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Abstract The spatial and temporal distribution of forest fires displays a complex pattern

which strongly influences the forest landscape and the neighbouring anthropogenic

development. Statistical methods developed for spatio-temporal stochastic point processes

can be employed to find a structure, detect over-densities and trends in forest fire risk and

address towards prevention and forecasting measures. The present study considers the

Portuguese mapped burnt areas official geodatabase resulting from interpreted satellite

measurements, covering the period 1990–2013. The main goal is to detect whether space

and time act independently or whether, conversely, neighbouring events are also closer in

time, interacting to generate clusters. To this purpose, the following statistical methods

were applied: (1) the geographically weighted summary statistics, to explore how the

average burned area vary locally through the investigated region; (2) the bivariate K-

function, to test the space–time interaction and the spatial attraction/independency between

fires of different size; and (3) the space–time kernel density, allowing elaborating

smoothed density surfaces and representing over-densities of large versus medium versus

small fires and on north versus south region. The proposed approach successfully allowed

finding and mapping spatio-temporal patterns within this large data series. Specifically,

medium fires tend to aggregate around small fires, while large fires aggregate at a larger

distance and longer times, indicating that the return time following these events is longer

than for small and medium fires. The density maps shows that hot spots are present almost

each year in the northern region, with a higher concentration in the northern areas, while

Electronic supplementary material The online version of this article (doi:10.1007/s11069-016-2637-x)
contains supplementary material, which is available to authorized users.

& Marj Tonini
marj.tonini@unil.ch

1 Institute of Earth Surface Dynamics (IDYST), University of Lausanne, 1015 Lausanne, Switzerland

2 Centre for Research and Technology of Agro-Environment and Biological Sciences, CITAB,
University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real,
Portugal

123

Nat Hazards (2017) 85:1489–1510
DOI 10.1007/s11069-016-2637-x

http://orcid.org/0000-0002-3592-8920
http://dx.doi.org/10.1007/s11069-016-2637-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-016-2637-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-016-2637-x&amp;domain=pdf


the southern half of the country counts lower surface densities of fires, which are mainly

concentrated in the central period (2000–2007).

Keywords Forest fires � Portugal � Spatio-temporal statistics � Ripley’s K-function � 3D-
Kernel density

1 Introduction

Natural hazards, such as landslides, earthquake and forest fires, can be modelled as

stochastic point process, defined as a countable aggregate of points randomly distributed in

space and/or in time (Diggle 2003). In stochastic point process theory, a point process is

fully represented by its conditional intensity function, that is the probability of observing

an event in the instant t with additional variables given the realization of the process before

t (Daley and Vere-Jones 2003). Thus, events can be analysed as a set of geographic

coordinates indicating their location at a certain time. For punctual events, such as the

ignition point of the forest fires, it is assumed the exact location, while, in case of areal

events, the location can be represented from the centroid of each occurrence. The spatial

pattern of natural hazard normally is not random, but events are aggregated in space and/or

in time forming clusters (Console et al. 2003; Dieterich 1994; Genton et al. 2006; Pereira

et al. 2015; Sousa et al. 2015; Telesca and Pereira 2010). Cluster analysis and, more in

general, the investigation of the spatio-temporal pattern for stochastic point processes are

basic preliminary procedures to discover predisposing factors, for prevention and fore-

casting purposes (Carrara et al. 1991; Guzzetti et al. 1999). The results of this exploratory

data analysis allow in turn detecting the more vulnerable areas and frame periods where the

hazard is more likely to occur.

The assessment of the integrated spatio-temporal pattern of natural hazardous events is

essential in disaster risk management, but often this approach is neglected (Middendorp

et al. 2013), and in the majority of the studies, these two dimensions are considered

individually. The simply spatial analysis of natural hazards is largely investigated in the

literature, especially for susceptibility map purpose, in particular for landslides (Bai et al.

2010; Conoscenti et al. 2008; Erener and Düzgün 2012; Lee et al. 2007; Nandi and

Shakoor 2010; Oh and Lee 2011), and for earthquakes (Ripley 1977; Rosser et al.

2005, 2007; Sartori et al. 2003; Silverman 1986a). An increasing number of published

studies in environmental science employed robust statistical models to quantify and

characterize the spatial and temporal pattern of natural events in general and forest fires in

particular (Koutsias et al. 2004, 2010; Martı́nez-Fernández et al. 2013; Orozco et al. 2012;

Tonini et al. 2013; Turnbull et al. 1990; Van Den Eeckhaut et al. 2011). Notably, the

Ripley’s K-function and its derivatives were applied to illustrate that the spatial distribu-

tion of geological point processes generally shows clustering (Zuo et al. 2009) and sta-

tistical inferences for spatial pattern of natural events were performed to investigate the

distribution of wildlife species (Acevedo et al. 2014), trees and forest area (Middendorp

et al. 2013; Wiegand et al. 2006), forest fires (Fuentes-Santos et al. 2013; Garavand et al.

2013; Hering et al. 2009; Trigo et al. 2013), earthquakes (Parajuli and Haynes 2015;

Schoenberg 2003) and landslides (Tonini et al. 2013). These studies are primarily focused

on investigating the spatial cluster behaviour of environmental data sequences and/or on

mapping their distribution at different periods or time frames, but they often miss a
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comprehensive spatio-temporal analysis accounting for the relation between these two

variables.

In fire management, it is crucial to explore and try to predict where and when fires are

more likely to occur: this is key information to understand the triggering factors of igni-

tions and for planning strategies to reduce forest fires, to control and manage the sources of

ignition and to identify areas at risk (Finney 2005; Fuentes-Santos et al. 2013; Garavand

et al. 2013; Koutsias et al. 2015; Leone et al. 2003; Parajuli and Haynes 2015; Salis et al.

2014).

The Mediterranean region is highly affected from forest fires, and Portugal is one of the

main concerned countries (Pereira et al. 2014; Piñol et al. 2005). An abundance of space–

time data series are available here, indicating the forest fires location, the date at which

each event occurred and other associated variables such as the ignition cause and the size

of the burned area. In the present study, the authors analysed one of the official databases

available from the website of the Institute for the Conservation of Nature and Forests

(ICNF), namely the Portuguese National Mapping Burnt Areas (NMBA 2016).

It is not evident to extract information about fires over-densities and recurrences, which

is the objective of the present study, simply by looking at the original arrangement of the

mapped burnt areas. To this end, authors applied different spatio-temporal statistical

methods, namely the following: (1) geographically weighted summary statistics, to explore

how these values (e.g. the average burned area) vary in space; (2) Ripley’s K-function, to

infer about the spatial randomness of the mapped events, specifically (i) the cross K-

function, to assess whether fires of larger size are spatially clustered around smaller fires or

independently distributed and (ii) the space–time K-function, to test the interaction

between these two variables (space and time); (3) space–time kernel density, to elaborate

smoothed density surfaces representing the over-densities of fires.

Results can help forest managers to answer to questions such as: Is the spatial location

of forest fires influenced by the time of their occurrence? Are events aggregated forming

clusters and, if so, where these clusters are localized? Fires of different size are inde-

pendently distributed or, vice versa, the presence of small fires enhances the probability of

occurrence of large fires?

The structure of the paper is as follows: in Sect. 2, the geographic setting of Portugal is

illustrated as well as the national mapped burnt areas dataset; in Sect. 3, the above-

mentioned statistical methods are described. Results concerning the spatial distribution of

summary statistics, the pattern structure of the analysed data and related variables and the

mapped over-densities in space and in time are presented in Sect. 4. Finally, the conclusive

Sect. 5 resumes the main results and examines their implications for fire risk managers.

2 Study area and dataset

Continental Portugal covers an area of about 89,000 sq km. The northern half of the

country (here defined as the region above the Tagus River) is characterized by a more

irregular topography, a denser river network and the predominance of forest and semi-

natural areas. The lowlands of the southern half of the country are dominated by agri-

cultural areas with mixed and broad-leaved forest mainly concentrated near the south-west

coast and in the south of the country (Fig. 1).

The favourable climatic, topographic and vegetation conditions make Portugal one of

the major fire-prone countries in Europe. The ICNF (i.e. the Portuguese Forest Service) is
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in charged to coordinate, with other institutes, different actions aiming at preventing forest

fires in Portugal. In the present study, the term forest fire is adopted because it is most used

in Europe, but it should be underlined that, in Portugal, fires may occur in forest, scrub-

lands and agricultural areas. ICNF is responsible for managing, collecting and delivering

official national datasets of forest fires. One of these products is the above-mentioned

Portuguese National Mapping Burnt Areas (NMBA): this is a long spatio-temporal data set

(from 1975) resulting from the processing of satellite images acquired once a year after the

end of the summer season. Row data consist of the records of the observed fire scars. Image

classification procedures allowed estimating the burned areas, furthermore compared

against ground data to remove discrepancies (Zhao et al. 2011). Technological improve-

ments in remote sensing allowed, over time, acquiring and processing images at higher

resolution. The minimum detectable area during the first ten years of acquisition cam-

paigns was of 35 hectares; since 1984 it was possible to detect area above 5 hectares, and

only since 2005 it was possible to detect smaller fires.

In this work, only fires that occurred from 1990 to 2013 were considered, and for

homogeneity in the analysis, only fires with burned area above 5 hectares were retained. A

total amount of 27,273 events were registered, with a mean of 1136 events burning 107

hectares per year (Table 1).

The histogram of the burnt area (Fig. 2a) reveals that about 85% of fires display a

surface between 5 and 100 hectares; among them, the 40% smaller fires have a size lower

than 15 hectares. In the remaining 15% of events with a burnt area above 100 hectares, less

than 2% are larger than 1000 hectares, including 16 very large fires, with a burnt area

bigger than 10,000 hectares, 13 of which occurred between 2003 and 2005, and precisely 6

in 2003, 2 in 2004 and 5 in 2005. As shown in Fig. 2b, the largest total annual burnt areas

are registered in the years 2003 and 2005, in spite of the annual number of events in these

periods that is not among the highest. The years with the highest number of forest fires are

1998, 2001 and 2002 (with about 1 850 events each), followed by 1995 and 2000 (about 1

Fig. 1 Biophysical and administrative characterization of continental Portugal including: a elevation, major
rivers network and the main administrative regions (districts); b the land cover, adapted from the 2006
Corine Land Cover inventory
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750 events). The years with the least number of forest fires are 1993 (141 events), 1992

(239 events) and 2008 (332 events).

The spatial distribution of the forest fires in Portugal during the investigated period was

analysed considering the centroid of each burnt area (BA). It is easy to find out that the

northern half of the country (above the Tagus River), with a total of 25,322 events, is much

more affected than the southern half, which accounts for only 1951 events (Fig. 3a).

Nevertheless, in both the cases any clear spatial pattern cannot be easily revealed, and

forest fires appear to occur everywhere in each subdomain.

For a better understanding of the phenomenon, we also grouped the events according to

the size of the burnt area (Fig. 3b, c, d). The three classes were defined as follows: (1)

small fires, including BA between 5 and 15 hectares and counting 10,900 events; (2)

medium fires, including BA between 15 and 100 hectares and counting 12,072 events; and

(3) large fires, including BA exceeding 100 hectares with a maximum, in the present study,

of 66,000 hectares, for a total of 4301 events. This repartition in classes helped to analyse

separately fire events of different sizes which can have a different pattern distribution.

While the minimum threshold of 100 hectares for large fires is widely accepted in

Mediterranean countries (Schmuck et al. 2014), it is difficult to find in the literature a

unique definition of medium and small fires, mainly because this depends on the local

conditions and on the available dataset. The choice we made here to define these two

classes was mainly based on the frequency distribution of the number of events, in order to

equally redistribute in both the remaining fires once excluded the large ones.

3 Methods

The spatial distribution of the forest fires in Portugal in the investigated period displays a

confusing pattern, and a robust analysis is required to highlight local over-densities and

temporal patterns. We applied here four different spatial-statistical methods, matching with

point process, allowing exploring and modelling the spatio-temporal distribution of the fire

events and of their associated burned areas.

In the order of execution, we performed the following analyses: the geographically

weighted summary statistics; the cross K-function; the spatio-temporal K-function; and the

3D-kernel density. Detailed explanations for each one is given in the following sections,

and more details can be found in the cited literature. All the analyses were carried out using

Table 1 Summary statistics of
forest fires occurred in Portugal
in the period 1990–2013 (from
NMBA dataset–source ICNF)

Burned area (ha) Number of events

Mean 107 Mean (per year) 1136

Standard error 4.91 Standard error 110.0024

Standard deviation 810.93 Standard deviation 538.8993

Sample variance 657,603.58 Sample variance 290,412.5

Kurtosis 3182.72 Kurtosis -1.1108

Skewness 48.67 Skewness -0.30302

Range 66,065.63 Range 1720

Minimum 5 Minimum 141

Maximum 66,070.63 Maximum 1861

Total 2,921,957 Total 27,273
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R free software for statistical computing and graphics (R Core Team 2015). The base

module can be extended via packages covering a very wide range of modern statistics. In

the present study, the following were used: GWmodel (Gollini et al. 2013; Lu et al. 2014)

to compute the geographically weighted summary statistics and splancs (Rowlingson et al.

2012) to estimate the Ripley’s K-functions and the space–time kernel.

Fig. 2 a Frequency and cumulative frequency distribution of the burnt area (express in logarithmic scale).
b Total annual number of forest fire events over the burnt areas (expressed in thousands of square metres)
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3.1 Geographically weighted summary statistics (GWSS)

Summary statistics include a series of measures allowing summarizing a set of data, the

most important of which are the central tendency and measures of dispersion. If we look at

the distribution of an entire population for the selected variables of interest, measures of

central tendency are the arithmetic mean, the median and the mode, while measures of

dispersion around of the mean are the variance and the standard deviation. Finally, mea-

sures of skewness and kurtosis are descriptors of the shape of the probability distribution

function (PDF), the first indicating the asymmetry and the second the peakedness/tailed-

ness of the curve.

In the case of spatial data (i.e. observations of events which have an exact location on

the earth surface), these global statistical descriptors can vary from one region to another,

since their values can be affected by the local environmental and socio-economic factors.

In this case, an appropriately localized calibration provides a better description of the

observed values. One way to achieve this objective is to weight locally (i.e. based on the

geographic location) the above-mentioned statistical measures.

We applied here the method proposed by (Brunsdon et al. 2002) and implemented into

the function GWSS presents in the R package GWmodel (Gollini et al. 2013; Lu et al.

2014). Above others, it allows evaluating the geographically weighted local means, local

standard deviation and local skewness. These results are achieved by computing a sum-

mary for a small area around any geolocalized point observation, via the technique of

kernel density estimation (KDE) (Brunsdon 1995; Silverman 1986b). A general description

of the KDE method is given here in Sect. 3.3, and more details can be found in the cited

publications. For now, we assume to estimate the KDE at each point, considering the

influence of the points falling inside a window with an increasing weight towards the

centre, corresponding to the point location. Then, scanning the window across the study

area provides a surface summary statistics. Two choices are possible: to fix the distance of

influence around each point (i.e. the bandwidth h of the kernel function) or to fix the

number of points around each observation to be included in the local computation. The

Fig. 3 Spatial distribution of forest fires in continental Portugal during the period 1990–2013, considering:
a all the fires with events in the northern and southern region plotted in different colours; b small fires
(5 ha B BA\ 15 ha); c medium fires (15 ha B BA\ 100 ha); and d large fires (BA C 100 ha)
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latter is the better choice if the distribution of the observations is heterogeneous, since it

allows avoiding biased calibrations of the model at different locations. In this regard, some

authors (Fotheringham et al. 2002; Páez et al. 2002a, b) observed that fixed spatial kernels

produce a large local estimation variance in low-dense areas, where observations are

sparse.

A second parameter to be considered in the computation of the KDE is the weighting

function. As explained below (see Sect. 3.3), this also has an influence on the final results.

In the R package GWmodel, both continuous (Gaussian, exponential) and compact—or

discontinuous—(bi-square, tri-cube, box-car) weighting function are included.

3.2 The Ripley’s K-function

The Ripley’s K-function allows inferring about the spatial randomness of mapped events

and is largely applied in environmental studies to analyse the pattern distribution of spatial

point processes.

The basic spatial univariate K-function [K(s)] is defined as the ratio between the

expected number (E) of point events falling at a distance r from an arbitrary event and the

intensity (k) of the spatial point process, corresponding to the average number of points per

unit area:

K sð Þ ¼ E

k

In more detail, for a point process X with intensity k, the number of points falling inside

a circle a of radius r centred on a point u of X is computed (Fig. 4a). This allows

calculating the spatial K-function for increasing values of distance r, moving over all the

point locations u, as follows:

K sð Þ ¼ 1

k
E n X \ a u; rð Þn uf gð Þju 2 X½ �

Under complete spatial randomness (CSR), which assumes the independency among the

events, K(s) is equal to the area of the circle at each distance values. To avoid bias caused

Fig. 4 a Computation of the Ripley’s K-function at increasing distance values (r) from an arbitrary events
U of the pattern (see on the text for symbol explanation). b The resulting K(r) function; the grey band around
the theoretical curve indicates the max–min Monte Carlo envelope
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by points located near the boundary, which hold fewer neighbours than internal points, the

so-called edge correction is necessary.

Plotting K(s) against the distance scale (r) allows comparing the estimated curve,

deriving from the observations, and the theoretical one, which is equal to pr2 (Fig. 4b). It
follows that events are spatially clustered within the range of distances at which the

observed K(s) assumes values above pr2, while they are spatially dispersed for values

below the theoretical K(s). That way allows finding out at which range of distance, the

observed data perform a non-random pattern distribution (e.g. clustered or dispersed). This

assumption can be accepted or rejected based on the result of CSR simulations, which

provides a pointwise minimum–maximum Monte Carlo envelope.

3.2.1 The temporal K-function

The temporal K-function [K(t)] is defined in the same way as for the spatial case, but the

time-based intensity and the time length replace the spatial parameters as follows:

K tð Þ ¼ 1

k
E n X \ a u; tð Þn uf gð Þju 2 X½ �

where k is here defined as the average number of events occurring per unit time and E is

the expected number of further events occurring within a time interval t from an arbitrary

event u.

3.2.2 The cross K-function

The bivariate cross K-function [Kij(s)] is a generalization of the Ripley’s K-function for

spatial pattern of localized events which can be classified into two (or eventually more)

distinct types. In the case of forest fires, these ‘‘types’’ can be represented by the different

classes of burned area.

Computationally Kij(s) counts the expected number of events of type j within a given

distance of events of type i. This allows evaluating the attraction, repulsion or random-

ization between different classes of events. Actually, a derivative of the K-function,

allowing simplifying the comparison of the estimated and the theoretical curves, was

computed. This consists in the L-function (Besag 1977), defined as:

L sð Þ ¼
ffiffiffiffiffiffiffiffiffiffi

K sð Þ
p

r

� r

It follows that if events of type i are spatially independently distributed from events of

type j, then the theoretical value of the L-function is zero everywhere, while positive values

indicate a spatial attraction (clustering) and negative a spatial repulsion (dispersion).

3.2.3 Spatio-temporal K-function

The space–time cluster analysis allows identifying whether events occurring in a given

area at a given time are closer than expected for a random distribution, and, specifically, it

seeks to detect whether events closer in space are also closer in time. The spatio-temporal

K-function [K(s,t)] can be applied in this case, to test for randomness and independency.
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Computationally K(s,t) is a bivariate function where space and time represent the two

variables of the equation. It is defined as the number of further events occurring within a

distance r and time t from an arbitrary event u,

K s; tð Þ ¼ 1

k
E n X \ a u; r; tð Þn uf gð Þju 2 X½ �

where k is defined as the average number of events occurring per unit area and time and

E is the expected number of further events occurring within a distance r and a time t from

an arbitrary event u. The observed events are considered as distributed over a space–time

cylinder with base of radius r, accounting for the spatial dimension, and height t,

accounting for the temporal dimension (Fig. 5).

If there is no space–time interaction, K(s,t) equals the product of the purely spatial and

purely temporal K-function. Inversely, if space and time interact generating clusters, the

difference between these two values, defined as D(s,t) and computed as follows, is greater

than zero:

D s; tð Þ ¼ K s; tð Þ � K sð Þ � K tð Þ½ �

The perspective 3D-plot of D(s,t) provides a first diagnostic of space–time clustering,

allowing inferring about the space–time interaction: positive values indicate an interaction

between these two variables at a well-detectable spatio-temporal scale.

3.3 3D-Kernel density map

The kernel density estimator is a nonparametric descriptor tool widely applied in GIS-

cience to elaborate smoothed density surfaces from spatial variables. The kernel function

(K) is widely defined as a smoothed unimodal function with a peak at zero, symmetric and

non-negative, integrating to one. It allows weighing up the contribution of each event,

based on their relative distance to the target. Different weighting kernel functions were

defined: these can be classed as compact, if they vanish beyond a finite range (e.g.:

Epanechnikov, bi-square, tri-cube), or continuous, if they are differentiable everywhere

(e.g.: Gaussian, exponential). Once the appropriate one has been chosen, this is computed

at each point with any previous assumption of the underlying distribution for the process

and scaled in the direction of the distance between events.

Fig. 5 Space–time cylinder used
to compute the spatio-temporal
K-function
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The parameter h, called bandwidth, controls the smoothness of the estimated density.

Finally, the kernel density (fh xð Þ) is estimated by summing all the kernel functions (K)

computed at each point (x) and dividing the result by the total number of events (n) for the

investigated process:

fh xð Þ ¼ 1

nh

X

n

i¼1

K
x� xi

h

� �

Both the shape of the kernel function and the value of the bandwidth influence the

quality of the resulting kernel, but h surely plays a major role (Altman and Léger 1995;

Bashtannyk and Hyndman 2001; Gitzen et al. 2006). Its choice is a crucial problem: large

values enhance the contribution of kernels of observations far from the target, so to over-

smoothing or under-fitting the resulting estimated density. Conversely, small values

account only for kernels of very adjacent point events, under-shooting or over-fitting the

results.

The time extension of the kernel density estimator was recently developed (Nakaya and

Yano 2010) to compute the so-called three-dimensional kernel density estimator (3D-

KDE), which includes the spatio-temporal dimensions, calculated as follows:

f̂ x; y; tð Þ ¼ 1

nh2s ht

X

i

ks
x� xi

hs
;
y� yi

hs

� �

; kt
t � ti

ht

� �

In the present study, we applied a quartic weighting kernel function, which is an

approximation to the Gaussian kernel. Regarding the bandwidth’s value, authors consid-

ered that the results of the spatio-temporal K-function could provide a valid support to this

choice. Namely, they assumed that the distance values showing a maximum cluster

behaviour over the displayed perspective D-plot can be attributed to the h-value mini-

mizing the problem of under- or over-smoothing.

Finally, the volume rendering technique was applied to combine the single smoothed

kernel densities obtained for each period into a unique image. This method allows to

visualize the entire internal structure of a volumetric dataset consisting of a 3D-vector

which, in the present study, corresponds to the spatio-temporal dimension (x,y,t) plus a

scalar showing the estimated kernel density values.

4 Results and discussion

4.1 Geographically weighted summary statistics

The geographically weighed summary statistics (GWSS) was computed over the entire

dataset, under the assumption that burned areas generally follow a geographic trend. We

show here the GW local means, the GW local standard deviation and the GW localized

skewness obtained using the bi-square function (Fig. 6). The choice of a compact waiting

function is justified by the huge number of events, which allows neglecting the influence of

observations falling outside the finite range of influence. Fixed and adaptive bandwidths,

testing for several values of amplitudes or setting different numbers of nearest neighbours

(e.g. 200, 300, 500), were also evaluated by the authors (results not shown). Finally,

comparing the resulting maps, the choice of an adaptive bandwidth for the kernel with 100

nearest neighbours was retained because it accounts well for the low- and the high-dense
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areas, with respect to the forest fires distribution, respectively, in the southern and the

northern half of Portugal. The maps shown here are displayed fixing five classes resulting

from the Fisher-Jenks algorithm (Daley and Vere-Jones 2003; Jenks and Caspall 1971; Zuo

et al. 2009). This is a classification method which finds the optimal solution to organize

n observations into k classes minimizing the variance within each class and maximizing the

variance between the classes.

For the geographically weighted local means, the following five classes resulted from

the analyses: (1) very low local means, between about 10 and 100 hectares; (2) low local

means, between 100 and 230 hectares; (3) medium local means, between 230 and about

500 hectares; (4) high local means, between about 515 and 1100 hectares; and (5) very

high local means, for higher values up to 2300 hectares. The last two classes (high values)

are localized in the centre of Portugal (in the conjunction between the districts of Coimbra,

Castelo Branco, Santarém and Portalegre) and in the southern coast (Faro District). The

lower means values are quite dispersed in the southern half of the country, while on the

northern half, very low means values (class 1) are concentrated in the area between

Bragança and Vila Real (on the east), between Porto and Viana do Castelo (on the west)

and around Lisbon (on the centre).

The GW local standard deviations follow the same pattern as the local means. This

result indicates that the dispersion of these values increase with the increase in the means

values. This comes from the fact that the observed hot spots, characterized by high local

means values, are the result of few events with a very large burned area surrounded by

forest fires with smaller burned area, so increasing the spread around the means of the local

dataset.

The GW local skewness has positive values everywhere. This result is in good agree-

ment with some recent findings (Bermudez et al. 2009; Mendes et al. 2010; Scotto et al.

2014), which reported that the distributions of area burned in Portugal in the last decades

are heavy tailed. This means that the mass of the distribution is concentrated on the left

Fig. 6 Spatial distribution of the geographically weighted local means, local standard deviation and local
skewness of the burned areas (1990–2013) in Portugal
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side of the probability distribution function, suggesting that the sizes of the observed

burned area are concentrated around values lower than the local mean, with a long tile of

relatively higher values. This behaviour is quite homogeneous around all the country with

higher values overlapping the border between aggregates, characterized by lower and

higher local means values.

4.2 Spatial attraction among small and medium fires

The cross K-function allowed detecting whether medium fires (BA between 15 and 100

hectares) are spatially closer to small fires (BA between 5 and 15 hectares) than expected if

they were randomly distributed. Large fires were not considered in this analysis since this

class, which include few events, is by contrast the most heterogeneous as regards the size

of the burned area, spanning from 100 up to around 66,000 hectares. Moreover, only the

spatial location of all the events was considered, neglecting the temporal scale. The plot of

the L-function (Fig. 7) reveals that medium fires in our study tend to be clustered around

small fires: this sort of ‘‘spatial attraction’’ strongly increases from zero up to 10 km

distance scale and then decreases. This could be caused by the spreading of small fires into

larger fires. On the other hand, our finding could reinforce the hypothesis supported by

some authors that in the long term, intense fire suppression may result in larger-than-

normal fires because of fuel build-up (Minnich 1983; Piñol et al. 2005). In both the cases,

further investigations are needed to draw these conclusions, and the intent of the present

analyses is purely exploratory.

4.3 Space–time cluster analysis

Forest fires are normally not randomly distributed inside the administrative limits of a

country. First, they occur in forest areas and scrublands, and secondly, environmental and

socio-economic variables constrain their spatial and temporal distribution. In order to

easily test for the spatial randomness of forest fires in Portugal over the entire study period,

we firstly computed the average of all the nearest neighbour distances (NND) between

Fig. 7 Cross L-function representing the spatial interaction between medium and small fires. The grey band
around the theoretical zero line indicates the max–min Monte Carlo envelope
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pairs of events and we compared this value with the one obtained for a hypothetical

random distribution.

Since the NNDs can drastically differ based on the range of the burned area’s size, we

analysed separately three different subsets, corresponding to the classes defined on Sect. 2.

Moreover, because of the hugely areal density’s discrepancy in the northern and in the

southern half of the country, these two subsets were also considered separately. Table 2

shows the results of the NND analyses: in all the cases, the observed mean distance was

significantly smaller than the expected one, suggesting the spatial clustering distribution of

the observed events.

Hence, the objective of the following cluster analysis was to test whether space and time

interact in generating clusters and to find the range of distances along these two dimensions.

To this purpose, we applied the spatio-temporalK-function. The results are shown in the form

of perspectiveD-plots of the difference between the space–timeK-function and the product of

the purely spatial and the purely temporalK-functions (Figs. 8, 9). The lower areal density of

large fires compared with small andmedium fires, as well as for events in the south compared

with the events detected in the north, led us to apply different values to the parameters for the

different subsets. To fix the maximum distance range, we considered the observed and the

expectedmean distances (see Table 2), representing ameasure of spatial aggregation, andwe

broadly applied ten times these values. Therefore, we performed the spatio-temporal cluster

analyses up to a distance of 20 km for large and southern fires and 10 km in the others cases

(small, medium and northern fires). It results that all the three classes of fires, with respect to

the burned area (Fig. 8), and to the northern and southern location (Fig. 9), have a similar

cluster behaviour, rising from the interaction of space and time. In other words, events closer

in space are also closer in time, but the scale is not the same in all the cases. For small and

medium fires (Fig. 8a, b), the cluster behaviour increases with the distance, while for large

fires (Fig. 8c) events are randomly distributed within a distance lower than about 3 km and

clustered above. In time, small and medium fires (Fig. 8a, b) have a peak of clustering each 3

and 4 years, respectively, followed by a decline. Large fires have a more complex temporal

pattern (Fig. 8c), with a decline within the first year followed by an increase, which reaches a

first peak after about six years, and then, it follows a decline and a new increase around the

tenth year. This last peak can be originated by a second class of fires, characterized by larger

burned areas. These different behaviours among the different classes of fires and in terms of

temporal aggregation can be due to the fact that the return time following large fires is

certainly longer than for small and medium fires.

Figure 9 shows the results of the analysis carried out separately for all the forest fires

occurred in the northern and in the southern half of Portugal, without any subdivision

Table 2 Results of the nearest neighbour distances analysis for the different classes of forest fire events
occurred in Portugal (1990–2013)

Dataset Number of
events

Area concerned
(km2)

Observed mean
distance (m)

Expected mean
distance (m)

All fires 27,273 *8900 607 903

Northern fires 25,322 *5200 512 713

Southern fires 1951 *3700 1856 2190

Small fires 10,902 *8900 980 1428

Medium fires 12,070 *8900 903 1358

Large fires 4301 *8900 1525 2274
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regarding the size of the burned areas. It is clear that the cluster behaviour of small and

medium fires prevails in depicting the shape of the D-plot for the analysed northern events

(Fig. 9a). For events in the south (Fig. 9b), the multifaceted shape of the resulting D-plot

along the temporal dimension can be a consequence of the cluster behaviour of small and

medium fires, prevailing up to 10 km and hiding the cluster behaviour of large fires, which

is revealed at bigger distances. It results that the peak of clustering in the northern and in

the southern Portuguese areas is characterized by a space–time lag distance of 10 km and

3 years and of 20 km and 6 years, respectively.

Fig. 8 D-plots, defined as the difference between the space–time K-function and the product of the purely
spatial and the purely temporal K-functions, computed for a small fires (5 ha B BA\ 15 ha); b medium
fires (15 ha B BA\ 100 ha); and c large fires (BA C 100 ha) in Portugal (1990–2013)

Fig. 9 D-plots, defined as the difference between the space–time K-function and the product of the purely
spatial and the purely temporal K-functions, computed for fires in the a northern (north of Tagus River); and
b southern Portuguese area (1990–2013)
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4.4 3D-Kernel density map

The three-dimensional kernel density estimator (KDE) allowed elaborating smoothed maps

representing the continuous spatial density distribution of forest fires and its evolution in

time. Yearly three-dimensional space–time KDE maps were elaborated for the northern

and southern areas of Portugal. The results of the space–time K-function provided the

indication for the choice of the bandwidth.

In the northern half of the country (Fig. 10), hot spots are present almost on each

investigated years, with a higher concentration in the northern areas. Precisely, the higher

densities are located at north-west around the regions of Viana do Castelo, Braga and Vila

Fig. 10 Yearly three-dimensional (space–time) kernel density estimation (3D-KDE) maps for the northern
Portuguese area (1990–2013)
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Real, and at the centre-north around the regions of Viseu, Guarda and Castelo Branco. The

southern coastal regions of Lisboa, Santarém, Leiria and Coimbra count lower spatial

densities of forest fires. Looking at the temporal distribution, the higher densities are

registered in the period 1995–2004 and the lower the years 1992 and 1993, characterized

by a very low number of events.

The southern half of the country (Fig. 11) counts lower surface densities of fires than the

northern regions. In the central period (from 1998 to 2006), medium–high densities are

spatially homogeneously distributed, with the higher ones in the period 2000–2004. The

lower densities are registered in the years with a very low number of events (1992, 1993),

but also in other periods (1994, 1997 and 2013). Along the entire study period, hot spots

are spread around the southern area and it is not possible to define a clear trend.

Fig. 11 Yearly three-dimensional (space–time) kernel density estimation (3D-KDE) maps for the southern
Portuguese area (1990–2013)
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In Table 3 are registered the summary statistics resulting from the kernel analysis: it can

be noticed that the statistical values for forest fires occurred in the northern region are

much higher (of a factor of 10) than in the south and, consequently, the detected over-

densities are to be considered with a different intensity scale.

To summarize the spatio-temporal density distribution of forest fires and visualize the

temporal dynamic into a unique map, the volume rendering technique was employed. In

the present study, the intensity is given by the estimated spatio-temporal kernel density (i.e.

the results of the 3D-KDE), computed using a bandwidth corresponding to the value of the

Table 3 Summary statistics of the kernel density estimation (KDE) results including: the minimum (Min.)
the first (Q1), second (Q2) and third quartiles (Q3), the mean as well as the maximum (Max.)

Case KDE summary statistics (#of events/km2)

Region (space/time bandwidth) Min. Q1 Q2 Mean Q3 Max.

North
(10 km, 3 years)

0 0 0.003 0.103 0.117 2.163

South
(20 km, 6 years)

0 0.002 0.017 0.029 0.044 0.240

Fig. 12 Three perspectives of the space–time kernel density estimation (3D-KDE) animation of the
detected spatio-temporal hot spots of forest fires in Portugal along the period 1990–2013, using the volume
rendering technique
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higher spatio-temporal clustering. We recall that along the spatial dimension, this is of

10 km for the northern and 20 km for the southern area, and along the temporal dimension,

this is of, respectively, three and of 6 years.

Different snapshots of the 3D-kernel animation are represented in Fig. 12: colours from

blue to red display the spatio-temporal detected hot spot of forest fires in Portugal with

increasing values of concentrations. This representation helps to visually inspect the areas

and frame period more affected from a high concentration of forest fires. As previously

revealed by the yearly plots, the volume rendering technique clearly shows that during the

entire study period (1990–2013), the over-densities of forest fires are mainly located in the

northern regions. In the southern half of Portugal, spread hot spot are more spatially

randomly distributed, while temporally these are more concentrated in the middle of the

study period, mainly in the frame 2000–2004.

5 Conclusions

Portugal is one of the main Mediterranean countries affected by forest fires. Deep inves-

tigations of the spatio-temporal pattern of these events are fundamental to find a structure,

helping to disclose predisposing factors and to address towards prevention and forecasting

measures. The present study considers the Portuguese National Mapping of Burnt Areas

(NMBA) dataset for the period 1990–2013 with the main goal of finding a structure,

allowing highlighting local over-densities and mapping them. Different statistical methods

developed for spatio-temporal stochastic point processes were applied to this end: (a) the

geographically weighted summary statistics (GWSS); (b) the bivariate (cross and space–

time) K-function; and (c) the space–time kernel density (3D-KDE).

The GWSS allowed to assess the local variability of summary statistics through the study

region and specifically to identify: (1) the regionswith high localmean and standard deviation

of burnt area located in central and south end of Portugal and (2) positive local skewness

everywhere in the Portugal mainland, with slightly higher values in the southern region.

The perspective plots of the difference between space–timeK-function and the product of

spatial and temporal K-functions were computed for three fire size classes (small, medium

and large) and two subregions (northern and southern half of Portugal). Obtained results

reveal, in all cases: (3) the spatial clustering distribution of the observed fire events, (4) similar

increasing cluster behaviourswith the distance (up to 10 km for small andmediumfires and to

20 km for large fires), (5) a peak of clustering every 3 or 4 years for small/medium fires and

(6) a more complex temporal pattern for large fires, characterized by two peaks at about six

and ten years. These metrics were retained to define the bandwidth of the kernel density

estimator allowing elaborating the 3D- KDE maps. These reveal: (7) hot spots almost every

year but with higher values in the north-west and centre in the northern area and (8) lower

densities of fires in the southern area, with medium–high densities spatially uniformly dis-

tributed in the period 2000–2004. Finally, the volume rendering technique allowed to visu-

alize the temporal dynamic of smoothed over-density surfaces into a unique map. The cross

K-function was also computed and revealed (9) the spatial attraction of medium fires around

small fires: this behaviour can be originated by the spreading effect.

To conclude, we should underline that the fire incidence patterns and the ignition date

are strongly dependent on many biophysical and human variables. Some of those rela-

tionships for Portugal were already investigated in previous studies, such as the role of

weather conditions and atmospheric synoptic patterns (Amraoui et al. 2015; Pereira et al.
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2005; Sousa et al. 2015; Trigo et al. 2006, 2013), the effects of climate changes (Pereira

et al. 2013), vegetation fire proneness (Pereira et al. 2014) or the characterization of fire

clusters with administrative, population, topographic, hydrographic and vegetation char-

acteristics (Minnich 1983; Pereira et al. 2015). In addition, this study allowed the identi-

fication of a large number of clustering space–time features of forest fires in Portugal,

which will allow a better planning of educational activities, awareness-raising initiatives,

prevention campaigns as well as better allocation of monitoring systems and firefighting.
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danger assessment wildland fire danger estimation and mapping the role of remote sensing data. World
Scientific Publishing, Singapore

Lu B, Harris P, Charlton M, Brunsdon C (2014) The GWmodel R package: further topics for exploring
spatial heterogeneity using geographically weighted models. Geo-spatial Inf Sci 17:85–101

Martı́nez-Fernández J, Chuvieco E, Koutsias N (2013) Modelling long-term fire occurrence factors in Spain
by accounting for local variations with geographically weighted regression. Natl Hazards Earth Syst
Sci 13:311–327

Mendes JM, de Zea Bermudez PC, Pereira J, Turkman K, Vasconcelos M (2010) Spatial extremes of
wildfire sizes: bayesian hierarchical models for extremes. Environ Ecol Stat 17:1–28

Middendorp RS, Vlam M, Rebel KT, Baker PJ, Bunyavejchewin S, Zuidema PA (2013) Disturbance history
of a seasonal tropical forest in western thailand: a spatial dendroecological analysis. Biotropica
45:578–586

Minnich RA (1983) Fire mosaics in southern California and northern Baja California. Science
219:1287–1294

Nakaya T, Yano K (2010) Visualising crime clusters in a space-time cube: an exploratory data-analysis
approach using space-time kernel density estimation and scan statistics. Trans GIS 14:223–239

Nandi A, Shakoor A (2010) A GIS-based landslide susceptibility evaluation using bivariate and multivariate
statistical analyses. Eng Geol 110:11–20

NMBA (2016) National mapping burnt areas. Portugal
Oh H-J, Lee S (2011) Landslide susceptibility mapping on Panaon island, Philippines using a geographic

information system. Environ Earth Sci 62:935–951
Orozco CV, Tonini M, Conedera M, Kanveski M (2012) Cluster recognition in spatial-temporal sequences:

the case of forest fires. Geoinformatica 16:653–673
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