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Abstract This paper examines methods for quantitatively identifying communities that

have high social vulnerability to environmental hazards. We first provide an overview of

the existing literature on quantifying social vulnerability. We discuss the strengths and

weaknesses of the one of the most common methods, composite indexing using principal

component analysis (PCA), in more detail. We present a case study of Hampton Roads,

Virginia, that compares PCA-based composite indexing to an alternative method using k-

means clustering to identify socially vulnerable communities. We find that PCA-based

indexing is particularly sensitive to changes in geographic boundaries and the number of

input variables while clustering is less so. However, both methods exhibit the highest

levels of consistency when vulnerability is measured by a relatively small number of well-

established quantitative indicators. While the cluster method is more intuitive and easier to

interpret than composite indexing, it is not well suited for large analyses across a disparate

geographic area or where one needs to explicitly rank observations.

Keywords Resilience � Sea level rise � Principal component analysis � Cluster analysis

1 Introduction

For many reasons, the poor, elderly, and disabled are generally at much greater risk to

natural disasters such as flooding and hurricanes than the general public.1 The term social

vulnerability is often used to describe this phenomenon. While there is no consensus as to

the exact definition of social vulnerability, for the purposes of this paper we use Blaikie
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et al.’s (1994) definition that social vulnerability refers to the characteristics of an indi-

vidual or group that influences their capacity to anticipate, cope with, resist and recover

from a physical hazard. Since socially vulnerable groups are less resilient to physical

hazards, they may face disproportionate losses from either a natural or man-made disaster.

Our focus in this paper is on social vulnerability to natural hazards, particularly those that

are likely to increase due to climate change and sea level rise. Following Hurricane

Katrina, the Stafford Act, which directs how federal resources are used to respond to major

disasters, was revised to require than any federal funds used to respond to a disaster must

provide equitable treatment on the basis of race, sex, age, disability, English-language

proficiency, and economic status.2 Thus, as governments formulate or evaluate potential

policy responses to impending sea level rise they will need to have an understanding of the

social vulnerabilities in their communities to ensure such equitable treatment.

The literature on social vulnerability has its roots in the 1976 article in Science by

O’Keefe et al., ‘‘Taking the Naturalness out of Natural Disasters.’’ In this article the

authors argue that impact of disasters is as much, if not more, a consequence of socioe-

conomic factors, particularly what they term ‘‘underdevelopment,’’ than natural factors.

This paper spurred a number of other papers and analyses examining socioeconomic

vulnerability to physical hazards, primarily using a political ecology framework. Building

on this initial literature, Blaikie et al. (1994) developed a ‘‘pressure and release model’’ of

social vulnerability that examines the ways in which social, economic, and political pro-

cesses influence how hazards affect different people. Their model focuses on the root

causes and social processes that drive vulnerability and create the potential for unsafe

conditions (‘‘pressures’’) and how to reduce the fundamental vulnerability of the com-

munity (‘‘releases’’). A separate strand of the literature focuses less on the root cause of

social vulnerability and much more on the interaction between the exposure to physical

hazards as a result of the geographic location of a community and the community’s social

vulnerability. This ‘‘hazard of place’’ approach is outlined in Cutter (1996). More recently,

authors like Turner et al. (2003) have used the framework of sustainability science to

examine vulnerability, conceptualizing it as a coupled human–environment system and

focusing attention on how to reduce vulnerability and build more adaptive and resilient

communities. This approach considers the human and environmental conditions to be

intertwined and interdependent and thus does not consider social vulnerability independent

of physical conditions.

Even as the theoretical literature on social vulnerabilities continues to expand and

evolve, there is concurrently increasing interest in measuring social vulnerability, however

defined. One reason for this emphasis on measurement is that governments at all levels are

increasing their attention to planning for and responding to natural hazards, particularly

those associated with climate change. One of the key challenges in measuring social

vulnerability is the wide range of approaches to social vulnerability and the lack of a

consensus as to what exactly social vulnerability is. In this paper, we examine two different

approaches to identifying and measuring social vulnerability using a case study of

Hampton Roads, Virginia. The two methods examined are composite indexing using

principal component analysis (PCA) and k-means clustering. The case study approach

allows us to illustrate the strengths and weaknesses of these two methods using a concrete

example, although the conclusions from our study should apply more globally.

We chose Hampton Roads as our case study because the area is one of the most

threatened by sea level rise in the USA, and there are significant ongoing efforts to plan for

2 42 U.S.C. 5151.
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and adapt to climate change. Hampton Roads stretches from Virginia’s Atlantic coast up

the shore of the Chesapeake Bay and into the interior of the state. The area encompasses

the cities of Norfolk, Virginia Beach, Hampton, Newport News, and Chesapeake. It is

home to several US military installations, including the world’s largest naval base, and to

one of the largest commercial ports on the East Coast. Relative to other coastal locations,

Hampton Roads faces accelerated effects of sea level rise due to significant land subsi-

dence and the prevalence of low-lying flood-prone terrain in the Chesapeake basin (Vir-

ginia Institute of Marine Sciences 2013). Several eastern Virginia communities have

already seen a significant increase in the severity and frequency of tidal flooding and sea

level rise is expected to bring even more tidal flooding and damaging storm surges to the

area in coming decades.

The area includes both highly urbanized and very rural communities as well as some of

the richest and the poorest neighborhoods in the state. In order to develop effective pro-

grams to adapt and respond to the impacts of climate change and sea level rise that meet

the equity requirements of the Stafford Act, policymakers must consider the needs of all of

the region’s residents and stakeholders, particularly those who are least able to provide for

themselves in the event of disaster. It is this need which motivates this paper’s critical

examination and refinement of methods for measuring social vulnerability to climate

change and sea level rise. While we are primarily interested in developing a method to

quantitatively estimate social vulnerability to help local and state planners determine how

to best marshal limited resources to adapt to sea level rise while ensuring that resources are

targeted effectively and equitably, our analysis has implications beyond sea level rise and

climate change. In particular, our examination of methods for quantifying social vulner-

ability should also apply to other types of natural and man-made hazards that result in

significant damage to physical infrastructure and disruption of communication, trans-

portation, and utility networks.

The remainder of the paper is organized as follows. The next section provides a survey

of existing quantitative methods for identifying socially vulnerable populations with a

focus on composite indexing using principal component analysis (PCA), one of the most

commonly used methods of measuring social vulnerability. We then present an analysis of

the strengths and weaknesses of PCA-based indexing and identify some caveats to its use.

The third section presents our case study of Hampton Roads which compares PCA-based

indexing to an alternative method that uses k-means clustering to identify socially vul-

nerable communities, considering the merits and limitations of the two methods. The paper

concludes with a discussion of our findings as well as recommendations for researchers and

practitioners looking to measure social vulnerability to climate change and sea level rise.

2 Measuring social vulnerability: SoVI� and beyond

In the mid-2000 s, a group of researchers at the University of South Carolina (USC) led by

Susan Cutter developed an approach to quantifying social vulnerability to environmental

change and natural disasters (Cutter et al. 2003). This approach, known as the social

vulnerability index, or SoVI�, uses principal component analysis to identify common

factors underlying an assortment of potential vulnerability indicators. PCA is a statistical

technique that takes as its input a matrix of interrelated socioeconomic variables—in this

case those considered to measure various dimensions of social vulnerability—and creates a

set of principal components that extract the important variation in the underlying input data
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while reducing the noise and redundancy in the data. After conducting the PCA, the

researcher combines the newly created component variables into a composite index that

provides a single value for each observation in the dataset, in this case a social vulnera-

bility score. The utility of a PCA-based index is that it encapsulates a lot of information in

an easily consumed form and individual observations can be ranked relative to each other.

More specifically, prior to conducting a PCA, variables in the input matrix are typically

standardized to z scores with zero means and unit variances to avoid any confounding

effects that might arise from using variables of different magnitudes in the analysis. The

PCA is run on the standardized input matrix and generates a new set of orthogonal

principal components. The researcher then decides which principal components to inte-

grate into the final index and how to do so. In particular, the researcher must determine the

directionality of each retained component, that is, whether higher values of the component

increase the index value (positive directionality) or decrease it (negative directionality).

The components are then added together either with or without weights. To ensure that the

indices are easily comparable to each other, most final indices are standardized to z scores

with zero means and unit variances.3

A review of the existing academic literature on the construction of quantitative social

vulnerability indicators reveals that since its creation, SoVI� in particular, and PCA-based

composite indexing more generally, have become one of the most common paradigms for

quantitatively identifying social vulnerability to environmental hazards, particularly for

studies that focus on natural hazards associated with climate change such as hurricanes,

storm surge, flooding, and coastal erosion. Consequently, a fairly robust academic litera-

ture using PCA-based indices has developed, as shown in Table 1.4 PCA-based indices are

also widely used in tools directed at policy practitioners and planners. For example, the

state of California has incorporated a version of SoVI� into its State Hazard Mitigation

Plan (California Emergency Management Agency 2013) and the Pacific Institute, a non-

profit research organization focusing on environmental issues uses a 19-variable census

tract-level SoVI� replica for the state of California (Pacific Institute 2016). At the national

level, the National Oceanic and Atmospheric Administration (NOAA) includes the county-

level SoVI� as one of the available layers in its public sea level rise risk assessment

mapping tool (NOAA 2016). Similarly, the nonprofit group Climate Central has included

SoVI� in its Web-based application for identifying communities at risk from sea level rise

(Climate Central 2016).

While SoVI� and related PCA-based indices have the advantage of replicability,

transferability, and general acceptance in the academic literature, there are some caveats to

using them to measure social vulnerability. First, the strength of the PCA method—that it

reduces a complex matrix of information to a singe number—is also one of its weaknesses,

as the index can be difficult to interpret and the methodology for computing the index is

not transparent to most users of the index. More specifically, as we discuss below, users are

unlikely to understand how the selection of input variables, the use of component selection

and weighting criteria, and considerations of scale influence the resulting index.5 Addi-

tionally, while the PCA process results in a unique set of components, the researcher must

3 Abdi and Williams (2010) provide a more complete description of the PCA method.
4 While this list is not exhaustive, it does provide a large cross section of the literature.
5 This is certainly not the first paper to point this out. For example, Tate (2012) and Tate (2013) also discuss
how these factors, as well as a number of other factors, affect the construction of a composite index.
However, our approach to comparing PCA-based composite indexing to a cluster analysis approach focusing
on these factors is, to the best of our knowledge, unique.
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ultimately make subjective decisions about how to aggregate those components into the

final index, which creates the potential for two researchers to develop different indices

from the same underlying set of input data.

2.1 Complexity and interpretability of PCA-based indices

One of the key challenges facing practitioners who wish to capture the dimensions of social

vulnerability quantitatively is that vulnerability depends upon many interacting factors and

the specific context of a particular situation or hazard type. Attempting to account for a

wide range of distinct factors by including them explicitly in a single composite index

introduces complexity into the model, which can make the resulting index difficult to

interpret and apply. As shown in Table 1, the number of variables included in PCA-based

indices has ranged from a low of 8 to a high of 64 with most studies using between 25 and

40 variables. Technically, PCA can successfully capture subtle variations in the input data,

which may encourage researchers to take an inclusive approach to collecting data that

capture the many complex dimensions of social vulnerability. Existing analyses of both

applied and simulated index construction, however, suggest that a PCA-based index

constructed from many factors, most of which by themselves have weak explanatory power

in predicting specific outcomes cannot necessarily distill meaningful value from funda-

mentally noisy data.6 Additionally, the larger the number of input variables, the more

likely the index will suffer from unexpected correlation between input variables, bidi-

rectional vulnerability signals (where both high and low values of a variable indicate

vulnerability), and differences in the true measures of vulnerability across heterogeneous

populations. These types of interactions, which we refer to collectively as confounding

variable effects, may bias the final index in many different ways.

For example, a variable measuring the proportion of mobile homes in a community may

be an important indicator of vulnerability in rural areas, but including a principal com-

ponent in the final index that is heavily influenced by that variable will result in a lower

social vulnerability index for urban areas where mobile homes are not an important con-

cern. Alternatively, including measures such as median age where vulnerability is a con-

cern at both tails of the distribution can result in a noisy signal. While there are solutions to

this, such as Fekete’s (2012) recommendation to use binary indicators for extreme values

of specific variables that signal potential vulnerability on both ends of the scale, many

indices continue to use these types of variables. By limiting the input variables to only

those that capture or are strongly correlated with the social vulnerability factors of greatest

interest based on review of the relevant literature and engagement with local communities,

researchers can minimize potential distortions from confounding variable effects. How-

ever, as shown by the large number of variables used in most of the indices listed in

Table 1, the tendency seems to be to err on the side of inclusion rather than exclusion.

One argument for including a large set of variables in a PCA-based index is ‘‘to avoid

both pre-principal components analysis data loading and ex post-data adjustment that could

impart a bias in the results used for decision making’’ (Cutter et al. 2013, p. 342). However,

subjective considerations of data loading are unavoidable in constructing a PCA-based

index as such indices necessarily reflect the relative influence of the variables that were

6 For example Sherrieb, Norris and Galea (2010) conduct a correlation analysis of existing social vulner-
ability composite indices using county-level data from the state of Mississippi find a relatively low cor-
relation of these indices with survey measures of social cohesion (correlation -0.17) and collective efficacy
(correlation -0.10).

Nat Hazards (2017) 85:1089–1117 1095

123



inputs into the PCA process. As Burton and Cutter (2008) note, composite indices ‘‘do not

always capture the most important or ideal factors, but rather those that best explain the

variation in input data’’ (p. 141). Thus the contribution of a particular dimension of

vulnerability to the overall index depends in part on how many indicators of that dimension

are included in the input matrix. For example, in Baum et al. 2008 study, only two out of

19 input variables measure income and thus income-related measures explain only a small

share of the total variance in the input data and ultimately have a relatively small impact on

the final index. On the other hand, when financial security is measured by the selection of

many input variables such as income, home value, rent, and poverty level, financial

security is likely to have a larger effect on the final index. Ultimately, choosing to include a

variable in an index can alter the results in the same ways that excluding a variable can.

Unfortunately, in many situations it can be difficult to come up with an observable measure

of social vulnerability against which to externally validate a researcher’s choice of vari-

ables. For example, while there might be a well-defined outcome measure for some hazards

such as the deaths associated with heat waves, in the case of recurrent flooding and storm

surges from sea level rise one is likely interested in a range outcomes including deaths,

changes in physical and mental health, property damage, increased cost of home main-

tenance, and lost wages, some of which might be quite difficult to measure.

In addition to potentially weakening the vulnerability measure, increasing the number of

input variables to capture a wide range of vulnerability concerns also reduces the inter-

pretability of the composite index as it becomes very difficult to trace how changes in a

single factor influence the overall index. Thus, researchers and practitioners should be

aware of all of the possible trade-offs associated with the inclusion of additional measures

of social vulnerability and need to convey those tradeoffs to users of the index.

2.2 Component selection and weighting criteria

Another key consideration researchers must make in constructing a PCA-based composite

index is which output components will be used in the index and how they will be weighted

in the aggregation. As shown in Table 1, most indices we surveyed use the Kaiser selection

criterion, in which components from the PCA are incorporated into the final matrix if they

have an eigenvalue greater than 1.0 (i.e., the component explains more than 1/nth of the

total variance of the input matrix, where n is the total number of input variables). Most

indices then equally weight the retained components in the final index. Finch et al. (2010)

defend equal factor weights as the most logical method for aggregating the retained

components into the final index because ‘‘the purpose of the SoVI index generally…is to

provide an aggregate measure of all the factors that contribute to the social vulnerability of

the parish, not just one or two individual variables or components’’ (p. 184). We believe

that weighting each factor according to its share of explained variance in the sample is

preferable to equal weighting for two primary reasons. First, if one selects and combines

the input variables in proportion to perceived overall contribution to vulnerability, variance

weighting will preserve this choice while equal weighting will not. Second the Kaiser

selection criterion used by most researchers is inconsistent with equal weighting. That is, if

the researcher believes that the explained variance is relevant enough to merit its use as a

component selection criterion, it should also be relevant enough to merit its consideration

in weighting those components. Moreover, our case study, which is discussed in detail in
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Sect. 3, shows that variance-weighted indices are more consistent when there are changes

in the geographic scope of analysis and in the input variables than equal-weighted indices.7

2.3 Scale

Another issue that researchers and practitioners should consider when constructing a

vulnerability measure is scale. Scale includes both the level of observation (e.g., census

tract vs. county) as well as the overall geographic boundaries of the analysis. For some data

sources such as the American Community Survey, data for the smaller geographies (census

block groups), are more noisy than data at larger geographies (tracts and counties), due to

the sampling method used to collect data. Moreover, some data sources may only have

information for larger geographies. With respect to the geographic area spanned by the

analysis, for the most part that is driven by the nature of the study. However, trying to

capture the important dimensions of vulnerability when the factors that contribute the most

strongly to vulnerability vary significantly across observations increases the likelihood of

confounding variable effects, and larger geographic areas are more likely to face this

problem than smaller and more homogeneous ones. Our case study examines the consis-

tency of various PCA-based indices to variations in geographic boundaries, but not to

variation in the granularity of the analysis.8 In our case study presented in Sect. 3, we show

that PCA-based indices are sufficiently sensitive to the drawing of a different set of

boundaries to confound their utility even at relatively small changes in geographic

boundaries, such as from Hampton Roads census tracts to Coastal Virginia census tracts.9

2.4 Alternatives to PCA-based indexing

Several alternatives to SoVI� and PCA-based indices have been offered in the literature on

social vulnerability to natural hazards. Generally these alternatives fall into three cate-

gories: separate consideration of individual vulnerability measures; simple aggregation of a

small set of variables; and measurement of similarity to a reference district determined to

be vulnerable. As an example of the first type, Wang and Yarnal (2012) consider individual

factors that contribute to social vulnerability separately and map them to identify potential

vulnerability hot spots. The method thereby avoids the problem of weighting factors, but at

the cost of added complexity in the final measure and reduced transferability to other

regions for comparison and validation. Additionally, this method does not allow one to

rank locations relative to each other in terms of vulnerability.

As an example of the second category, Chakraborty et al. (2005) construct a composite

Social Vulnerability for Evacuation Index (SVEAI), which is a simple additive aggregation

of standardized variable values for a set of 10 social indicators thought to represent

7 Tate (2013) and Wolters and Kuenzer (2015) discuss a third option, the use of parametric indicators or
component weights assigned based on parameters assessed from outside information such as expert opinion
or econometric analysis. While expert-derived or parametrically-weighted indices might offer greater
validity than other approaches to weighting, they have disadvantage of requiring additional analysis or
researcher judgment. Thus we chose to focus on the two weighting options that do not rely on additional
information or inputs.
8 Tate (2012) shows that the granularity of the analysis does have a significant effect on PCA-based indices.
9 Cutter et al. (2013) also investigate the consistency of various PCA-based indices under changes in
geographic boundaries. However, they examine applying the same index construction method to distinctly
different geographic areas while we consider applying the same method to different overlapping geographic
boundaries.
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vulnerability dimensions for assessment of hurricane evacuation planning in Hillsborough

County, Florida. As in other composite indices of social vulnerability, differential access to

resources, as measured by both poverty and specific indicators of communication and

transportation access, is an important consideration and serves as a proxy for a great deal of

other correlated vulnerability signals. As is the case with PCA-based index, this method

does provide a means for ranking observations relative to each other. As an example of the

third approach, Chang et al. (2015) present a composite social vulnerability indicator

meant to assess the similarity of administrative districts in British Columbia along a several

different dimensions of vulnerability. Their Hazard Vulnerability Similarity Index (HVSI)

measures the similarity of districts in their analysis to a chosen reference district in order to

facilitate knowledge sharing among areas facing similar issues. The cluster analysis

method we apply in our case study builds on this similarity approach, using a data mining

technique to group similar communities within Hampton Roads.

3 Hampton Roads case study

In this section we present a case study for measuring social vulnerability in Hampton

Roads, Virginia. As discussed in the introduction, Hampton Roads is under serious threat

from sea level rise and climate change. As localities work on adaptation strategies and

mitigation plans, there is pressure to ensure that these plans are informed not only by

physical vulnerability, but also by social vulnerability to natural hazards. In this case study

we compare a PCA-based approach to quantifying social vulnerability to an alternative

method that uses k-means clustering to group similar communities. The resulting clusters

are then evaluated with respect to predictors of social vulnerability to determine whether

the communities in each cluster are socially vulnerable. In our comparison of the two

methods, we focus primarily on the consistency of the methods under changes in the set of

input variables and geographic scope. In addition we consider the consistency of the PCA-

based indices under changes in the weighting method.10

For the purposes of local planning for climate change and sea level rise, it is important

to identify socially vulnerable communities at a reasonably small geographic scale.

However, as is the case with most quantitative analyses of demographic data, the level of

spatial aggregation often depends on the data available, rather than a methodological

decision about the appropriate level at which to measure social vulnerability. This study is

no different. In order to use a wide range of variables that have been identified by other

studies as important indicators of social vulnerability, the smallest geographical unit that

we feel comfortable using are census tracts.11 For this analysis we consider the 1874

census tracts in Virginia that have at least 100 or more inhabitants. Including census tracts

across all of Virginia allows us to explore the extent to which using more observations as

well as a more diverse set of observations to construct the vulnerability measure affects the

consistency of that measure.

10 Since the cluster analysis approach does not use weights, we do not compare the methods on this
dimension.
11 Some of the key variables used in the analysis are available only from the American Community Survey
(ACS). Because the ACS samples approximately 1 in 40 households every year, the error bounds for smaller
geographies such as block groups are subject to significant sampling error.
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3.1 Construction and evaluation of the PCA-based indices

For this case study we constructed eighteen different PCA-based composite social vul-

nerability indices that vary across three dimensions: the geographic boundaries of the

analysis, the set of input variables, and the weighting of the components generated by the

PCA. With respect to geographic boundaries, we consider three different sets of census

tracts as shown in Fig. 1: all 1874 census tracts in Virginia with at least 100 inhabitants;

the 1172 of those census tracts in Virginia’s coastal counties; and the 408 of those census

tracts in the Hampton Roads area. We consider three different sets of input variables: The

largest set includes 41 variables chosen to replicate the original Cutter et al. (2003) SoVI�

index, measured at the census tract-level where available and at the county level otherwise;

the next set includes only the 29 variables from the first set that can be measured at the

census tract-level; and the smallest set includes 13 variables, all census tract-level, con-

sidered by us to be the most direct determinants of social vulnerability, including measures

accounting for income, race, ethnicity, age, and gender.12 Table 2 presents the variables

used in each set.13 Finally, we considered two different methods for aggregating the PCA-

derived components: an equal-weighted index which gives the same weight to each of the

PCA output components used in the analysis and a variance-weighted index that weights

each component according to the total variance it captures from input variables. While the

Cutter et al. (2003) set of input variables were purposefully constructed to measure social

vulnerability to general environmental hazards and our selection of the limited set of 13

variables was made in the context of sea level rise and climate change, it is likely that

similar sets of variables would be appropriate for quantifying social vulnerability to other

types of natural and man-made hazards. Thus we expect the insights from our analysis to

apply broadly to most PCA-based quantifications of social vulnerability.

Before conducting the PCA, the variables were first standardized to z scores with zero

means and unit variances, as is common in the literature, to avoid confounding effects that

Fig. 1 Map of all Virginia, Coastal Virginia, and Hampton Roads census tracts

12 The Cutter et al. (2003) study used 42 variables; however, we were unable to find recent data on general
local government debt to revenue ratios—thus we only include 41 of the original variables in our analysis.
13 We use 2010 as the base year for this study. Variables that were collected from a source other than the
2010 Census were collected as close to 2010 as possible.
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Table 2 Variables used in the social vulnerability measures

Variable name Source Spatial
granularity

Set
41

Set
29

Set
13

Median age 2010 US Census Tract X X

Per capita income ACS 2006–2010 Tract X X X

Median value of owner-occupied housing
units

ACS 2006–2010 Tract X X

Gross rent ACS 2006–2010 Tract X X

Physicians per capita 2004 AMA data County X

Pct. voting Obama in 2008 MSNBC County X

Birth rate per capita VA state health district
data

County X

Net internal migration per capita Census population
estimate

County X

Percent land in farms 2007 census of
agriculture

County X

Percent population Black or African-
American alone

2010 US Census Tract X X X

Percent population American Indian and
Alaska Native alone

2010 US Census Tract X X X

Percent population Asian alone 2010 US Census Tract X X

Percent population Hispanic or Latino 2010 US Census Tract X X X

Percent population under 5 years old 2010 US Census Tract X X

Percent total population over 65 years old 2010 US Census Tract X X X

Percent unemployed in civilian force age 16
and over

2010 US Census Tract X X X

Average household size 2010 US Census Tract X X

Percent of households earning more than
$75,000/year

ACS 2006–2010 Tract X X

Percent population below poverty line ACS 2006–2010 Tract X X X

Percent housing units occupied by renters ACS 2006–2010 Tract X X

Number of farm operators per capita 2007 census of
agriculture

County X

Percent housing units that are mobile
homes

ACS 2007–2011 Tract X X

Percent population age 25 and over with no
HS degree

ACS 2006–2010 Tract X X X

Housing units per square mile 2010 US Census Tract X X

Private housing building permits 2010 Building Permits
Survey

County X

Manufacturing establishments 2007 economic census County X

Sales, receipts, and value of shipments for
all firms

2007 economic census County X

Number of firms 2007 economic census County X

Farm income 2007 economic census County X

Percent population 16 and over in the labor
force

ACS 2006–2010 Tract X X

Percent females 16 and over in civilian
labor force

ACS 2006–2010 Tract X X X
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can occur from using variables of different scales.14 For each combination of geographic

area/input set we conducted a PCA, keeping those principal components with eigenvalues

greater than 1 (the Kaiser selection criterion) as most of the studies cited in Table 1 do. The

results of the PCA process are presented in Table 3. As expected, more complex input sets

are reflected in more retained components. Since each component contributes to the final

index, indices with more components are harder to interpret. Also note that while addi-

tional retained components do increase the total amount of variance explained, the dif-

ference in variance explained by the retained components does not decrease substantially

Table 2 continued

Variable name Source Spatial
granularity

Set
41

Set
29

Set
13

Percent population employed in extractive
industries

ACS 2006–2010 Tract X X

Percent population employed in transport,
utility, information

ACS 2006–2010 Tract X X

Percent population employed in services
(education, arts, other)

ACS 2006–2010 Tract X X

Percent population in nursing homes 2010 US Census Tract X X X

Hospital beds per capita 2004 American Hospital
Association

County X

Percent population change 2000–2010 2010 and 2000 US
Census

Tract X X

Percent urban population 2010 US Census Tract X X

Percent population that is female 2010 US Census Tract X X X

Percent households: with female
householder, no husband

2010 US Census Tract X X X

Percent households with Social Security
income

2010 US Census Tract X X X

Table 3 Results of the principal component analyses

Geography Input set Retained components Variance explained by
retained components (%)

VA41 All of VA 41 10 74

VA29 All of VA 29 7 70

VA13 All of VA 13 4 69

CV41 Coastal VA 41 10 75

CV29 Coastal VA 29 8 72

CV13 Coastal VA 13 4 72

HR41 Hampton Roads 41 10 77

HR29 Hampton Roads 29 8 75

HR13 Hampton Roads 13 4 74

14 All variables were standardized relative to the means for all the 1874 census tracts in Virginia. As a
sensitivity analysis, we examined whether it made a difference if the variables were standardized with
respect to all Virginia census tracts or to the particular geography used for that index (e.g., coastal Virginia
or Hampton Roads) and found little difference in the results.
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even when the number of variables decreases substantially. The geographic area does not

have a significant effect on the number of components, although the retained components

do explain more variance when the geographic area is smaller and less heterogeneous.

As a next step, we conducted a Varimax rotation of the components to facilitate

interpretation of each component because—as is the case with all PCA-based indices—we

must determine the directionality of each retained component, that is whether higher values

of the component increase the level of social vulnerability (positive directionality) or

decrease the level of social vulnerability (negative directionality). Where the directionality

of the component was clearly negative, we scaled the component by a factor of -1 before

including it in the composite index so that higher values of the scaled component would

increase the overall vulnerability index. Following Cutter et al. (2003), in instances when

the effect of the component on vulnerability is ambiguous (as is the case when the different

variables that make up the component work in opposite ways or when a variable exhibits

bidirectionality), we assume a positive directionality. For the equal-weighted indices, the

components are added together without weights while for the variance-weighted indices

the components are multiplied by the variance each component captures from the total

input matrix before aggregation. To ensure that the indices are easily comparable to each

other, we standardize the resulting aggregated values to z scores with zero means and unit

variances.

Following Cutter et al. (2013) we compare the indices using the Pearson’s R correlation

coefficient. Correlations above 0.90 indicate a strong positive correlation between the two

indices while correlations below 0.70 indicate substantial inconsistencies.15 As one might

expect the various equal-weighted indices are highly correlated with the analogous vari-

ance-weighted indices. Seven of the nine pairs of indices have correlation coefficients

above 0.90 while one pair has a coefficient on 0.82 (the 29-variable index for Hampton

Roads) and one has a coefficient of 0.75. However, when we compare the indices based on

geographic area or input set, overall the correlations are much lower. Table 4 shows the

Pearson’s R coefficient for pairwise correlations among the various PCA-based indices that

we constructed. The top half of the table shows the correlations across equal-weighted

indices, while the bottom half shows the correlations across variance-weighted indices. For

the equal-weighted indices, most pairwise comparisons result in a correlation coefficient

below 0.70. There are two general exceptions—the coastal Virginia and Hampton Roads

indices that use the smallest set of input variables (CV13 Eq and HR13 Eq)—are rea-

sonably correlated with all of the overall Virginia indices and the HR13 Eq index is

reasonably correlated with the CV41 Eq index and highly correlated with the CV13 Eq

index. Overall the variance-weighted indices show higher correlations than the analogous

pairs of equal-weighted indices, with the CV13Var and HR13Var indices showing the

highest correlations. Thus the 13-variable indices show greater consistency under changes

in geographic boundaries than the indices using larger numbers of variables. The 29- and

41-variable indices are much more inconsistent, and in one case the correlation between

pairs of indices using 29 variables is actually negative, demonstrating the cumulative

effects of confounding variables. In particular, we note that both the 29- and 41-variable

sets contain potential bidirectional variables such as age, percent urban, and net internal

migration while the 13-variable set does not. Additionally, we note that using variance-

weighted principal components provides a more consistent measure across both different

geographic scales and different input sets.

15 Cutter et al. (2013) also report the Cronbach alpha test for pairwise comparisons of indices. For our
indices the Pearson’s R correlation and the Cronbach alpha test provide the same results.
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Looking at the correlations between indices is not the only way to compare them. In

addition to using a PCA-based index to rank observations relative to each other in terms of

vulnerability, many studies also use their index to identify a group of ‘‘highly vulnerable’’

observations. Various papers have implemented different decision rules for determining

which observations are considered to be highly vulnerable, as shown in the last column in

Table 1.16 By far the most common method is to use a threshold value calculated using the

mean and standard deviation of the index. Often, but not always, the threshold value is 1

standard deviation above the mean, which is the threshold we use for this analysis. Table 5

compares the number and percent of census tracts that are designated as highly vulnerable

using this decision rule for the various indices in our case study. We also include a second

category of ‘‘marginally vulnerable’’ tracts. These are defined as tracts with an index value

between 1 and 0.5 standard deviations above the mean.

The percentage of tracts identified as highly vulnerable ranges from a low of 12 % to a

high of 17 %. This relative consistency is expected given the nature of the decision rule

and the fact that the index values are standardized with a mean of 0 and a standard

deviation of 1. When we include marginally vulnerable tracts, the percentage ranges from

25 to 31 %. For most geography/input set combinations, the equal-weighted and variance-

weighted indices identify roughly the same number of highly vulnerable or marginally

vulnerable tracts. However, when one considers the overlap of tracts identified as highly or

marginally vulnerable across the two weighting schemes (reported in columns three and six

of Table 5), it is clear that while there is significant overlap, it is not perfect. Looking at the

overlap of highly vulnerable tracts across indices that share the same geography and

weighting (rows four, eight, and twelve), the number of consistently identified tracts is

even lower. As was the case for the pairwise correlations, the variance-weighted indices

appear to be somewhat more consistent under changes to the number of input variables

than the equal-weighted indices.

A final comparison looks at the effect of geographic boundaries on the identification of

highly vulnerable and marginally vulnerable tracts. For this comparison, we only consider

the 401 counties that are in both the Hampton Roads and Coastal Virginia geographies.17

Using the variance-weighted indices for the three different geographies, we determined

how many census tracts are consistently identified as highly vulnerable for the various

input sets. When the 41 variable input set is used, only 11 of the 401 tracts or 3 % are

consistently identified as highly vulnerable across the three different geographic bound-

aries, even though typically between 10 and 15 % of tracts are identified as highly vul-

nerable for a given index. When we compare the indices for the 29 variable input set, 24 of

the 401 (6 %) tracts are consistently identified as highly vulnerable and when we compare

the indices for the 13 variable input set, 65 of the 401 (16 %) tracts are. Repeating the same

exercise but counting tracts that are classified as either highly or marginally vulnerable, for

the 41 variable input set, 34 of the 401 tracts or 8 % are consistently identified as highly or

marginally vulnerable across the three different geographic boundaries compared to ranges

of 25–31 % of tracts for a given index. For the 29 variable input set, 49 of the 401 (12 %)

tracts are consistently identified as highly or marginally vulnerable and when we compare

the indices for the 13 variable input set, 100 of the 401 (25 %) tracts are.

16 Some papers categorize observations into bins representing different levels of vulnerability. For those
studies, we consider how the most vulnerable group is categorized.
17 This excludes 7 census tracts in city of Franklin and county of Southampton that are considered part of
Hampton Roads, but are not in a coastal county.
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Overall, our findings indicate that the 13-variable indices are more consistent measures

of social vulnerability. Additionally, using the 13-variable index eases the interpretation

both of each PCA output component and of the overall index itself as each of the com-

ponents map to specific input variables. In our case study, the PCA process for the

13-variable index results in an income/race component explaining about 30–40 % of total

variance, as well as age, ethnicity, and gender components that each explain about

10–15 % of the total variance. Larger input matrices result in component scores that are

difficult to interpret because of the larger number of inputs loading onto each component,

particularly for components with lower eigenvalues where meaningful patterns in variables

loading onto each component become more difficult to identify. Using smaller numbers of

input variables reduces both statistical noise and subjective influence in interpreting

components and hence in calculating a PCA-based index. Of course, reducing the number

of variables included in the index does affect its ability to measure multi-dimensional

social vulnerability. Thus the researcher needs to carefully weigh the trade-offs when

deciding which variables to include or exclude from a particular index, as increasing the

dimensions of the input matrix is not a costless decision.

3.2 Description and evaluation of the k-means clustering approach

Given the limitations associated with using a single index variable—however con-

structed—to capture such a multi-dimensional concept as social vulnerability, we

Table 5 Number and percent of tracts determined to be highly or marginally vulnerablea by PCA-based
indices

Geography/
input set

Highly vulnerable tracts Highly or marginally vulnerable tracts

Equal-
weighted
index

Variance-
weighted
index

Overlap
between the
two indices

Equal-
weighted
index

Variance-
weighted
index

Overlap
between the
two indices

VA41 245 (13 %) 248 (13 %) 190 (10 %) 512 (27 %) 504 (27 %) 425 (23 %)

VA29 270 (14 %) 255 (14 %) 202 (11 %) 546 (29 %) 586 (31 %) 437 (23 %)

VA13 273 (15 %) 289 (15 %) 255 (14 %) 532 (28 %) 536 (29 %) 492 (26 %)

Overlap
across all
VA indices

107 (6 %) 127 (7 %) 82 (4 %) 258 (14 %) 267 (14 %) 215 (11 %)

CV41 180 (15 %) 189 (16 %) 106 (9 %) 322 (27 %) 315 (27 %) 211 (18 %)

CV29 194 (17 %) 179 (15 %) 140 (12 %) 356 (30 %) 360 (31 %) 296 (25 %)

CV13 177 (15 %) 175 (14 %) 145 (12 %) 299 (26 %) 291 (25 %) 250 (21 %)

Overlap
across all
CV indices

27 (2 %) 69 (6 %) 15 (1 %) 91 (8 %) 145 (12 %) 58 (5 %)

HR41 58 (14 %) 59 (14 %) 51 (13 %) 106 (26 %) 102 (25 %) 89 (22 %)

HR29 49 (12 %) 61 (15 %) 30 (7 %) 112 (27 %) 109 (27 %) 77 (19 %)

HR13 60 (15 %) 70 (17 %) 49 (12 %) 111 (27 %) 107 (26 %) 96 (24 %)

Overlap
across all
HR indices

8 (2 %) 20 (5 %) 6 (1 %) 32 (8 %) 50 (12 %) 29 (7 %)

a Highly vulnerable tracts have an index value greater than 1 SD above the mean. Marginally vulnerable
tracts have an index value between 0.5 and 1 standard deviation above the mean
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examined the potential for using cluster analysis as alternative method for identifying

socially vulnerable communities.18 Like the PCA technique, cluster analysis also takes a

large matrix of data and reduces it to a more manageable and arguably more meaningful

measure.19 However, rather than reducing the data matrix to a single ordinal value, cluster

analysis groups ‘‘like’’ observations into clusters that share common characteristics. The

researcher can then look at the characteristics of each cluster and determine whether tracts

in that cluster are socially vulnerable. One of the advantages of this approach is that it

identifies tracts that may be vulnerable in only one or two dimensions. It also allows factors

to be considered holistically so that a factor that may not contribute to vulnerability in

urban locations but would in rural locations can be included in the analysis. Similarly, if

the concern is about the health implications of increased storm surge or recurrent flooding

one may be interested in different factors than if one is concerned about financial impli-

cations of sea level rise. Of course, cluster analysis does have its own limitations. Cluster

analysis certainly requires the researcher to make subjective judgments about the relative

importance of different factors and how such factors might interact to increase or decrease

social vulnerability to a particular hazard. Additionally the clustering process is not per-

fect—if a researcher uses too few clusters, the clusters may not be similar enough to result

in accurate assessment. On the other hand, if the researcher uses too many clusters, the

identification process becomes unwieldy. Finally the clustering process is more time

intensive than construction of a PCA-based index, both in processing time and the time

required for a researcher to evaluate each cluster. Thus for projects with large set of

observations to evaluate, such as all counties in the USA, it may not be feasible to conduct.

At the most basic level, the underlying objective of cluster analysis is to group

observations so that the observations in each cluster are more similar to other observations

in that cluster than to objects in other clusters. Each cluster is represented by a prototype.

The exact nature of the prototype depends on the particular clustering algorithm used. For

our analysis, we use a k-means clustering algorithm where K is the number of clusters that

are identified in the data and is a parameter in the analysis chosen by the researcher. In this

algorithm, K observations are randomly selected as initial prototypes. Each observation is

assigned to the cluster that has the ‘‘closest’’ prototype where proximity is measured as

Euclidean distance between the observation and the prototype. Once observations have

been assigned to an initial cluster, the algorithm computes the centroid, or mean of the

observations, for that cluster and uses that as the cluster’s new prototype. The observations

are reassigned to the closest prototype and the centroid is recomputed. This process is

repeated until neither the centroids/prototypes nor the assignments change.

K-means clustering has the advantage that it is relatively straightforward on a con-

ceptual level. Of course there are some drawbacks to using this method. First, randomly

choosing the initial prototypes can result in selection of a local, rather than global, min-

imum sum of squared distances. Thus results are not always replicable when repeated with

a different initial selection of prototypes. The typical solution to this, which we do in our

analysis, is to perform multiple runs with different initial prototypes and select the one with

the smallest sum of squared distances (SSD) (the squared distance between each

18 Another alternative we initially considered was the data envelopment analysis (DEA) method that Clark
et al. (1998) use to combine common factors into a single scalar, but which also allows for observations that
have high values on only one component to score highly on the vulnerability index. One could characterize
the DEA method as a hybrid of the PCA and cluster method as DEA uses components produced by an initial
factor analysis as inputs, rather than individual variables. Thus some of the concerns about PCA-based
approaches also apply to the DEA method.
19 See Mirkin (2013) for a thorough discussion of cluster analysis.
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observation and its assigned prototype distance). To determine how many runs to perform,

we examined the improvement in the clustering process that resulted from additional runs

and determined that after 500 runs, the likelihood of a significant improvement in the

clustering process was quite small.20

A second concern is the clustering might not be able to identify sufficiently homoge-

neous clusters either because too few clusters have been specified by the researcher or

because the underlying observations are too heterogeneous to be clustered. If that is the

case, clustering can result in mischaracterized observations. To determine the optimal

number of clusters we used the g2 measure to assess the improvement in the clustering

process that resulted from additional clusters (Makles 2012). For each of the nine different

geographic boundaries/inputs set combinations discussed in the prior section, we began

with 20 clusters and computed g2 for the run with the smallest SSD. We then increased the

number of clusters by 5 to 25, completed 500 runs, calculated the g2 for the best run where

k = 25. As long as the increase in g2 exceeded 2 % points we kept increasing the number

of clusters by 5 until doing so increased g2 by less than 2 % points. Thus the number of

clusters used for each geography/input set is the highest multiple of 5 that increases g2 by
at least 2 % points. For VA41, VA29, CV41, HR41, and HR29 we use 30 clusters, for

CV29 we use 35 clusters, and for VA13, CV13, and HR13 we use 25 clusters.21

As was the case for the PCA-based indices, before conducting the cluster analyses we

first standardized the variables relative to all of the Virginia census tracts. However, in

evaluating a particular cluster’s profile to determine whether it was socially vulnerable or

not, we examined both the absolute and standardized values of the variables. Thus we

know not only the true level of the variable for each prototype but also how that relates to

the average for Virginia. For example, consider the three prototypes presented in Table 6.

What is shown are the absolute values for each variable. The prototype for Cluster A

exhibits very low per capita income and very high poverty and unemployment rates. This

area is a densely populated urban community and contains a large number of renters. Both

housing values and rents are lower than average. There is low labor force participation

overall relative to the mean for Virginia, although this is not a particularly elderly com-

munity, and over a third of adults do not have a high school degree. A very high percentage

of the community is black and many families have female head-of-households. For all of

these reasons, we classify this cluster as a vulnerable cluster. The prototype for Cluster B is

a sparsely populated rural area although not many of the citizens in the community are

farmers. The community has a moderately low per capita income, with just over 15 % of

the community below the poverty line and almost 10 % unemployed. Education levels are

low as over a quarter of adults do not have a high school degree. Labor force participation

is relatively low, but this is consistent with the fact that almost one-fifth of the population is

over 65 and almost 40 % receive social security benefits. While this prototype exhibits

many factors that are indicative of social vulnerability, most of the levels are not extreme

and thus we classify this cluster as marginally vulnerable. The prototype for Cluster C is a

20 We used the g2 measure to assess the improvement in fit that resulted from additional runs (Makles,
2012). We conducted a series of cluster analyses using the VA41 dataset, calculating g2 after each 100 runs
up to 1000 and then repeated the series 5 times. After 100 runs, g2 ranged from 64.1 to 64.6 %. After 500
runs, g2 ranged from 64.2 to 64.9 % with a maximum increase of 0.8 % points. After 1000 runs, g2 ranged
from 64.6 to 64.9 % and the maximum increase was 0.5 % points. We therefore decided that 500 runs were
sufficient given the small probability that doubling the number of runs would result in a significant
improvement in fit.
21 The results using the g2[ 2 % points decision rule are very similar to the result we get if we chose 30
clusters for all 9 geography/input set combinations.
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Table 6 Sample clusters for all of Virginia using all 41 variables

Variable Cluster A Cluster B Cluster C

Median age 31 44 32

Per capita Income $11,257 $20,647 $28,702

Median house value $105,023 $126,992 $317,379

Median rent $541 $628 $1382

Physicians per capita 0.004 0.001 0.003

Pct. voting Obama in 2008 68 % 49 % 57 %

Birth rate per capita 0.016 0.009 0.015

Internal migration per capita 0.002 0.001 0.006

Pct. Farmland 0 % 7 % 1 %

Pct. Black 84 % 34 % 18 %

Pct. Native American 0 % 0 % 1 %

Pct. Asian 1 % 0 % 10 %

Pct. Hispanic 3 % 3 % 36 %

Pct. under 5 10 % 5 % 9 %

Pct. over 65 10 % 18 % 6 %

Pct. unemployed 22 % 9 % 6 %

Average household size 2.6 2.4 3.1

Pct. earning more than $75 K 6 % 20 % 45 %

Pct. in poverty 41 % 16 % 11 %

Pct. renters 69 % 25 % 47 %

Pct. farmers 0 % 3 % 0 %

Pct. mobile homes 1 % 22 % 1 %

Pct. without HS degree 34 % 26 % 21 %

Housing density (per sq. mile) 1.9 0.0 2.4

Building permits (per sq. mile) 3.8 0.1 3.9

Mfg. establishments (per sq. mile) 1.7 0.0 0.9

Firm revenues (per sq. mile) $232,122 $1852 $243,909

Number of firms (per sq. mile) 121.3 2.9 189.6

Farm earnings (per sq. mile) $314 $5890 $9337

Pct. pop. in labor force 56 % 57 % 78 %

Pct. females in labor force 56 % 53 % 70 %

Pct. employment in extractive industries 0 % 4 % 0 %

Pct. employment in utilities 5 % 7 % 7 %

Pct. employment in services 46 % 30 % 30 %

Pct. in nursing homes 0.3 % 0.3 % 0.1 %

Hospital beds per capita 0.006 0.001 0.001

Pct. population change -2 % 1 % 16 %

Pct. Urban 100 % 6 % 100 %

Pct. Female 55 % 50 % 49 %

Pct. female head of household 42 % 14 % 15 %

Pct. with social security income 28 % 38 % 14 %
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dense urban area with relatively high levels of internal migration and a significant increase

in population between 2000 and 2010. The area is characterized by a large Hispanic

population compared to the rest of Virginia. Although per capita income is lower than the

state average and only around a fifth of the adults have a high school education, there is a

high level of labor force participation and unemployment is lower than average. The area

has a lot of new building permits and high levels of economic activity. A relatively small

percentage of the population is dependent on social security income. This cluster is

classified as not vulnerable.

As shown by the examples above, a cluster approach clearly requires that the researcher

use his or her judgment in deciding whether or not a prototype should be classified as

socially vulnerable. While some might disagree whether or not a specific prototype rep-

resents a socially vulnerable community, the decision rules followed by the researcher can

be laid out in the analysis and thus the rationale for classification and any potential biases

and subjectivity will be transparent. For our analyses, we reviewed each cluster prototype

and made a determination of vulnerability based on the prototype’s full characterization,

that is, all of the variables used in the cluster analysis. As noted above, we looked at both

the absolute value of each variable as well as how that value related to mean level for the

rest of Virginia. We then looked at commonalities across the highly and marginally vul-

nerable clusters to identify the minimum common characteristics across each cluster that

could describe why particular clusters were categorized as highly or marginally vulnerable

to sea level rise and climate change. We believe these rules could be useful for others

looking to classify communities as socially vulnerable but note that context is important in

determining which clusters fall into which categories, as what might indicate lack of

representation or resources in Virginia today may or may not be the same in other geo-

graphic areas or at other times.

Ultimately, a cluster was categorized as highly vulnerable if its prototype met any one

of the following conditions:22

• Median income less than $20 K, percent living in poverty greater than 20 %, AND

either percent unemployment greater than 10 % OR labor force participation less than

66 % OR female labor force participation less than 50 % (lack of resources).

• Median income less than $20 K, percent living in poverty greater than 20 %, percent of

the population without a HS degree is more than 25 %, AND percent black greater than

50 % (lack of resources, lack of representation).

• Percent of the population over 65 is greater than 20 %, the percent of the population in

nursing homes is greater than 2 %, the percent of the population receiving social

security is greater than 25 % and median income is less than $25 K (lack of resources,

high need).

Marginally Vulnerable clusters are identified as clusters that are not categorized as

vulnerable but where the prototype meets one of the following conditions:

• Percent of the population without a HS degree is more than 25 %, the percent of the

population receiving social security is greater than 33 %, and the percent of housing

units that are mobile homes is greater than 15 % (lack of resources, high need,

vulnerable shelter).

• Percent of the population without a HS degree is more than 25 % and there are high

populations of under represented races (relative to Virginia as a whole), i.e., the percent

22 Importantly, many clusters meet more than one of the decision rules below.
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black is greater than 50 % OR the percent Hispanic is greater than 15 % or the percent

of Native Americans is greater than 1 % (lack of representation, lack of resources).

• The percent of the population that is black is greater than 50 % and the percent of

households that are headed by a female is greater than 20 % (lack of representation,

high need).

• The percent of the population in nursing homes is greater than 2 % (high need).

• The percent of the population that is over 65 is greater than 20 % and the percent of the

population receiving social security is greater than 33 % but median income is greater

than $25 K (high need).

• The percent of the population living in poverty is greater than 20 % (lack of resources).

• Median income less than $20 K, less than 66 % labor force participation, and percent

of the population without a HS degree is more than 25 % (lack of resources).

In the above decision rules, note that each highly or marginally vulnerable cluster

represents populations facing one or more dimensions of social vulnerability that could

make adapting and responding to climate change more difficult or which could exacerbate

the impacts of sea level rise on health or financial outcomes: lack of resources, lack of

political representation or access to government services, high levels of need, or vulnerable

shelter. Each of these dimensions is represented by several different variables in our

decision rules (and a larger set of variables in the overall dataset). For example, lack of

resources is manifest not just in the income-oriented variables (percent in poverty, per

capita income, percent unemployed) but also through limits on earning potential (percent

without HS degree, percent female labor force participation). Lack of representation and

access to government services is manifest in minority populations—for Virginia this means

blacks, Hispanics, and Native Americans. High levels of need are measured by the per-

centage of the population over 65, in nursing homes and on social security. With respect to

vulnerable shelter, we use both the percent of renters (as renters have little control over

their shelter relative to homeowners) as well as the percent of mobile homes.

Table 7 presents the results of the clustering analysis for each of the geography/input set

combinations. While the decisions rules for identifying clusters as vulnerable are based on

the levels of poverty, unemployment, etc. in a tract, we note that determining whether a

tract is vulnerable is not tied to the statistical properties of the input matrix. Thus, as shown

in Table 7, the percentage of tracts that are identified as highly or marginally vulnerable

changes for different geographies. For example, Coastal Virginia tends to have a lower

percentage of tracts in the two vulnerable categories than Hampton Roads or Virginia

overall, which reflects the fact that a high proportion of the Coastal Virginia tracts are in

the wealthier and more developed Northern Virginia area.

To assess the performance of the clustering method, we examine the ability of this

method to consistently identify vulnerable tracts regardless of the level of geography

chosen or the number of variables used in the analysis, just as we did for the PCA-based

indexing. As shown in Table 7, for the Hampton Roads geographies, there is a reasonable

level of consistency across the different input sets in terms of identifying highly vulnerable

tracts. Well over half of the tracts identified as highly vulnerable in any one cluster analysis

are also considered highly vulnerable in the other analyses for the same geographies. The

Virginia and Coastal Virginia analyses are not as consistent. We see the same patterns with

respect to the group of highly or marginally vulnerable tracts. In the Hampton Roads

analyses, 105 tracts are consistently identified as either highly or marginally vulnerable,

which represents well over three quarters of the tracts identified by any one cluster anal-

ysis. However, for Virginia overall only 317 tracts (12 %) are consistently identified as
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highly or marginally vulnerable which represents less than two-thirds of any one cluster

analysis. Similarly, for Coastal Virginia 136 tracts are consistently identified as vulnerable,

which is less than half of the tracts identified as vulnerable for the CV29 analysis. Adding

together the percentage of tracts consistently identified as vulnerable (highly or marginally)

and consistently identified as not vulnerable, for Virginia overall 73 % of tracts

(17 % ? 56 %) are classified consistently across all three variable sets.23 For Coastal

Virginia, 85 % (12 % ? 73 %) are classified consistently and for Hampton Roads, 91 %

(26 % ? 65 %) are. These results are support our expectation that the clustering method is

more consistent for smaller and more homogeneous geographies. Looking across the three

input variable sets, no clear patterns emerge in Table 7. Obviously the number of variables

in the input matrix does affect the determination of which tracts are clustered together as

well as the number of clusters, which ultimately affects the identification of tracts as either

highly or marginally vulnerable. However, from Table 7, it is not clear that using a

particular input variable set is preferred to using one of the others.

Table 8 also examines the total percentage of tracts consistently identified as vulnerable

(highly or marginally) and consistently identified as not vulnerable, but does so using

pairwise comparison across all of the geographies/input sets. For most comparisons, the

percentage of tracts consistently characterized is in the 80 s or low 90 s. Also note that the

percentage of tracts that are consistently characterized is slightly higher for the 13-variable

and 29-variable pairs than it is for the analogous 41-variable pairs. However, the differ-

ences are not dramatic, as one might expect given that the clustering method is not subject

to confounding variable effects in the same way that PCA-based indexing is. Although one

concern with clustering is that it might not be able to identify sufficiently homogeneous

clusters because the underlying observations are too heterogeneous to be clustered, given

the consistency of the clustering analysis to different geographies and sets of variables, we

feel confident that the clustering method does significantly help a researcher to identify

potentially vulnerable populations. Even though clustering is more consistent under

23 Thus a tract considered marginally vulnerable in one analysis and highly vulnerable in the other is
considered to be correctly characterized while a tract considered marginally vulnerable in one analysis and
not vulnerable in the other is considered to be mischaracterized.

Table 7 Number and percent of tracts determined to be highly or marginally vulnerable using the cluster
method

Geography/input set Highly vulnerable Highly or marginally vulnerable Not vulnerable

VA41 238 (13 %) 512 (27 %) 1362 (73 %)

VA29 178 (9 %) 644 (34 %) 1230 (66 %)

VA13 213 (11 %) 537 (29 %) 1337 (71 %)

Overlap across all VA indices 89 (5 %) 317 (17 %) 1050 (56 %)

CV41 140 (12 %) 220 (19 %) 952 (81 %)

CV29 84 (7 %) 278 (24 %) 894 (76 %)

CV13 81 (7 %) 194 (17 %) 978 (83 %)

Overlap across all CV indices 52 (4 %) 136 (12 %) 855 (73 %)

HR41 41 (10 %) 119 (29 %) 289 (71 %)

HR29 24 (6 %) 124 (30 %) 284 (70 %)

HR13 33 (8 %) 133 (33 %) 275 (67 %)

Overlap across all HR indices 24 (6 %) 105 (26 %) 264 (65 %)
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changes in the input set than PCA-based indices, we continue to recommend that

researchers carefully weigh the benefits of including additional variables. Finally we note

that the clustering approach may be particularly useful in cross-jurisdictional analyses

because it identifies groups that may be facing similar challenges and would facilitate

sharing of ideas and resources across jurisdictions.

3.3 Comparison of composite indexing and clustering as identification
strategies for social vulnerability

To compare the two methods to each other, we focus on the 401 census tracts that are in

both the Hampton Roads and Coastal Virginia geographies and consider how consistently

these tracts are characterized by the two methods across the various geographies and input

sets. For the PCA-based indices, we consider only the variance-weighted indices as these

were shown earlier to be more consistent than the equal-weighted indices. Table 9 shows

the number of tracts that are identified as highly or marginally vulnerable by the two

methods for each of the nine geography/input sets. Most importantly, it shows the number

of tracts for each geography/input set that are consistently identified by the two methods.

As was the case in Sect. 3.1, we used the greater than 1 standard deviation threshold for

identifying highly vulnerable tracts and between 1 and 0.5 standard deviations as the

thresholds for identifying marginally vulnerable tracts for the PCA-based index. In almost

all cases, the 1 standard deviation threshold for highly vulnerable tracts results in more

tracts identified as highly vulnerable than in the cluster analysis. Considering both highly

and marginally vulnerable tracts, the PCA-based index identifies more tracts for Virginia

for all three input sets and for two of the three Coastal Virginia input sets (CV29 and

CV13). However, for Hampton Roads the PCA-based method identifies fewer tracts. We

also provide data on the overlap of tracts identified as highly or marginally vulnerable by

the two methods (columns 3 and 6 of Table 9). Overall, the overlaps are not particularly

high, showing that the choice of method will affect which tracts are classified as vulnerable

or not—or more specifically that the two methods are not interchangeable.

To better understand what may be happening across the two methods, we look more

closely at the non-overlap tracts for the HR13 pair of analyses. Note that 40 tracts are

identified as highly vulnerable by the PCA-based index and not by cluster analysis, while

only 3 were identified as vulnerable by cluster analysis and not identified as vulnerable by

the PCA-based index. Of the 3 tracts identified as vulnerable by cluster analysis and not by

Table 8 Overlap of cluster analysis vulnerability classifications: percent of tracts consistently categorized
as highly/marginally vulnerable or not vulnerable

VA41 VA29 VA13 EV41 EV29 EV13 HR41 HR29 HR13

VA41 1

VA29 80 % 1

VA13 80 % 86 % 1

EV41 88 % 89 % 87 % 1

EV29 87 % 92 % 91 % 91 % 1

EV13 87 % 88 % 90 % 89 % 90 % 1

HR41 79 % 89 % 89 % 84 % 89 % 89 % 1

HR29 80 % 90 % 90 % 83 % 90 % 88 % 94 % 1

HR13 78 % 88 % 90 % 80 % 88 % 87 % 92 % 95 % 1
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the PCA-based index, all are in clusters with very low median income, high percent living

in poverty and either high unemployment or low labor force participation. However, all

three of these tracts have factors that worked against them in the PCA-based index—that is

they had very low levels of individuals over 65, very low nursing home populations, low

percentage of individuals on social security, and low Hispanic and native populations, all

of which decrease the vulnerability index without negating the vulnerability of the

community.

Of the tracts 40 identified as highly vulnerable using the PCA-based index and not

highly vulnerable by cluster analysis all were in clusters that were considered to be

marginally vulnerable. One cluster has a high relative percentage of people over 65 and in

nursing homes, but with above average income; the second has a has a high relative

percentage of people over 65 and on social security, but only marginally low income; the

third has a high percentage of people in nursing homes, but only moderate values for the

other variables of interest; the fourth has a high percentage of people below the poverty

rate, female heads of household, and blacks but only moderately low income and mod-

erately high unemployment; and the fifth has a high percentage of female heads of

household, blacks, and people on social security, but only moderately low income and

moderately high unemployment.24

Table 9 Comparison of PCA-based indexing to cluster analysis for the 401 Hampton Roads/Coastal
Virginia Tracts

Geography/input
set

Highly vulnerable tracts Highly or marginally vulnerable tracts

PCA-based
index

Cluster
analysis

Overlap
across the
methods

PCA-based
index

Cluster
analysis

Overlap
across the
methods

VA41 97 (24 %) 83 (21 %) 59 (15 %) 187 (47 %) 130 (32 %) 78 (19 %)

VA29 87 (22 %) 37 (9 %) 30 (7 %) 174 (43 %) 115 (29 %) 102 (25 %)

VA13 73 (18 %) 37 (9 %) 35 (9 %) 118 (29 %) 123 (31 %) 98 (24 %)

Overlap across
all VA indices

56 (14 %) 31 (8 %) 25 (6 %) 100 (25 %) 70 (17 %) 61 (15 %)

CV41 34 (8 %) 65 (16 %) 31 (8 %) 71 (18 %) 79 (20 %) 54 (13 %)

CV29 81 (20 %) 53 (13 %) 49 (12 %) 152 (38 %) 123 (31 %) 74 (18 %)

CV13 78 (19 %) 44 (11 %) 37 (9 %) 129 (32 %) 89 (22 %) 77 (19 %)

Overlap across
all CV indices

29 (7 %) 26 (6 %) 24 (6 %) 52 (13 %) 60 (15 %) 41 (10 %)

HR41 53 (13 %) 39 (10 %) 13 (3 %) 96 (24 %) 116 (29 %) 52 (13 %)

HR29 59 (15 %) 22 (5 %) 16 (4 %) 107 (27 %) 121 (30 %) 79 (20 %)

HR13 68 (17 %) 31 (8 %) 28 (7 %) 103 (26 %) 130 (32 %) 95 (24 %)

Overlap across
all HR indices

19 (5 %) 22 (5 %) 5 (1 %) 49 (12 %) 102 (25 %) 43 (11 %)

24 Similar to other studies, we do find that it may not be necessary to include race in a PCA-based index
because the most important racial variable of interest, percent black, is strongly correlated with other
included variables such as income (correlation -0.69), percent in poverty (0.67), percent with no high
school degree (0.70), and percent female head of household (0.84). While this is useful for policymakers
who may wish to or need to avoid explicitly specifying race as a criterion of analysis for legal or political
reasons, to the extent that race may increase vulnerability on its own, we believe it should be included in
measures of social vulnerability.
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Looking at all tracts identified as vulnerable (highly or marginally), only 8 tracts are

identified as vulnerable by the PCA-based index and not by cluster analysis, while 25 were

identified as vulnerable by cluster analysis and not by the PCA-based index. Of the 8

identified as vulnerable by the PCA alone, all were marginally vulnerable and all were in

clusters whose prototypes did not exceed threshold values for any of the variables. Of the

25 identified as vulnerable by cluster analysis alone, only one was in a highly vulnerable

cluster. The other 24 were all in marginally vulnerable clusters where only one or two

variables at a high level were necessary for the cluster to be categorized as vulnerable such

as a high percentage of individuals in nursing homes or a high black population and a high

percentage of female head of households. As discussed before, the PCA-based method

does not do a good job of identifying tracts that are vulnerable in only one or two

dimensions.

4 Discussion and recommendations for policymakers

This paper presents an alternative to PCA-based indexing using cluster analysis. Based on

our case study, we believe that cluster analysis should be considered as a complementary

method to PCA-based indexing, that is the cluster analysis approach may be more

appropriate in some situations and less appropriate in others. Cluster analysis appears to be

best suited for analyses at the state or local level for a number of reasons: the method is

more time intensive than PCA-based indexing and thus works best if there are a man-

ageable number of clusters. Since larger and more diverse sets observations will require

additional clusters, using cluster analysis may be unwieldy. One of the strengths of cluster

analysis is that it appears quite consistent under changes in the set of input variables, so

researchers do not need to worry excessively as to whether adding an additional variable

will dramatically affect the results of the analysis. Another one of its strengths is that it is

quite transparent and the results are easy for lay audiences to interpret, so that it is well

suited to local planning efforts that involve stakeholders or efforts where practitioners need

to use the vulnerability determinations in very context-specific situations. Finally cluster

analysis groups like observations which allows a researcher to easily identify areas that

may face similar types of social vulnerability and could potentially share adaptation and

mitigation solutions.

PCA-based indices are likely better suited than cluster analyses to multi-state or

national analyses where there are many diverse observations. However, they are best used

by individuals who understand how the indices are constructed and how to interpret them,

including any subsequent rankings. One of the strengths of the PCA-based indices is that

they provide a way of ranking communities in terms of vulnerability which cluster analyses

do not. In particular, PCA-based indices are more appropriate than cluster analyses for

academic research where the ability to provide a continuous measure of vulnerability is

important. However, based on the results of our case study, we strongly recommend that

researchers who are developing PCA-based indices think carefully about which variables

to include in their analysis, limiting the use of bidirectional variables and assessing the

potential for other confounding effects, and that researchers using the Kaiser selection

criterion use variance weighting in constructing the final index.

A caveat in using both a PCA-based index and the cluster method, or any quantitative

method, is that doing so risks creating a false appearance of objectivity by reducing social

vulnerability to a quantitative measure. Clearly, some subjective interpretation on the part
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of the researcher is still required—while this subjectivity is obvious for the clustering

method, the subjectivity of the PCA-based index is less transparent. For both methods, the

advantage of using readily available data from the US Census and other sources data to

identify vulnerable communities is that it potentially provides a fair and consistent standard

for evaluation and does not incur substantial cost in its implementation. However, quan-

titative analysis using data collected for purposes other than determining vulnerability to

physical hazards cannot substitute for a more holistic and qualitative analysis of com-

munity need or for an inclusive stakeholder-oriented process. To be effective and equi-

table, adaptation and mitigation policies must include input from members of affected

communities themselves as they experience environmental changes firsthand. For example,

McNeeley (2014) provides a case study of drought in northwest Colorado using an ana-

lytical framework for the acquisition of ground-up, locally based knowledge useful in

constructing and testing the validity of quantitative measures. This ‘‘toad’s eye’’ view of

vulnerability emphasizes qualitative methods including interviews, participant observation,

and analysis of critical documents informing stakeholder viewpoints, as well as traditional

quantitative geophysical observation and analysis. Robust engagement with policy stake-

holders builds trust between researchers and the community and allows the researcher to

conduct an informed analysis of intersecting local social, cultural, economic, geophysical,

and biophysical characteristics with strong internal validity.

Adaptation to climate change and sea level rise is a complex endeavor requiring sen-

sitivity both to the needs of diverse communities and to the level of resources available to

policymakers to respond to those needs. Assessing the social vulnerability of communities

is an essential part of adaptation from the standpoint of both policy effectiveness and

environmental justice. While quantitative approaches to identifying vulnerable commu-

nities have inherent limitations, they can provide an important guide for policymakers

seeking to maximize the benefit of resources targeted at these efforts. With some modi-

fications and caveats, both PCA-based indices and cluster analyses provide complemen-

tary, consistent, and transferable tools that policymakers can use to improve services in

Hampton Roads, Virginia, in other communities in the USA, and around the world.

Acknowledgments Funding was provided by Blue Moon Fund (Grant no. 775602A-712685).

References

Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2:433–459
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