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Abstract To improve the air pollution of China fundamentally, effective measures should

be proposed based on the thorough understanding of the characteristics of air pollution.

Based on spatial econometrics, this paper investigates the characteristics and analyzes the

determinants of the spatial concentration of PM2.5 pollution in China. Results show that:

(1) PM2.5 pollution is highly concentrated in Central and Eastern China, covering 17

regions which accounts for 75% of the total population and GDP (gross domestic product).

(2) The PM2.5 values in China show a significant spatial correlation. Provinces such as

Shandong, Henan, Anhui, and Hubei are high in PM2.5 concentration. Meanwhile, these

provinces are high in population density, GDP, and coal consumptions and have a large

amount of civilian cars. (3) PM2.5 pollution shows spatial spillover effects. A 1% increase

in the PM2.5 values of neighboring provinces will lead to a 0.78% increase in that of one

province. (4) An upward U-shaped relationship is observed between the density of per

capita GDP and PM2.5, and the PM2.5 value is far from the turning point of growth. With

the further growth of the density of per capita GDP, the PM2.5 value is expected to increase

rapidly and continuously. (5) Based on the characteristics of spatial concentration and

spatial spillover, this paper proposes several prevention-control measures for haze pollu-

tion, such as stressing on the treatment of air pollution in severely polluted provinces,

avoiding moving pollution industries to neighboring areas, performing joint prevention and
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control nationwide. Air pollution may only be rooted by transforming the pattern of

economic growth.

Keywords Haze � PM2.5 � Spatial concentration � Impact factors

1 Introduction

In recent years, large-scale hazy weather has persistently occurred in China. This phe-

nomenon has seriously endangered public health and caused huge economic losses (Chen

et al. 2012; Mu and Zhang 2013). In January 2013, haze affected an area of more than 1.4

million km2 in Eastern and Northern China, resulting in over 800 million victims. Non-

hazy weather lasted for only 5 days in this January. In February 2014, haze clouded 161

cities in Northern China, among which 51 cities, including Beijing, were polluted and 11

cities were seriously polluted. Haze forced the closure of primary and secondary schools as

well as that of highways and airports. In 2012, the economic losses in China caused by

PM2.5 and other air pollutants amounted to nearly 2 trillion RMB (Zhang et al. 2013).

The Chinese government is used to taking stopgap measures for haze pollution. One

way is to transfer the pollution source to other places to reduce the pollutant discharge. For

example, Beijing moves its heavy polluting enterprises such as iron and steel plants to its

neighboring regions like Tangshan (Hebei Province). Another way is to shut down pol-

lution sources for some time before and after major events to get clean air temporarily,

such as ‘‘APEC Blue,’’ ‘‘Youth Olympic Blue,’’ and ‘‘G20 Blue.’’ However, it turns out to

be an expedient which cannot solve haze pollution from the root. The haze in Tangshan

floats back to Beijing, resulting in long-lasting hazy weather in Beijing. Once APEC,

Youth Olympic Games, and G20 are over, the hazy weather will return. Therefore,

effective prevention-control countermeasures should be proposed based on the character-

istics of haze pollution. Thus, we need to find out the characteristics of haze pollution.

Where does haze concentrate? Is there spillover effect in neighboring areas? What are the

impact factors of haze pollution? Is there an inflection point in the development of haze

pollution? These questions are crucial for the research of the characteristics of haze pol-

lution. However, the studies on these questions are quite limited, let alone the counter-

measures for haze pollution. Thus, this paper attempts to study the characteristics of haze

pollution and proposes corresponding measures.

Haze is mainly composed of PM10 (inhalable particles) and PM2.5 (inhalable particles).

With more previous researches conducted on the components of PM2.5 and easier access to

the observation data of PM2.5, PM2.5 is adopted as the object of this study instead of PM10.

PM2.5 is structurally complicated. Most scholars have analyzed the components of PM2.5

from the physical and chemical perspectives (Bates and Sizto 1987; Hussain et al. 2013;

Tang et al. 2014; Thurston et al. 1994; Tran et al. 2003; Ma et al. 2012; An et al. 2013;

Jansen et al. 2014), but little is known about the contribution of different components from

the perspectives of time and space (Dong and Liang 2014; Wu et al. 2013, 2016; Xie et al.

2014; Yang et al. 2010; Zhao et al. 2013). As for its composition, PM2.5 largely consists of

industrial waste gas, exhaust of automobiles and machines, smoke of cooking oil, coal

dust, and so on. These pollutants are closely related to GDP (gross domestic product),

population, energy consumption, and industrial waste gas emission, respectively. We

intend to use the density of the above variables as the substitution variables of the
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components of PM2.5. We collect the data of PM2.5 and variables from 2001 to 2010. Based

on the analysis of the spatial spillover effect of PM2.5, the contribution degrees of different

components to PM2.5 growth will be discussed via the spatial panel data model. To predict

the possible turning point in the PM2.5 growth curve, a Kuznets curve will be built by virtue

of PM2.5 values and the density of per capita GDP variables.

The empirical study of this paper is based on the spatial panel data model first proposed

by Anselin (1988). Based on panel data model, the dependent variable and error term of

spatial lag are introduced into the spatial panel data model. Besides, spatial correlation is

included in the spatial panel data model which takes into consideration not only spatial

correlation but also temporal factors. Thus, this model makes up for the deficiency of the

traditional panel data model and is widely applied in the researches on environmental

economics. Based on the provincial panel data in China and via the spatial fixed effect

model, Zhu et al. (2010) and Zhang (2014) studied the spatial dependence relationship

among industrial pollutants and the environmental Kuznets curve between these pollutants

and GDP per capita. After testing the transnational environmental Kuznets curve model

according to the spatial lag model, Maddison (2006) found that both the SO2 emission

amount per capita and the NOx emission amount per capita are affected by the emission

from neighboring countries. Based on the spatial panel model, Hossein and Kaneko (2013)

discovered that environmental quality of countries spreads spatially to their neighbors

through the flowing of institutional quality of countries. Burnett et al. (2013) explored the

relationship among CO2 emission of states in USA., economic activity, and other factors

through spatial panel econometric model and found that economic distance plays an

important role in interstate CO2 emission. Taking SO2 and CO2 as the research objects,

these studies analyzed their spatial effect, spatial dependence, and spatial heterogeneity.

Similar to SO2 and CO2, PM2.5 is the product of human life and characterized by spillover-

proneness in space. However, rare literature has touched upon the spatial spillover effect of

PM2.5 from the perspective of spatial econometrics at present. Therefore, we use spatial

panel data model to analyze the spatial concentration of PM2.5 as well as the environmental

Kuznets curve of PM2.5.

Similar to the studies by Zhu et al. (2010), Zhang (2014), Maddison (2006), Ma and

Zhang (2014), the present study consists of three steps. First, the Moran’s I index proposed

by Moran (1950) and (Wu et al. 2016) was used to test global spatial correlation of PM2.5

(Sect. 2). Second, to further study the formation factors of PM2.5 and their influence

degrees, variables closely related to PM2.5 values were selected and spatial correlation

between these variables and PM2.5 values was explored via spatial econometric model. We

found that PGDPD affects PM2.5 most (Sect. 3). According to the above results, we further

studied the relationship between PGDPD and PM2.5 by using the Kuznets curve and then

summarized the research results and prevention-control measures (Sect. 4).

2 Spatial correlation analysis of PM2.5 concentrations

2.1 Data

China began collecting formal statistical data about PM2.5 in 2012 and has put great effort

into data collection since ever. At present, besides observation data [such as Abas et al.

(2004); Hossein and Kaneko (2013)], annual average values of PM2.5 from 2001 to 2010

offered by Battelle Memorial Institute and Center for International Earth Science
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Information Network have also been adopted by many scholars (Ma and Zhang 2014). For

example, after studying and preliminarily estimating the concentration of inhalable par-

ticulate matter in provinces of China based on satellite data, they came up with a table of

‘‘Annual average population-weighted PM2.5 concentrations in provinces, municipalities

and autonomous regions of China in 2001–2010’’ (obtained from Reference Environmental

Information Network 2012, and see Table A1). In this table, the PM2.5 concentration index

is indicated by the average concentration of exposure to air pollution in each province, and

the population is weighted. Namely, each province is divided into certain grid regions

(0.1�90.1�), or approximately 10 km 9 10 km at mid-latitudes. Then, with the proportion

of residents within a grid region to the total population of each province and municipality

as the weight, the average population-weighted concentration of exposure to air pollution

in each grid region is calculated. The population-weighted value fully considers different

situations in sparsely populated low-polluted areas and densely populated high-polluted

areas, pays more attention to the actual effects of fine particulate matter on residents, and is

in line with Ma and Zhang (2014), Donkelaar et al. (2010) and Wu et al. (2016).

Therefore, population-weight PM2.5 values in different provinces are adopted in this

study, without considering Taiwan, Hong Kong, and Macao, and combining Chongqing

and Sichuan as one region due to data availability. Thereby, we use data of PM2.5 in 30

administrative regions in 10 years.

2.2 Present status of PM2.5 concentrations

Haze pollution is quite severe in China. Judging from population-weighted values of

PM2.5, the average PM2.5 values vary between 24.475 and 29.975 in China from 2001 to

2010. Fluctuations in PM2.5 values are observed, but only at a modest rate. The value is the

largest (29.975) in 2007 and the smallest (24.475) in 2010. Nevertheless, the smallest value

is still higher than the air quality standard of 10 set by the WHO (World Health Organi-

zation). Only the PM2.5 values of three regions are lower than the air quality standard. They

are Hainan, Heilongjiang, and Tibet, which have the lowest values for 10, 8, and 4 years,

respectively. The PM2.5 values of other provinces are all higher than the standard, among

which Shandong, Henan, Jiangsu, and Hebei have the highest values (approximately being

50, which is five times higher than the air quality standard) for 4, 3, 2, and 1 year

respectively. These values indicate severe air pollution. Those provinces are located in

Central and Eastern China (Fig. 1). We can observe from the figures in brackets that1 the

standard deviations of population-weighted PM2.5 values in provinces from 2001 to 2010

fluctuate slightly. The maximum value and the minimum value are 13.211 (in 2007) and

10.550 (in 2009) respectively.

The PM2.5 values exhibit an obvious spatial concentration phenomenon. Han et al.

(2014) applied the annual average PM2.5 values from 2001 and 2006 offered by Battelle

Memorial Institute and Center for International Earth Science Information Network. They

found that the PM2.5 values in 350 prefecture-level cities of China are distributed in two

bands2: One starts from the North of Hebei, passes through Beijing, Shaanxi, the Northwest

of Henan and the South of Shaanxi, and ends at the Southeast of Sichuan; the other starts

from Shanghai and Zhejiang in the East, passes through the South of Anhui, Henan, and

1 The values in the brackets are the standard deviations of population-weighted PM2.5 values of provinces
from 2001 to 2010.
2 Though PM2.5 concentrations in 350 prefecture-level cities can be obtained, the social and economic data
of these 350 cities are not available. Thus, the data of prefecture-level cities are not adopted in this paper.
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Jiangxi and arrives at Guangxi and Guangdong. However, our findings are somewhat

different: we found that the PM2.5 values in different regions are distributed in blocks and

highly agglomerated geographically. In other words, the regions with high PM2.5 values

(larger than the average value) are located in Central and Eastern China to form a large

block area. The area covers 14–17 provinces. The population sizes and GDP values in

these provinces account for three-fourths of the total amount in China, nearly covering all

economically developed provinces of China. At the same time, populations in these pro-

vinces are exposed to the threat of haze. The geographic distribution of PM2.5 values in

different provinces in 2006 and in 2010 is shown in Fig. 2a, b, respectively.

According to the above research, PM2.5 values are obviously distributed in blocks,

indicating that PM2.5 concentrations are in a spatial correlation. Then, the spatial corre-

lation degree is measured by spatial econometrics.

2.3 Global spatial correlation

Tobler (1970) proposed the first law of geography, holding that all things are spatially

correlated. A shorter distance means a higher correlation degree; meanwhile, a longer

distance means a lower correlation degree. The population distribution and economic

development in China also exhibit spatial concentration. Accordingly, PM2.5 values may

share this feature. In the present study, Moran’s I index proposed by Moran (1950) is

adopted to test the global spatial correlation of PM2.5 values. The calculation formula is:

I ¼
n
Pn

i¼1

Pn
j¼1 wijðAi � �AÞðAj � �AÞ

Pn
i¼1

Pn
j¼1 wijðAi � �AÞ2

ð1Þ

where n is the number of subject provinces, a total of 30 administrative regions, excluding

Hong Kong, Macao, and Taiwan and combining Sichuan and Chongqing as a whole; i and j

refer to each province; Ai and Aj refer to the population-weighted PM2.5 values in the ith

province and the jth province, respectively; I is the index value used to measure the global

spatial correlation. I varies between -1 and 1. If I is positive, Aiand Aj change in the same
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Fig. 1 Boxplots of population-weighted PM2.5 values in provinces of China from 2001 to 2010. Note On
the top of each boxplot is the province with the largest population-weighted PM2.5 value in a year, Below
each boxplot is the province with the smallest population-weighted PM2.5 value in the same year, The
horizontal line in each boxplot represents the mean population-weighted PM2.5 value in this year. Besides,
the values in the brackets are the standard deviations of population-weighted PM2.5 values in provinces from
2001 to 2010
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direction and the data are positively correlated. A closer value to 1 corresponds to higher

positive spatial autocorrelation. The high values (low values) of PM2.5 are adjacent. If I is

negative, Aiand Aj change in opposite directions and the data are negatively correlated. A

closer value to -1 corresponds to higher negative spatial autocorrelation. The high values

of PM2.5 are adjacent to the low values, or the low values are adjacent to the high values. If

I is close to 0, the data are distributed randomly without correlation.

wij, which refers to the spatial weight matrix, can be calculated as

wij ¼
1; when provinces i and j have a common border or point

0; when provinces i and j have no common border or point

0; when i ¼ j

8
<

:
ð2Þ

Adjacency means two regions have a common border or point. When calculating the

spatial weight matrix, Sichuan and Chongqing are combined into one region. The global

and local spatial correlations are calculated with GeoDA1.4.0.

From 2001 to 2010, the Moran’s I values in regions vary between the relatively

stable values of 0.412 and 0.484, indicating that the PM2.5 values in these provinces exhibit

a positive spatial autocorrelation. In other words, the higher the PM2.5 value of a province,

the higher that of its adjacent province, and vice versa. The concomitant probabilities (p) of

Moran’s I are all smaller than 0.05, which suggests statistical significance.

Moran’s I value is the highest (0.484) in 2007 and the lowest (0.412) in 2009, which is

basically close to the years with the highest and lowest average PM2.5 values. Thereby, we

can infer that these sequences exhibit a certain significant correlation at the level of 10%.

PM2.5 and Moran’s I are positive correlation. The years with high average PM2.5 values

also have high Moran’s values (0.412–0.484). As Moran’s I is a measure of spatial

autocorrelation, in the years with high average PM2.5 values, the spatial correlation is

strong. By contrast, in the years with low average values of PM2.5, the spatial correlation is

weak (Table 1).

The scatter diagram of Moran’s I values in different regions from 2001 to 2010 can be

divided into four quadrants with the average value as the axis. The first and third quadrants

indicate high–high and low–low positive correlations, respectively. The second and fourth

quadrants indicate low–high and high–low negative correlations, respectively. According

to the scatter diagram of 2006 (Fig. 3a), the Moran’s I values in about 15 regions are in the

Fig. 2 Distribution maps of PM2.5 values in different provinces of China in 2006 and in 2010

398 Nat Hazards (2017) 86:393–410

123



first quadrant every year, indicating large PM2.5 values in spatial concentration. Eleven

regions are in the third quadrant, which indicates small PM2.5 values in spatial concen-

tration. Four regions are in the second and fourth quadrants, showing negatively correlated

PM2.5 values not in any spatial concentration. Overall, the PM2.5 values in most regions are

in spatial concentration. In other words, the regions with high (or low) PM2.5 values are

adjacent (See Fig. 3a, b for details).

2.4 Local spatial correlation

A Moran’s I scatter diagram can test overall agglomeration through local spatial auto-

correlation, but it cannot test whether PM2.5 values in some local regions exhibit

agglomeration or not. Accordingly, a local indicator of spatial association (LISA) proposed

by Anselin (1995) is adopted to test the local spatial autocorrelation of PM2.5 values in

different regions. The calculation formula of LISA of the area i is:

Table 1 Moran’s I values of
population-weighted PM

2.5
val-

ues in different provinces of
China from 2001 to 2010

E(I) = -1/(n-1), n = 30
(Chongqing and Sichuan are
combined, and Hong Kong,
Macao, and Taiwan are
excluded); 999 times of
simulation by the Monte Carlo
method

Year Moran’s I Expected value Std-err Z-stat p value

2001 0.453 -0.035 0.111 4.373 0.001

2002 0.446 -0.035 0.119 4.026 0.001

2003 0.431 -0.035 0.118 3.930 0.001

2004 0.425 -0.035 0.119 3.851 0.001

2005 0.466 -0.035 0.118 4.214 0.001

2006 0.429 -0.035 0.112 4.138 0.001

2007 0.484 -0.035 0.115 4.503 0.001

2008 0.444 -0.035 0.117 4.111 0.001

2009 0.412 -0.035 0.114 3.848 0.001

2010 0.427 -0.035 0.117 3.893 0.001

Fig. 3 Moran’s I scatter diagrams of PM2.5 values in different regions in 2006 and in 2010. Note The
vertical axis is used for the spatially averaged neighboring values and the horizontal for the value for the
area at the center of the spatial average
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Ii ¼
ðAi � �AÞ

S2

Xn

j6¼i

wijðAi � �AÞ ð3Þ

where n, i, and j mean the same mentioned above;S2 refers to the variance of population-

weighted PM2.5 values in 30 provinces; Ii is the index value used to measure the spatial

correlation of Area i. If Ii [ 0, the high PM2.5 values (or low values) in different parts of

Area i are adjacent. In other words, regions with high or low PM2.5 values are agglom-

erated spatially. The spatial concentration diagrams of local PM2.5 values in 2006 and in

2010 are shown below (Fig. 4a, b). Each diagram passes the test of significance level of 5%

and is obtained after Monte Carlo simulations.

According to the above diagrams and the LISA diagram of other years, the PM2.5 values

in most regions of China exhibit obvious high–high or low–low spatial concentration. The

provinces with high values are mostly concentrated in Central and Eastern China, including

Shandong, Henan, Anhui, and Hubei. The regions with low values are mostly concentrated

in northwestern, north and northeastern of China. These regions include Xinjiang, Inner

Mongolia, Heilongjiang, and Jilin. Table 2 lists the regions with high–high or low–low

PM2.5 agglomeration from 2001 to 2010. The results pass the test of significance level of

5% and are obtained after Monte Carlo simulations.

Fig. 4 Local agglomeration diagrams of the PM2.5 values in different regions of China in 2006 and 2010

Table 2 Provinces with high–high or low–low spatial concentration in China from 2001 to 2010

Year High–high Low–low

2001 Hubei, Henan, Shandong, Anhui Xinjiang, Jilin, Heilongjiang

2002 Hubei, Henan, Shandong, Anhui, Tianjin Xinjiang, Jilin

2003 Hubei, Henan, Shandong, Anhui, Hebei Xinjiang

2004 Hubei, Henan, Shandong, Anhui, Hunan Xinjiang, Jilin, Heilongjiang, Inner Mongolia

2005 Hubei, Henan, Shandong, Anhui, Hunan Xinjiang, Jilin, Heilongjiang, Inner Mongolia

2006 Hubei, Henan, Shandong, Anhui Xinjiang, Jilin, Heilongjiang

2007 Hubei, Henan, Shandong, Anhui Xinjiang, Jilin, Heilongjiang, Inner Mongolia

2008 Hubei, Henan, Shandong, Anhui, Tianjin Xinjiang, Jilin

2009 Hubei, Henan, Shandong, Anhui Xinjiang, Jilin

2010 Hubei, Henan, Shandong, Anhui Xinjiang, Jilin, Heilongjiang
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The PM2.5 values show obvious spatial concentration considering the following points.

First, the provinces in Central and Eastern China are located in the East Asian summer

monsoon area with meteorological conditions of precipitation and wind speed/direction. In

January 2013, hazy weather occurred in Eastern China (Anhui, and Shandong, Henan,

Hubei) with strong intensity, great duration, and large scope. The meteorological factor can

explain the variance of diurnal variation of more than two-thirds of hazy weather, and the

variance contribution reaches 0.68 (Zhang et al. 2014). Second, Central and Eastern China

has a dense population and a well-developed economy, leading to large waste gas emis-

sion, automobile exhaust, and coal consumption, which explains high PM2.5 values

(Table 3). Shandong, Henan, Hubei, and Anhui with high PM2.5 values are considered as

examples in the discussion below. The population sizes per km2 in these provinces are

many times larger than the average value of the country (obtained through dividing the sum

of the total by the country’s total area, the same below): Shandong (623 per km2), Henan

Table 3 Socioeconomic indica-
tor of provinces in China in 2010

(1) Indices of population and
GDP are obtained from China
Statistical Yearbook (2011),
index of coal consumption comes
from China Energy Statistical
Yearbook (2011), and index of
civilian cars is from China
Automotive Industry Yearbook
(2011). (2) POPD: Density of
population (per km2). GDPD:
Density of GDP (ten thousand
yuan per km2). COACD: Density
of coal consumptions (ton per
km2). CARD: Density of civilian
cars (per km2)

Province POPD GDPD COACD CARD

Shanghai 3656 27247.587 9266.648 276.814

Beijing 1168 8400.941 1567.497 267.564

Tianjin 1150 8163.24 4251.918 139.974

Jiangsu 767 4037.571 2251.509 53.684

Zhejiang 534 2717.873 1367.633 53.149

Guangdong 580 2556.281 887.979 43.459

Shandong 623 2546.809 2427.041 45.896

Henan 563 1382.776 1559.88 23.936

Liaoning 230 1265.063 1158.905 20.310

Fujian 304 1214.931 579.245 16.247

Hebei 383 1086.535 1463.224 26.259

Chongqing 351 963.012 777.266 13.888

Anhui 426 884.705 957.459 15.019

Hubei 308 858.935 724.598 11.162

Hunan 310 757.222 534.624 9.965

Hainan 256 607.206 190.353 11.543

Shanxi 229 588.667 1910.755 15.86

Jiangxi 267 565.943 374.026 8.229

Shaanxi 182 492.387 566.076 9.272

Jilin 147 462.52 511.348 8.158

Guangxi 195 405.518 263.001 6.443

Sichuan 167 356.993 239.310 7.374

Guizhou 198 261.486 619.778 6.577

Ningxia 95 254.465 868.211 6.253

Heilongjiang 84 227.981 268.671 4.283

Yunnan 120 188.473 243.919 6.103

Inner Mongolia 21 98.664 228.267 1.588

Gansu 56 90.686 118.609 1.872

Xinjiang 17 32.756 48.833 0.766

Qinghai 8 18.696 17.592 0.429
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(563 per km2), Anhui (426 per km2), and Hubei (308 per km2). The GDPs per km2 are also

more than two times larger than the average value of the country: Shandong (2546.809 ten

thousand yuan per km2), Henan (1382.776 ten thousand yuan per km2), Anhui (884.705 ten

thousand yuan per km2), and Hubei (858.935 ten thousand yuan per km2). In addition, the

numbers of civilian cars per km2 of these four provinces are in the top 50% of the country:

Shandong (45.896 per km2), Henan (23.936 per km2), Anhui (15.019 per km2), and Hubei

(11.162 per km2). Coal consumptions per km2 are two times larger than the average value

of the country (455.486 tons per km2): Shandong (2427.041 tons per km2), Henan

(1559.880 tons per km2), Anhui (957.459 tons per km2), and Hubei (724.598 tons per km2).

Third, Jilin has a low PM2.5 value in 2010, a population density of 147 per km2, a GDP of

462.520 ten thousand yuan per km2, a car number of 8.158 per km2, and a coal con-

sumption of 511.348 tons per km2. These values are close to the national average and less

than half of those of Anhui. Fourth, Zhang (2014) believed that haze in China is

agglomerated in Central and Eastern China, which is related closely to their similar

industrial structure. Arguably, it is difficult to obtain a clean-type, high-quality innovation-

driven industry in the short term. Therefore, under the strong GDP examination by the

central government, these provinces have to prioritize the manufacturing industry char-

acterized by three highs (i.e., high pollution, high emission, and high consumption).

Moreover, investors tend to choose central and eastern provinces with rich resources, large

population, and convenient transport for survival. To attract investors, the local govern-

ments dominantly or recessively race to relax the restrictions on the environment, which

further intensifies the agglomeration of haze in these provinces.

3 Analysis of spatial influential factors of PM2.5 concentrations

To further study the factors that contribute to PM2.5 concentrations and the degrees of

influence of different factors, the variables closely related to PM2.5 concentrations are

selected based on the previous analysis for the empirical analysis of the correlation

between these variables and the PM2.5 value.

3.1 Data

We perform a quantitative analysis of the data in the 30 regions from 2001 to 2010. As

mentioned previously, the major sources of PM2.5 include industrial waste gas (dust), life

waste gas (dust), vehicle exhaust (dust), and coal dust. The number of vehicles is difficult

to obtain. On the one hand, the number of public cars cannot be obtained. On the other

hand, though the number of civilian cars since 2005 is available for Chinese people, the

short data sequence is not representative. As a result, this variable is not included in the

analysis. In this study, population size, per capital GDP, coal consumption, and industrial

waste gas emission are considered as the source variables of PM2.5. The data of PM2.5

values are obtained from Battelle Memorial Institute and CIESIN (2013). Those of pop-

ulation size, per capita GDP, and industrial waste gas emission are obtained from China

Statistical Yearbook, and those of coal consumption are obtained from China Energy

Statistical Yearbook. To reduce the heteroscedasticity with logarithmic values of variables,

the logarithmic values of independent variables and dependent variables are adopted. The

regression of the spatial panel data is calculated by MATLAB 2010a.
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In addition, with the values in 2000 as the base year, the density of per capita GDP

(PGDPD) in different provinces is deflated according to the inflation rate with yuan per km2

as the unit; the density of population size (POPD) is measured in per km2; the density of

industrial waste gas emission in different provinces (GWASD) is measured in ten thousand

normal m3 per km2; and the density of coal consumption (COACD) is measured in ton per

km2.

3.2 Model setting

The POPD, PGDPD, GWASD, and COACD in these provinces in the past years may have

multi-collinearity, which leads to information redundancy, and the multi-index multi-

collinearity of the spatial panel data has not been solved by Lesage and Pace (2014). Thus,

regression is conducted between the above variables and the PM2.5 value to identify the

relationship between them.

1. Traditional panel data model. The basic model is.

lnPM2:5it ¼ a0 þ a1lnXit þ lit ð4Þ

where i refers to the province, i=1,2,…,29, t refers to the year, t=1,2,…,10, lnPM2:5it
refers to the PM2.5 values in different provinces from 2001 to 2010, lnXit refers to

lnPOPDit , lnPGDP
D
it , lnCOAC

D
it ; lnGWASDit , a0 refers to the intercept term; a1 refers to

the coefficients of independent variables, and lit refers to the random error term, which

could be decomposed as follows:

lit ¼ dit þ #it þ eit ð5Þ

where ditand #it refer to the random perturbations of time effect and individual effect,

respectively, and eit refers to the random error term. OLS (ordinary least squares) can

be used for parameter estimation.

2. Spatial lag panel data model. After introducing the spatial variable, the spatial error

model assumes that the random error term eit follows a normal distribution.

Equation (4) can be rewritten as the spatial lag panel data model.

lnPM2:5it ¼ a0 þ a1lnXit þ q
X

WlnPM2:5it þ dit þ #it þ eit ðeit �N 0; r2it
� �

Þ ð6Þ

where W refers to the spatial weight vector matrix, RWlnPM2:5it refers to the overall

situation of PM2.5 in the areas around Province i in Year t, q is the degree of the spatial

spillover effect, indicating the correlation coefficient of PM2.5 in the areas around

Province i with that in Province i in Year t, r2it is the variance of eit
3. Spatial error panel data model. If the disturbance term shows spatial correlation, eit

does not necessarily follow a normal distribution. Equation (6) can be rewritten as the

spatial error panel data model.

lnPM2:5it ¼ a0 þ a1lnXit þ dit þ #it þ eit; eit ¼ k
X

Weit þ uit;uit �N0; r2it ð7Þ

where uit refers to the random error term of eit, which follows a normal distribution,

and k is the spatial autocorrelation coefficient of eit:
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GMM or ML (Anselin and Getis 1992) is used in estimating Eqs. (6) and (7). The

empirical results are given and explained below.

3.3 Results of empirical analysis

To analyze the influence of different independent variables on the PM2.5 value and their

contributions, five variables in 30 regions of China (excluding Hong Kong, Macao, Tai-

wan, and combining Chongqing and Sichuan) from 2001 to 2010 are selected to establish

the spatial panel regression model. The dependent variable is lnPM2:5it, and the inde-

pendent variables are lnPOPDit , lnPGDP
D
it , lnCOAC

D
it ; lnGWASDit . On the basis of Models

(4), (6), and (7), the ML method is adopted. The results calculated by MATLAB 2010a are

shown in Table 4.

When setting the threshold value of selecting the random effect or the fixed effect by

Hausman test with Matlab2010a, p[ 0.05 implies the rejection of spatial fixed effect

(Table 4). The Hausman test values of Equations (a) and (c) show that the random effect

model is desirable. The Hausman test values of Equations (b) and (d) show that the fixed

effect model is recommendable.

According to the equations in Table 4, both q and k are positive, which indicates that

PM2.5 has spatial spillover effect. In Equations (a) and (c), q are 0.776 and 0.781,

respectively, which indicates that every 1% increase in the PM2.5 value in the surrounding

areas will cause the PM2.5 value in the local place to increase by 0.776 and 0.781%,

respectively. In Equations (b) and (d), k is 0.793 and 0.801, which indicates that the

residual error term of PM2.5 in the surrounding areas significantly affects that in the local

place, with the residual error term referred to the factors except independent variables

(lnGWASDit ; lnPGDP
D
it ) that determine dependent variables; a1 shows that the factors such

as the density of population size and per capita GDP are positive spatially correlated with

PM2.5 value. Meanwhile, the density of coal consumption and waste gas emission has no

significant impact on the PM2.5 value.

According to Equations (a) and (b), every 1% increase in the logarithmic values of the

density of population size and per capita GDP will cause the logarithmic value of PM2.5 to

increase by 0.072 and 0.180%, respectively. Among these variables, the density of per

capita GDP has significant influence on PM2.5. Thus, a higher density of per capital GDP in

a region corresponds to a larger PM2.5 value. However, according to Equations (c) and (d),

the influence of the density of coal consumption and waste gas emission on PM2.5 is not

significant. This shows the following implications. First, the PM2.5 value is affected by the

density of the total amount rather than the economic structural factor. For example, the

coefficients of the indicators (POPD, PGDPD) that represent the density of total amount are

large and significant, whereas those of the indicators (GWASD and COACD) that represent

the density of structural factors are not significant. This suggests that per capita GDP

composition, production mode, and people’s consumption and lifestyles be adjusted and

systematically designed to realize the change in the mode of economic growth. Second, the

effect of the direct sources (waste gas emission and coal consumption) on PM2.5 becomes

insignificant because of the spatial spillover effect. According to Equation (c), the density

of coal consumption is not a significant source indicator of PM2.5 due to the spatial

spillover effect of PM2.5 in surrounding areas. According to Equation (d), the coefficient of

another important source indicator of PM2.5 (i.e., the density of waste gas emission) is also

not significant because of the spatial spillover effect of society, economy, technology, and

other error elements in different regions.
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Considering that the density of per capita GDP shows the greatest influence on PM2.5,

we use Kuznets curve to further study the relationship between PGDPD and PM2.5. The

steps and test are the same as earlier. Equations (4), (6), and (7) are consistent, but the

independent variables are changed to lnPGDPDit and ðlnPGDPDit Þ
2
. The parameter test shows

that the spatial lag panel data model with the fixed effect should be adopted. The results are

as follows:

lnPM2:5it ¼ �0:355lnPGDPDit
ð0:025Þ

þ 0:034ðlnPGDPDit Þ
2

ð0:0009Þ
þ 0:789

X
WlnPM2:5it

ð0:000Þ
ð8Þ

The values in brackets are the concomitant probability of the parameter. R2 = 0.992; Log

likelihood = 415.323; LR-test = 984.505 (p value = 0).

Thus, without considering the spatial lag term
P

WlnPM2:5it of the dependent variable
lnPM2:5it, a quadratic equation of one unknown between lnPM2:5 and lnGDP in the

positive U shape is formulated. The PM2.5 value in the surrounding significantly influences

that in the local place with the coefficient of 0.789, implying that every 1% increase in the

logarithmic value of PM2.5 in the surrounding will increase that in the local region by

0.789%.From the curve, the slope equation of lnPM2:5it to lnGDPD
it is:

olnPM2:5it

olnPGDPDit
¼ �0:355þ 0:068lnPGDPDit ð9Þ

From the above formula, the PM2.5 value is the lowest when the logarithmic value of the

PGDPD is 5.221 (the PGDPD value is 185.043 yuan per km2). From 2001 to 2010, the

regions reaching the lowest point of the curve are Guangxi (from 2001 to 2004) and

Guizhou (2007, 2009). In Fig. 4a, b these regions have low lnPM2:5 values and their spatial

correlations are insignificant, which implicitly implies to some degree that social structure,

Fig. 5 Curve relationship between lnPM2:5 and lnPGDPD
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industrial structure, and consumption trends in these provinces are relatively logistically

structured and of help in reducing the emission of PM2.5.

The part between 3.578 and 10.809 in Fig. 5 shows that the curve section of lnPM2:5it
and lnPGDPDit is in different areas from 2001 to 2010. Therefore, if current trends continue,

with the steady growth of the PGDPD in different areas, the PM2.5 value will also rapidly

increase. The so-called inverted U-shape inflection point does not appear. Hence, the rapid

growth trend of PM2.5 will be difficult to curb if the existing mode of economic growth is

not changed fundamentally and the environmental pollution is not effectively controlled. In

fact, the haze pollution with PM2.5 as the representative continuously occurred at a large

scale in different parts of China from 2011 and 2014 (Sun et al. 2016). The pollution is

particularly serious in Northern, Central, and Eastern China, which further verifies the

conclusions of the present study.

4 Concluding remarks

In recent years, the air pollution in China has not been improved fundamentally. The main

reason lies in that there lack adequate researches on the characteristics and impact factors

of spatial concentration and spatial spillover. Thus, effective prevention-control plans

cannot be made in time. This study has facilitated the overall and local spatial correlation

analyses between PM2.5 values in different provinces of China and variables indicating the

sources of PM2.5. These variables consist of the density of population size, per capita GDP,

coal consumption, and industrial waste gas emission. Afterward, the spatial panel data

model has been built. We have the following concluding remarks:

1. PM2.5 pollution in China is increasingly grave. The PM2.5 value each year is two to

three times greater than the air quality standard of the WHO. The pollution

concentrates in Central and Eastern China in blocks, covering 17 regions which

accounts for 75% of the total population size and GDP of China.

2. The PM2.5 values in China show a significant spatial correlation. The regions with high

PM2.5 are agglomerated in masses with severe pollution, such as Hubei, Henan,

Shandong, and Anhui. These regions had large population size, GDP, coal

consumption, and number of civilian cars among all the provinces in China. The

regions with low PM2.5 are also agglomerated in masses. These provinces include

Xinjiang, Jilin, Heilongjiang, and Inner Mongolia. The indicator values in these

provinces are small.

3. There shows spatial spillover effect in PM2.5 pollution. A 1% increase in the PM2.5

values of neighboring provinces will lead to a 0.78% increase in that of one province.

4. The PM2.5 value is affected by the total amount indicators. The density of the total

amount indicators per capita GDP and population size significantly influences the

PM2.5 value, in which every 1% increase in the logarithmic values of POPD and

PGDPD causes the logarithmic value of PM2.5 to increase by 0.072 and 0.180%,

respectively. Both people’s lifestyle and mode of per capita GDP growth influence

PM2.5.

5. An upward U-shaped relationship is observed between lnPM2:5 and lnPGDPD. The

PM2.5 value is far from the turning point of growth. With the further growth of

PGDPD, the PM2.5 value is expected to increase rapidly and continuously. The

observation during 2011 and 2013 also verifies such a prediction. The values of
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lnPGDPD in regions including Guangxi (from 2001 to 2004) and Guizhou (2007,

2009) are closest to the lower portion of the Kuznets curve, and to some extent, this

implies that in these provinces, social structure, industrial structure, and consumption

trends are relatively logistically structured, thus reducing the emission of PM2.5. The

deeper reason of such a phenomenon is worth of further studies in the future.

Thus, haze in China with PM2.5 and PM10 as representatives is typically distributed in

blocks and exhibits significant spatial spillover effect. Thus, a province or region cannot

fundamentally control PM2.5 concentrations solely by transferring the polluting industries

to adjacent provinces or strictly implementing the one-side PM2.5 concentration control

action. According to the characteristics of air pollution, prevention-control measures

should be taken in the following ways. First, the central government of China shall focus

on the haze pollution of severely polluted provinces. Only by changing the structure of

energy consumption and transforming the pattern of economic growth can these provinces

prevent air pollution from its source as well as bring the inflection point of air pollution

growth forward. Second, local government shall stop transferring heavily polluted indus-

tries to its neighboring areas. According to data analysis and empirical fact, there is special

spillover effect in air pollution. It will only make situations worse for all involved by

moving polluted sources to neighboring regions. Third, haze pollution shall be prevented

and controlled with joint efforts. The ‘‘whole nation system’’ can be adopted in handling

haze pollution (Zhang and Zhong 2014). For example, to set up a special group led by the

State Council and assisted by local government for the comprehensive treatment of haze

pollution or implement ‘‘grid’’ management in pollution highly concentrated and severely

polluted areas (She and Cao 2012). Therefore, the advantages of Chinese government in

public administration and ‘‘whole nation system’’ can be maximized to prevent and control

pollution. Taxation and environmental regulation with laws and economic means are also

applicable. Fourth, all individuals should be encouraged to practice an environmentally

friendly way of living and participate in PM2.5 concentration control. Only through the

effective implementation of the above-mentioned measures can we reduce the threat of

haze pollution and realize sustainable development.
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