2 and a landslide area density of 4 9 10-3 km2/km2. All land-

slides in the study area were considered to be shallow landslides, with average landslide

depth 3 m and an average surface area of 968 m2 (Hadmoko et al. 2009).

Five types of landslides were identified: creep, flow, fall, slide, and slump. The majority

of the landslides in this area were slides, followed by slumps, creeps, and flows, with a

frequency of 94, 26, 4, and 4, respectively. Only two rockfalls were identified in this area.

Slides are translational in nature because the sliding surface is relatively shallow that

lessening the possibility of circular movement of the material.
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The majority of landslides are characterized by the high clay content with high soil

moisture or even saturated conditions. The presence of water plays an important role in the

triggering of landslides by increasing both the weight of the saturated soil and the pore

water pressure. A summary of landslide spatial distribution and its correlation with terrain

parameters was completed by Hadmoko et al. (2009).

4.2 Parameter maps

4.2.1 Elevation class map and slope map

Overlaying the landslide inventory map over the elevation map illustrates landslide

occurrence with increasing elevation, up to 500 m (Fig. 5a). In contrast, above 500 m,

landslide events tended to decrease in frequency with increasing elevation, until 700 m.

The landslide decreasing activity in the upland slopes is due to the presence of more

resistant lithology, such as andesitic breccias, whereas the middle of the catchment was

Fig. 4 Landslide distribution and DEM in Kayangan Catchment
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covered by unconsolidated materials such as colluviums, which are regularly subjected to

landslides (Rahardjo et al. 1995).

4.2.2 Slope map

The relationship between landslide occurrence and slope shows that higher landslide fre-

quency occurred on steeper slopes up to a slope steepness of 20�–30�, and thereafter the

frequency decreased with increasing slope angle (Fig. 5b). The highest density of

Fig. 5 Landslides and parameter maps: a elevation; b slope; c aspect; d form; e lithology; f buffer of
drainage network; g buffer of fault line; h buffer of road network; and i land use
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landslides both in terms of number and area was found on the steepness ranging from 20�
to 30� (0.047 events/km2 and 7/1000 km2). However, an inverse correlation with landslide

events occurs with slope steepness greater than 30�, when the landslide frequency

decreases with increasing slope angle. This phenomenon is closely related to the influence

of other factors such as lithology and human activities. Slopes with greater than 30� are

generally carved in resistant rock (Rahardjo et al. 1995), on which the weathered materials

are relatively shallow or even absent. In addition, human activities on very steep slopes

exist, but they are less common than on less steep slopes.

4.2.3 Aspect map

The aspect of a slope can influence landslide initiation because it affects the path of sun

during the day time, moisture retention and vegetation cover and, in turn, soil strength and

susceptibility to landslides. The amount of rainfall on a slope may also vary depending on

its aspect, especially in hilly and mountainous areas, due to the impact of orographic

rainfall (Fig. 5c). Most landslide events were concentrated in the NE, E, SE, and S

directions compared with other orientations, which could be caused by the amount of

rainfall, humidity, and solar radiation, which influence landslide activity. Overlaying the

slope and orientation maps showed that the NE, E, SE, and S orientations had steeper slope

inclinations.

4.2.4 Slope profile

Slope profile was used to detect which part of the slope is convex, concave, or rectilinear in

both x- and y-directions. It was developed by using the second derivative of filter operation

applied to DEM in ILWIS. The lower curvature (convex), medium curvature (rectilinear),

and upper curvature (convex) are presented by the value of derivative DEM such as\0.5;

-0.5 to 0.5; and[0.5, respectively (ftp://ftp.itc.nl/pub/ilwis/ilwis30/pdf/chap10.pdf).

Landslides were more abundant on concave (65 events) and convex (55 events) slopes,

whereas these phenomena were less common on rectilinear slopes (13 events), where the

landslide density was also less (Fig. 5d). These data demonstrated that the convex and

concave slopes were more susceptible to landslides. Slope profiles (concave, convex, and

rectilinear) can have significantly different susceptibility to landslide. The forms control

the driving and resisting forces within the direction of landslide and the convergence or

divergence of landslide material and water in the direction of landslide motion (Carson and

Kirkby 1972; Ohlmacher 2007). Concave and convex slopes are usually distributed on

steeper terrains. They are associated with spurs and gullies, which were developed by

erosion and landslide process. The rectilinear slopes are generally associated with gentle

slope or even flat terrain, which were found in the lower catchment in this study area.

Concave slopes retain more precipitation through infiltration, which increases pore water

pressure.

4.2.5 Lithological map

The analysis of landslide activities and geological formations showed that only two

lithologies were subject to landslides: the Kebobutak Formation and the Jonggrangan

Formation. Most landslides occurred in the Kebobutak Formation (119 events), followed

by the Jonggrangan Formation (Fig. 5e). Most of the landslides occurred in the Kebobutak
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Formation due to the extreme weathering and fracturing of the andesite and andesitic

breccias that played an important role in the predisposition to landslides. Twelve landslides

were also identified in the Jonggrangan Formation, mostly in calcareous sandstone and

limestone. Landslides were absent in other types of rocks because those lithologies are

situated at the southern and eastern parts of Kayangan Catchment with flat and gentle

terrain.

4.2.6 Buffer zone of drainage network

The analysis of the relationship between landslide frequency and the stream network

buffer zone revealed that most landslides occurred less than 150 m from rivers (46

events, or 3.46 events/km2) (Hadmoko et al. 2009) (Fig. 5f). Only 14 landslides

occurred on the zone with the distance less than 25 m from rivers. There was no

decrease in landslide frequency with increasing distance from rivers. However, the area

of landslides was greatest within the buffer zone, less than 25 m from a river, indicating

that most large landslides were situated near rivers due to the slope modification of

gully erosion and river undercutting of slope toes, which influences the initiation of

landslides.

4.2.7 Buffer zone of fault line

The analysis of the relation between slope instability and the fault line buffer zones

indicated that the number and the area of landslides decreased slightly as the distance

from the fault line increased from 0 to 150 m, then increased abruptly beginning at

150 m from the fault line (Fig. 5g). Fault lines in Kayangan Catchment are generally

associated with an abrupt change in topography or an escarpment with near-vertical

slopes. The presence of a fault can fracture rock materials and decrease their stability.

The area and number of landslides decreased slightly with increasing distances from

faults, indicating that landslide occurrence was not always associated with the existence

of the faults.

4.2.8 Buffer zone of road network

The road construction significantly decreases the slope stability of the hilly area and

accelerate landslide occurrence (Khan and Lateh 2011; Das et al. 2012). We analyzed

landslide frequency at varying distances from road networks to determine the contri-

bution of anthropogenic slope cuts to landslide occurrences (Fig. 5h). Most landslides

occurred in the zone closest to road networks (\25 m), with 83 landslide events (63%

of total landslides) mapped in this area and with number and area densities of 36.55

events/km2 and 28 km2/km2, respectively. In general, landslide frequency decreased

with increasing distance from the road. This trend reveals that road networks play an

important role in landslide initiation due to the increase in the microtopography created

during the slope cutting. The landslides were well spread both above the road due to the

cutting impacts and below the road as the consequence of unconsolidated filled mate-

rials. Human activities of this type have initiated and accelerated landsliding in this

region, particularly via undercutting and the removal of material from the toe of slopes

to build roads (Fig. 6a).
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4.2.9 Land-use map

The analysis of landslide occurrence based on land use showed that landslides occurred

only in three types of land use: mixed garden, settlement, and agricultural area (Figs. 5i,

6b, c). Mixed garden is the land use most exposed to landslides (72 events) (Fig. 6b, d),

with number and area densities of 4.06 events/km2 and 6.2/1000 km2, respectively.

However, the highest number and area densities of landslides were identified for the

settlement land-use class, with values of 11.028 events/km2 and 10.8/1000 km2, respec-

tively. The spatial distribution of landslides on most manmade terrains (e.g., settlements

and roads via slope cutting) underlines the human contribution to landslide triggering

(Fig. 7). In contrast, natural slopes that are densely covered by vegetation tend to reduce

the action of climatic agents such as rain, thereby preventing erosion due to the natural

anchorage provided by the tree roots; thus, they are less prone to landslides.

4.3 Susceptibility analysis

4.3.1 Testing of conditional independence

Result of Chi-square test confirms an independent relation among the predictor parameters

containing landslides with the significant level: 0.01. Table 3 summarizes the result of Chi-

square analysis through the Cramer V value for all parameters. The Cramer V is relatively

low with the value vary from 0.08 to 0.42, and there is no value higher than 0.5 found on

Fig. 6 Landslides at the study area: a translational landslide occured on steep slope due to cutting and
filling for road reconstruction, b, c landslides on agricultural land and mixed garden due to the presence of
rice field causing continuos soil saturation and d rotational landslide occured on mixed garden which
occured near the settlement areas
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the result. Therefore, all parameters are conditionally independent and can be used as

predictor parameters for determining the landslide susceptibility.

4.3.2 AHP

The AHP analysis (Table 4) resulted equation of weighted parameters to determine

landslide susceptibility map as follows:

LSM ¼ Elevation� 0:1749ð Þ þ Slope� 0:2176ð Þ þ Aspect� 0:0916ð Þ
þ Slope morphology� 0:0956ð Þ þ Geology� 0:1497ð Þ
þ Buffer of drainage networks� 0:0602ð Þ þ Buffer of fault lines� 0:0335ð Þ
þ Buffer of road networks� 0:1141ð Þ þ Landuse� 0:0629ð Þ:

Among the nine parameters introduced to the equation, slopes became the most

important parameter to landslides (0.24) followed by geology (0.136), buffer of road

network (0.134), and elevation (0.13). The lowest contribution parameter to landslide

susceptibility was buffer to fault line (0.037) followed by buffer to drainage network

(0.071). The analysis was considered as consistent since the CR was less than 0.1

(CR = 0.089). These values indicated that slope played an important role on landslide

occurrence. Slopes contributed on gravitational force that facilitated the down movement

of materials from the upper slopes. Geology was also assigned as important factor to

landslide occurrence because of the presence of intensively weathered tertiary volcanic

materials. The incised and fully weathered volcanic rocks made the rainwater infiltrate and

percolate more easily through cracks and joints. Road network was considered as one of

the most important factors to landslides after slope and geology due to the high occurrence

of landslides on road corridor.

As observed in Table 5, the weight value of elevation was highest at the class of

500–600 m (0.2178) and tended to decrease by increasing the elevation. The latter is

Fig. 7 Result of landslide susceptibility assessment by AHP method: a raw spatial landslide susceptibility
map; b histogram showing the landslide susceptibility index; c final landslide susceptibility map; and
d histogram of final landslide susceptibility index value
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associated with the geomorphological characteristic of study area. The higher part of the

study area ([600 mm a.s.l.) is a part of the plateau that is characterized by gentle terrain;

therefore, the landslide occurrence tended to decrease. The weight value of slope increased

with increase in steepness. It means that more slope steep, more landslide to likely occur.

Slopes facing to the S, SE, E, and NE had higher weight factors compared with the other

slope aspects because south-facing slopes receive more rainfall than north-facing slopes

since the south to east facing is the concentration of the condensation process due to

orographic effect. Slope aspect controls evapotranspiration and the amount of water

trapped by slopes through orographic rainfall. Soil moisture content controls pore water

pressure, which has a great influence on slope stability. In addition, the slope orientation

controls the ratio between the infiltration and runoff ratio especially for the uncovered soil

at the beginning of the crop cycle.

Concave and convex slope morphologies had a great influence on weight values because

the quantity of water trapped by concave and convex slopes is much greater than that

trapped by rectilinear slopes. Concave and Convex slope trap the same quantity of water.

Concave slopes tend to have high water infiltration as a consequence of the existence of a

depression.

Only two lithological formations resulted in the high influence to landslide suscepti-

bility: the Kebobutak formation and the Jonggrangan formation. These two formations

consist of highly weathered, unstable, and pulverized, which could be due to the presence

of faults in that area. In addition, the presence of cracks and joints contributes significantly

on lessening the slope stability due to the acceleration of infiltration process.

The analysis showed that the weight value decreased significantly with increasing

distance from a road. The distance to a fault line had no clear effect on weight value,

indicating that fault lines had a low influence on landslide occurrences.

The susceptibility assessment through the AHP resulted in the susceptibility index map

(Fig. 7a) and the histogram of total scores, ranging from 0.093 to 0.669 (Fig. 7b). Fig-

ure 7b shows the pixel value distribution based on the total scores of the 9 parameters that

were introduced during the susceptibility assessment. Through this histogram, the final

susceptibility map was created through the module ‘‘MapSlicing’’ in the Integrated Land

and Water Information System (ILWIS) environment, a raster-based GIS developed by

ITC, the Netherlands. We classified the susceptibility level into four classes: low, medium,

Table 4 Weighting result of AHP method of parameters

Parameters Code P1 P2 P3 P4 P5 P6 P7 P8 P9 Weight

Elevation P1 1 1/3 2 3 1/2 2 4 1/2 3 0.130

Slope P2 3 1 3 3 2 3 5 2 4 0.240

Aspect P3 1/2 1/3 1 1 1/2 2 4 1/2 2 0.092

Slope morphology P4 1/3 1/3 1 1 1/2 2 3 1/2 2 0.086

Geology P5 2 1/2 2 2 1 1 3 2 1/2 0.136

Buffer of drainage networks P6 1/2 1/3 1/2 1/2 1 1 2 1/3 2 0.071

Buffer of fault lines P7 1/4 1/5 1/4 1/3 1/3 1/2 1 1/3 1 0.037

Buffer of road networks P8 2 1/2 2 2 1/2 3 3 1 1 0.134

Land use P9 1/3 1/4 1/2 1/2 2 1/2 1 1 1 0.075

Consistency ratio = 0.089
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Table 5 Pairwise comparison matrix and normalized principal eigenvector resulted from AHP

Parameter No. Values/classes 1 2 3 4 5 6 7 8 9 Weight

Elevation 1 \100 1 1/2 1/3 1/4 1/4 1/5 1/5 1/5 0.0318

2 100–200 2 1 1/2 1/3 1/4 1/5 1/5 1/4 0.0420

3 200–300 3 2 1 1/2 1/3 1/4 1/4 1/3 0.0629

4 300–400 4 3 2 1 1/2 1/3 1/3 1/3 0.0913

5 400–500 4 4 3 2 1 1/2 1 1/2 0.1473

6 500–600 5 5 4 3 2 1 1 1 0.2178

7 600–700 5 5 4 3 1 1 1 1 0.2008

8 [700 5 4 3 3 2 1 1 1 0.2057

Consistency ratio = 0.033

Slope 1 0–10 1 1/3 1/4 1/4 1/5 1/5 0.2596

2 Oct-20 3 1 1/2 1/3 1/4 1/3 0.4987

3 20–30 4 2 1 1/2 1/3 1/3 0.7337

4 30–40 4 3 2 1 1/2 1/2 1.1196

5 40–50 5 4 3 2 1 1/2 1.6712

6 [50 5 3 3 2 2 1 2.010

Consistency ratio = 0.061

Aspect 1 N 1 1/2 1/2 1/3 1/2 1/2 1/3 1/2 5 0.0666

2 NE 2 1 1 2 1/2 2 2 2 4 0.1536

3 E 2 1 1 1 1 2 2 3 4 0.1537

4 SE 3 1/2 1 1 1 2 3 3 4 0.1611

5 S 2 2 1 1 1 3 2 2 4 0.1726

6 SW 2 1/2 1/2 1/2 1/3 1 1 3 3 0.0932

7 W 3 1/2 1/2 1/3 1/2 1 1 2 4 0.0969

8 NW 2 1/2 1/3 1/3 1/2 1/3 1/2 1 5 0.0733

9 Flat 1/5 1/4 1/4 1/4 1/4 1/3 1/4 1/5 1 0.029

Consistency ratio = 0.077

Slope morphology 1 Concave 1 3 1 0.4429

2 Rectilinear 1/3 1 1/2 0.1699

3 Convex 1 2 1 0.3873

Consistency ratio = 0.0216

Geology 1 Kebobutak 1 1 3 3 3 2 1 1 3 0.283

2 Jonggrangan 1 1 3 3 3 2 1 1 3 0.283

3 Colluvium 1/3 1/3 1 1 1 1/2 1/3 1/3 1 0.090

4 Nanggulan 1/3 1/3 1 1 1 1/2 1/3 1/3 1 0.090

5 Sentolo 1/3 1/3 1 1 1 1/2 1/3 1/3 1 0.090

6 Volcanic rock 1/2 1/2 2 2 2 1 1/2 1/2 2 0.164

Consistency ratio = 0.003
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high, and very high (Fig. 7c). The final susceptibility map shows that Kayangan Catchment

was dominated by high susceptibility areas (10.6 km2), followed by moderate suscepti-

bility areas (9.08 km2). Only 6.49 km2 of the study area was considered to be very highly

susceptible (Fig. 7d).

Visual interpretation of the landslide susceptibility map by the AHP shows that most of

the very high and high susceptibility zones were widely distributed in the upper and middle

areas of Kayangan Catchment. The pattern of very high susceptibility zones indicates the

dominant influence of slopes on landslide susceptibility. The middle and lower suscepti-

bility levels are broadly spread across the middle of the catchment and cover most of the

lower part of Kayangan Catchment.

Table 5 continued

Parameter No. Values/classes 1 2 3 4 5 6 7 8 9 Weight

Buffer of drainage

networks

1 \25 1 3 3 4 5 5 6 0.3639

2 25–50 1/3 1 2 3 3 5 5 0.2154

3 50–75 1/3 1/2 1 3 2 4 3 0.1533

4 75–100 1/4 1/3 1/3 1 1 3 4 0.0966

5 100–125 1/5 1/3 1/2 1 1 2 3 0.0840

6 125–150 1/5 1/5 1/4 1/3 1/2 1 2 0.0497

7 [150 1/6 1/5 1/3 1/4 1/3 1/2 1 0.0371

Consistency ratio = 0.0693

Buffer of fault lines 1 \25 1 1 2 3 5 6 6 0.3021

2 25–50 1 1 1 2 4 5 5 0.2387

3 50–75 1/2 1 1 1 3 4 3 0.1704

4 75–100 1/3 1/2 1 1 3 3 2 0.1322

5 100–125 1/5 1/4 1/3 1/3 1 1 2 0.06023

6 125–150 1/6 1/5 1/4 1/3 1 1 1 0.0480

7 [150 1/6 1/5 1/3 1/2 1/2 1 1 0.04878

Consistency ratio = 0.019

Buffer of road networks 1 \25 1 2 3 5 6 7 7 0.3558

2 25–50 1/2 1 2 4 5 6 7 0.2497

3 50–75 1/3 1/2 1 3 4 5 5 0.1698

4 75–100 1/5 1/4 1/3 1 3 3 4 0.0958

5 100–125 1/6 1/5 1/4 1/3 1 2 3 0.0585

6 125–150 1/7 1/6 1/5 1/3 1/2 1 2 0.0406

7 [150 1/7 1/7 1/5 1/4 1/3 1/2 1 0.03

Consistency ratio = 0.074

Land use 1 Dryland

agriculture

1 1/2 1/2 1/2 3 3 0.2070

2 Mix garden 2 1 1/2 1/2 4 4 0.2890

3 Settlement 2 2 1 1 5 5 0.4233

4 Bushes 2 2 1 1 5 5 0.4233

5 Rice fields 1/3 1/4 1/5 1/5 1 1 0.0767

6 Water bodies 1/3 1/4 1/5 1/5 1 1 0.0767

Consistency ratio = 0.025
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4.3.3 Information value

The information value method was also applied to assess landslide susceptibility. Weight

values for each parameter were introduced during the analysis that ranged from -2.224 to

1.070 (Table 6). The minimum weight value was for the 100–200-m elevation class,

whereas the maximum value was for a road distance less than 25 m. Negative value

indicated that a given parameter was unfavorable to landslide susceptibility, and in con-

trast, the positive value signified that this parameter was favorable to landslide suscepti-

bility. A value of zero had no influence on landslide occurrence.

The most favorable elevation class for landslides was up to 500 m, whereas elevations

of 100–400 m or those greater than 700 m had negative influences on landslide occurrence.

Elevations less than 100 m had no influence on landslide occurrence. Slope angles of 10�–
30� increased landslide frequency, whereas those greater than 30� or less than 10� had

negative influences on landslide occurrence.

Slopes facing to the NE, E, SE, and S were favorable to landslide occurrence, repre-

sented by positive values, whereas the other aspects had a negative influence on landslide

occurrence. Concave and convex slope forms had positive values, whereas linear forms had

negative weight values. This trend appears similar to that of the frequency ratio method.

Most buffer zones for hydrologic networks had positive weight values, except for the zone

greater than 150 m from the drainage network. This trend indicates that the drainage

network had a favorable influence on landslide occurrence.

The role of human influence in landslide susceptibility was represented by the buffer

zone of the road network and land-use type. Only two classes of road networks were

favorable to landslides: the zone less than 25 m from roads and the zone 25–50 m from

roads. The zones greater than 50 m from the road network were unfavorable to landslides.

Among the land-use types, dryland agriculture, mixed garden, and settlements were

favorable to landslide occurrence, whereas the others had no influence on slope failure.

These phenomena suggest that human activities are an important influence aggravating

landslide hazard in Kayangan Catchment.

Overlaying all the parameter maps (V1–V9) together resulted in the raw susceptibility

index map (Fig. 8a) that represents the total weight, with values ranging from -7.81 to

4.67 (Fig. 8b). Raw data classification was performed to build the final susceptibility map

(Fig. 8c) through histogram classification. Kayangan Catchment is divided into four sus-

ceptibility classes: low, medium, high, and very high (Fig. 8d). Based on the analysis of the

attribute data, it can be stated that the areas of low, medium, high, and very high sus-

ceptibility were 8.71, 9.42, 10.74, and 6.04 km2, respectively.

Upon examining the spatial pattern of landslide susceptibility (Fig. 8d), the very high

and high susceptibility zones were widely distributed in the northeastern part of Kayangan

Catchment, which is the upper part of this drainage basin. These zones of high suscepti-

bility were generally associated with the drainage network and the road network. This

pattern was closely related to weight values of the stream network and the road network, as

previously discussed. The medium susceptibility zone covers the northwestern and central

parts of Kayangan Catchment, which were generally associated with the zone situated less

than 150 m from the river network. The low susceptibility area was distributed on the plain

and gentle slopes, primarily in the lower or southern part of Kayangan Catchment or the

western part of Kayangan Catchment.
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Table 6 Weighting result of information value method

Parameter Values/classes Class area
(km2)

Landslide area
(km2)

% Landslide
area

% Class
area

IV

Elevation \100 6.05 0 0.00 17.04 0.000

100–200 2.57 0.001 0.79 7.24 -2.224

200–300 1.85 0.004 3.15 5.21 -0.509

300–400 3.27 0.006 4.72 9.21 -0.674

400–500 4.81 0.033 25.98 13.55 0.645

500–600 5.92 0.046 36.22 16.68 0.770

600–700 5.24 0.021 16.54 14.76 0.108

[700 5.58 0.016 12.60 15.72 -0.227

Slope 0–10 10.7 0.012 9.45 30.14 -1.166

10–20 7.57 0.038 29.92 21.32 0.333

20–30 8.21 0.047 37.01 23.13 0.464

30–40 6.01 0.021 16.54 16.93 -0.029

40–50 2.13 0.007 5.51 6.00 -0.091

[50 0.66 0.001 0.79 1.86 -0.865

Aspect N 3.96 0.006 4.72 11.15 -0.865

NE 6.19 0.03 23.62 17.44 0.298

E 5.24 0.025 19.69 14.76 0.282

SE 4.64 0.019 14.96 13.07 0.129

S 4.34 0.023 18.11 12.23 0.387

SW 4.16 0.011 8.66 11.72 -0.308

W 2.6 0.007 5.51 7.32 -0.290

NW 2.38 0.005 3.94 6.70 -0.538

Flat 1.77 0 0.00 4.99 0.000

Slope morphology Concave 13.3 0.062 48.82 37.46 0.259

Rectilinear 7.06 0.013 10.24 19.89 -0.670

Convex 14.66 0.053 41.73 41.30 0.005

Geology Kebobutak 25.83 0.12 94.49 72.76 0.255

Jonggrangan 2.15 0.006 4.72 6.06 -0.254

Colluvium 1.22 0 0.00 3.44 0.000

Nanggulan 0.3 0 0.00 0.85 0.000

Sentolo 1.64 0 0.00 4.62 0.000

Volcanic rock 4.1 0 0.00 11.55 0.000

Buffer of drainage
networks

\25 4.25 0.026 20.47 11.97 0.538

25–50 4.11 0.016 12.60 11.58 0.086

50–75 3.85 0.019 14.96 10.85 0.323

75–100 3.51 0.018 14.17 9.89 0.362

100–125 3.14 0.018 14.17 8.85 0.473

125–150 2.76 0.016 12.60 7.77 0.484

[150 13.65 0.013 10.24 38.45 -1.322
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5 Discussion

In this study, two landslide susceptibility maps were conducted. These maps were

developed through a analytical hierarchy process (AHP) and information value method. In

the previous section, these two results were verified, validated, and compared to choose the

most appropriate model for the study area. Many previous studies have been conducted to

compare and validate landslide susceptibility maps (e.g., Carrara 1983; Brabb 1984; Yin

and Yan 1988; Duque et al. 1991; Mulder 1991; Carrara et al. 1991, 1995; Van Westen

1993; Chung et al. 1995; Irigaray et al. 1996, 1999; Chung and Fabbri 1998, 1999; Dhakal

et al. 1999; Remondo et al. 2003; Hadmoko et al. 2010; Pourghasemi et al. 2012; Kayastha

et al. 2013). They assumed that future slope failures would be more likely to occur under

those conditions that caused past and present instability. Hence, future landslides would

occur under conditions and factors equal or similar to those for comparable past landslides,

such as slope, geology, soil, and land use. Therefore, the final susceptibility map was

validated based on this previous assumption. The landslide susceptibility map is then valid

if the majority of the present and past landslides occurred within the zone considered to be

susceptible.

The AHP model had a prediction accuracy of 80%, whereas the information value

model had an accuracy of 83% (Fig. 9). The accuracy of the information value model was

better than that of the AHP. In the AHP model, the most susceptible 10% of the area

explained 25% of all of the landslides, and the most susceptible 20% of the area contained

Table 6 continued

Parameter Values/classes Class area
(km2)

Landslide area
(km2)

% Landslide
area

% Class
area

IV

Buffer of fault lines \25 3.02 0.013 10.24 8.51 0.186

25–50 2.98 0.013 10.24 8.39 0.200

50–75 2.85 0.011 8.66 8.03 0.077

75–100 2.67 0.011 8.66 7.52 0.143

100–125 2.56 0.008 6.30 7.21 -0.134

125–150 2.36 0.007 5.51 6.65 -0.186

[150 18.85 0.064 50.39 53.10 -0.051

Buffer of road
networks

\25 6.05 0.063 49.61 17.04 1.070

25–50 5.21 0.025 19.69 14.68 0.295

50–75 4.38 0.01 7.87 12.34 -0.448

75–100 3.61 0.009 7.09 10.17 -0.360

100–125 2.92 0.008 6.30 8.23 -0.265

125–150 2.31 0.006 4.72 6.51 -0.319

[150 10.8 0.005 3.94 30.42 -2.043

Land use Dryland
agriculture

9.41 0.057 44.88 26.51 0.528

Mix garden 17.75 0.111 87.40 50.00 0.560

Settlement 4.52 0.035 27.56 12.73 0.774

Bushes 0.05 0 0.00 0.14 0.000

Rice fields 3.27 0 0.00 9.21 0.000

Water bodies 0.28 0 0.00 0.79 0.000
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26% of the total landslides. In the information value model, the most susceptible 10% of

the area contained 55% of total landslides, and the most susceptible 20% of the area

explained 70% of all landslides.

The success rate curves indicated that the factors chosen for the landslide susceptibility

analyses represented approximately 80% of the factors governing landslide occurrence.

Fig. 8 Result of landslide susceptibility assessment by information value method: a raw spatial landslide
susceptibility map; b histogram showing the landslide susceptibility index; c final landslide susceptibility
map; and d histogram of final landslide susceptibility index value

Fig. 9 Success rate of landslide susceptibility maps
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Thus, these results may suggest that the terrain parameters that are considered to be

precondition factors represented roughly 80.04 and 83% of the governing factors for both

methods and that the triggering factors represented the rest of the influence on landslide

occurrence. Therefore, rainfall and seismic data, which were excluded from this study,

should be incorporated into future work to obtain better results because these two

parameters are known to be the most important triggering factors.

Some minor differences can be found in both the map due to the way applied to

determine the weight factors. In the AHP method, weighting the results of each parameter

produced a value of 0.029–2.01, while the IV method resulted in values between -2.224

and 1.070. Other differences that are found in both these maps are the values that are

undefined in the IV method which produces a map with an empty result and it is not the

case of AHP method. Both differences are caused by the natural log formula is applied to

the IV method, so the researchers had to give a zero on the final result in order to avoid this

problem. Indeed, an assumption has to be made that the undefined value represents no

susceptible area to landslide.

Analysis of final result of both maps showed that total weighted values demonstrated

significant different range between both methods. The AHP method produced the range

between 0.093 and 0.669 while the IV method produced the range between -7.81 and

4.66. The histogram of both models showed different pattern. The AHP method showed

four peaks with different frequencies among them (Fig. 7) while the IV method produced

one peak (Fig. 8). The different range of minimum and maximum value and the different

histograms resulted the different patterns of susceptible areas.

Analysis of curve pattern (Fig. 9) indicated that the AHP represented the underesti-

mation for predicting the future landslide at very high susceptible zone; however, this

method showed good prediction of landslide in the high and moderate susceptible areas. It

can be seen from the curve of success rate. Success rate of AHP showed insignificant

number of landslides on the area at 2–15% most susceptible area. In contrast, IV method

showed better prediction on high and very high susceptible areas, but it represented an

underestimation at moderate and low susceptible areas compared to AHP. It can be seen

from the pattern of the curve that there is still landslide even at the area of moderately

susceptible and low susceptible area.

Both maps showed similar patterns of spatial prediction, especially for the northern and

eastern parts of the research area. In these models, the very high and the high susceptibility

zones covered the upper and middle parts of Kayangan Catchment, and they followed the

road and the drainage networks showing the role of the road and drainage networks in

increasing the weight value. Both models show that the high and medium susceptibility

zones were in the lower part of Kayangan Catchment, which includes plains and gently

sloping areas. This phenomenon indicates the overestimation of landslide susceptibility for

the plains and gentle slopes due to the presence of the road and drainage networks, which

contributed greatly to the weight value, especially in the zones\25 m from the networks.

The role of the road network is important because it represents the human intervention to

slope modification. In reality, the slope steepness along the road network is higher than that

presented on the contour map. The accumulation materials on lower part of the road

network are still unconsolidated because this material was placed recently as the conse-

quence of the cutting process for road construction (e.g., Hadmoko 2009 and Hadmoko

et al. 2009). In AHP method, it appears that the spatial pattern of susceptible area in the

upper catchment is dominated by the road network (\25 m) (Fig. 7c). It is shown by the

pattern of susceptible area that clearly follows the road network while in the IV method

(Fig. 8c), it appears that some factors influence equally to spatial pattern of susceptibility
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zone. The reason was that in AHP method, expert judgment plays a significant role in

controlling the weight value and the special attention was paid on the road network at

upper catchment due to the significant number of landslides that were associated with the

road. The area closest to the road network (\25 m) throughout Kayangan Catchment was

considered to have high susceptibility even though that area included the plains and gentle

slopes. However, it is important to carefully consider the potential overestimation of

landslide susceptibility along the road network that could be caused by the easiness of the

mapping processes. This potential overestimation could be minimized through very careful

mapping using combination among different approaches, e.g., remote sensing approach,

very intensive fieldwork for entire area of the catchment and involving the local people for

field guiding.

The information value method appears to have more greatly overestimated suscepti-

bility for the lower part of Kayangan Catchment compared with the AHP method. It is

because of the presence of the plains and gentle slope areas that were considered to be

medium to very high susceptibility zones, whereas the AHP method presented the better

result since it classified those same zones as low to medium susceptibility areas. The expert

judgment of AHP seems to be important in this case. Expert judgment on AHP method

could provide complementary information since it was based on the field experience of

researcher to improve the result of IV method. It is difficult to incorporate expert opinion in

IV method because all weighting procedure in IV was purely done based upon the presence

of landslide in study area.

Both methods proved good spatial prediction of landslide with only two-year-period

landslide inventory data. Therefore, these methods can be applied in different geographic

contexts and in different scales. Physical factors such as volcanic or non-volcanic land-

scapes, slope steepness, and orientation would often be linked to the rainfall occurrence.

These physical factors will be the main controlling factors on the variation of the rainfall.

Intensive orographic rainfall occurs significantly on very high mountainous region with

great variation on slope orientation. Therefore, it would be important to incorporate rainfall

data in the future work because the great variation of rainfall event spatially and temporally

can play an important role on landslide intensity.

The analysis of the weight value of each parameter for landslide susceptibility indicates

that the physical–natural factors were not the only influences on landslide occurrences;

human activities also aggravated the probability of landslides and were a triggering factor

to landslide occurrences. This phenomenon can be explained by the relation between

landslide occurrence and slope steepness. Theoretically, landslide occurrence increases

with increasing slope, but at Kayangan Catchment, landslide occurrence increased and

reached a maximum value at a slope angle of 20�–30�, and then decreased significantly for

slopes greater than 30�. This result is somewhat similar to those of Zhou et al. (2003) on

Lantau Island, Hongkong, where the frequency of failures was highest on moderately steep

terrain with a gradient ranging from 25� to 35�. Paudel et al. (2007) also correlated

landslides and topography on Mt. Aso, Japan, and noted that slopes of 30�–35� were the

most exposed areas to landslides. As we observed in Kayangan Catchment, human

intervention on the land (agriculture, settlement, infrastructure, or road networks) generally

occurs on flat terrain or slopes up to 20�–30�. Slope value[40� are relatively untouched by
human activities due to remoteness and the impracticalities of agricultural development.

Although the IV method provided the slightly better prediction (83%) compared to AHP

(80%), it has to be noted that AHP can be done with very limited landslide data even in the

absence of landslide dataset while the IV method cannot be done without any landslide

dataset. The expert judgment procedure in AHP could be an alternative to assess the
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landslide susceptible area when the landslide occurrence data are almost unavailable. This

method was successfully applied in different regions both in industrialized country such as

Spain (e.g., Barredo et al. 2000) and South Korea (e.g., Althuwaynee et al. 2014) and in

developing countries such as Nepal (Kayastha et al. 2013) and Iran (Pourghasemi et al.

2012). However, special attention has to be paid during the weighting process because the

subjectivity and inconsistency of expert could result the bias of the result. However, this

disadvantage can be reduced by incorporating consistency ratio test before introducing the

weight value during the analysis. IV method depends largely on the quality of landslide

data. The imprecise and incomplete data of landslide location included the shape, and the

area could a major limitation to assess the susceptible area (Schicker and Moon 2012).

The results of this study would be valuable to the local government to support decision

making concerning disaster risk reduction. There are a limited number of studies related to

landslide hazard and risk assessment conducted in the study area; therefore, this work can

serve as a reference and be extended to other areas in Indonesia. Since the AHP method

requires less data and simple in operation, it can be a good solution for the developing

countries like Indonesia. It can be applied on inaccessible remote region where the land-

slide data are still unavailable. The expert opinion is one of the best solutions to determine

the weight value of parameter maps that contribute to landslide occurrence. However, field

experiences and good understanding on the physical characteristic of the study area are

needed to produce the reliable susceptible map. In addition, due to the great variation of

geology and land use in Indonesia, any weighting value resulted in this study should not be

automatically introduced for another location in this country. The weight value has to be

adapted with the study area.

The statistical model used in this study is relatively simple and resulted in good esti-

mation; therefore, this approach can then be implemented in developing countries such as

Indonesia due to the practicality and the relatively inexpensive cost of these methods.

However, some conditions and some adjustments have to be followed. The application of

IV depends largely on the availability of landslide data and on the accessibility of the study

area. Therefore, the researcher would suggest to apply this method at urban and peri-urban

areas where the landslides data are available and the area is easily accessible that allow the

government collect the landslide data.

Because this work was intended to evaluate the spatial probability of landslides (sus-

ceptibility), the temporal probability of landslides was not incorporated due to the limi-

tations of multi-temporal landslide data and the lack of rainfall data, the main triggering

factor for landslides. Therefore, the ‘‘real’’ hazard map, as defined by Varnes (1984),

cannot be provided by this study. As a result, the triggering factors and the multi-temporal

landslide data should be incorporated in future research to assess the integrated spa-

tiotemporal landslide probability so that the ‘‘real’’ hazard map can be provided.

6 Conclusion

This study provided an integrated analysis of spatial landslide behavior and its correlation

with terrain parameters as the primary conditioning factors of landslides to determine the

spatial pattern of susceptibility zones of landslides. Our analysis demonstrated that the

terrain parameters contributed differently to landslide occurrence, as indicated by the

frequency and density of landslides corresponding with each terrain parameter. The results

showed that human activities play a major role in landslide occurrence, particularly
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through slope cutting for houses and road construction, as indicated by the high suscep-

tibility area within close proximity to the roads.

A semiquantitative approach and bivariate statistical model were applied to build

landslide susceptibility maps: the AHP and information value methods. Both models

provided good prediction accuracy for susceptibility, explaining approximately 80% of

landslide occurrences. The information value method gave better spatial prediction results.

The advantage of information value method is that the negative weight can be resulted as a

consequence of the negative contribution of each parameter to landslide susceptibility. The

disadvantage of the information value is that the absence of landslide yielded the zero

value that can result in undefined value (?) for the final result. Therefore, the latter has to

be assigned to zero. However, the IV method cannot be applied for the area where the

landslide data are unavailable while the AHP method can be used with no landslide data

available. The prediction was conducted by expert opinion that allows us to determine the

weight value. The subjectivity and inconsistency during the weighting process can be

eliminated by applying the consistency ratio.

In spite of some limitations appearing in these approaches, both methods can be applied

in developing countries like Indonesia to spatially determine the landslide susceptibility.

They can be applied for the larger area with some consequences that have to be considered,

e.g., more volume of data and more field works have to be done.

This study does provide the spatial probability of landslides, which is essential for

landslide hazard assessment and risk assessment. This domain has become an important

issue in spatial planning due to the increasing impact of recent disasters in Indonesia.

Because few Indonesian scientists are working on these methods, this study could be very

useful for risk management and for the development of natural hazard studies in the future.

In addition, the scientific products resulted from this research has to be communicated and

discussed with local authorities in order apply the result on landslide disaster mitigation

program. Both maps provided two different looking-like maps in terms of spatial pattern;

therefore, comprehensive guideline have to be done to make the maps are applicable at

operational level. Firstly, the susceptibility map should be incorporated with the technical

guidance and short training on how to read and to interpret the map. Secondly, the digital

map should be used for decision making; therefore, the local authorities can identify the

susceptible area in pixel basis.
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