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Abstract Gutenberg and Richter developed an empirical relation, log10 NðMÞ ¼ a� bM, to

quantify the seismicity rate of various magnitudes in a given region and time period. They

found the equation fit observed data well both globally and for particular regions. In con-

ventional G–R relation, N(M) represents an arithmetic mean. As a result, the arithmetic

standard deviation cannot be explicitly incorporated in the log-linear G–R relation. More-

over, this representation is susceptible to influence of spuriously large numbers of aftershocks

of major earthquake sequences. To overcome these shortcomings, we propose an alternative

representation of theG–R relation in terms of the logarithmicmean annual seismicity rate and

its standard deviation.We select the crustal earthquake data from1973 to 2011, as listed in the

National Earthquake Information Center (NEIC) global catalog and the Central Weather

Bureau (CWB) Taiwan regional catalog, to illustrate our methodology.We first show that by

using the logarithmic annual seismicity rates we can significantly suppress the influences of

spuriously large numbers of aftershocks following major earthquake sequences contained in

the Taiwan regional catalog.More significantly, both the logarithmicmean annual seismicity

rate and its standard deviation can be explicitly represented in theGutenberg–Richter relation

as follows:

For global crustal seismicity: log10 N ¼ 8:14� 1:03M � ð0:04M � 0:13Þ;

For Taiwan crustal seismicity: log10 N ¼ 5:62� 0:90M � ð0:02M þ 0:17Þ

where log10 N represents the logarithmic annual seismicity rate. Above analytical equa-

tions are very well constrained by observed global seismicity data with 5:0�M� 7:0 and
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by Taiwan seismicity data with 3:0�M� 5:0. Both equations can be extrapolated with

confidence to simultaneously estimate not only the median annual seismicity rates but also

their uncertainties for large earthquakes for the first time since inception of the G–R

relation. These equations can be used to improve the conventional probabilistic seismic

hazard assessment by including the dispersion of the annual seismicity rate. Finally, the

corresponding numerical median annual seismicity rate with its upper and lower bounds

obtained from above equations for 5:0�M� 9:0 is listed in Table 1.

Keywords Arithmetic mean � Arithmetic standard deviation � Logarithmic mean �
Logarithmic standard deviation

Table 1 Observed and estimated median annual seismicity rate and return period with their dispersions for
Taiwan and global crustal earthquakes

Magnitude Catalog

Taiwan catalog
(CWB)

Taiwan catalog
(CWB)

Global catalog
(NEIC)

Global catalog
(NEIC)

Annual rate
(event/year)

Return period
(year)

Annual rate
(event/year)

Return period
(year)

M C 5.0 24.55
13.18
7.08

0.041
0.076
0.14

1148.16
977.24
831.76

0.0009
0.001
0.0012

M C 5.5 8.91
4.68
2.45

0.11
0.21
0.41

367.28
298.54
242.66

0.0027
0.0033
0.0041

M C 6.0 3.24
1.66
0.85

0.31
0.60
1.18

117.49
91.20
70.79

0.0085
0.011
0.014

M C 6.5 1.17
0.59
0.30

0.85
1.69
3.33

37.58
27.86
20.65

0.027
0.036
0.048

M C 7.0 0.43
0.21
0.10

2.33
4.76
10.0

12.02
8.51
6.03

0.083
0.12
0.17

M C 7.5 0.15
0.074
0.036

6.67
13.51
27.78

3.85
2.60
1.76

0.26
0.38
0.57

M C 8.0 0.056
0.026
0.012

17.86
38.46
83.33

1.23
0.79
0.51

0.81
1.27
1.96

M C 8.5 0.020
0.009
0.004

50.00
111.11
250.0

0.39
0.24
0.15

2.56
4.17
6.67

M C 9.0 0.0074
0.0033
0.0015

135.14
303.03
666.67

0.13
0.074
0.04

7.69
13.51
25.00

Observed value is shown in bold number, estimated value in regular number

log10 N ¼ 5:62� 0:90M � ð0:02M þ 0:17Þ for Taiwan crustal earthquakes

log10 N ¼ 8:14� 1:03M � ð0:04M � 0:13Þ for global crustal earthquakes
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1 Introduction

Gutenberg and Richter (1941, 1944) developed an empirical relation,

log10 NðMÞ ¼ a� bM, to quantify the seismicity rate of various magnitudes in any given

region and time period, where N(M) represents the cumulative number of earthquakes per

year with magnitudes equal or greater than M, and a and b are constants. They found the

equation fit observed data well both globally and for particular regions. For example,

Gutenberg and Richter (1944) applied the formula log10 N ¼ aþ bð8�MÞ to the southern

California earthquake data for the period January 1934–May 1943 by linear least-squares

regression. They obtained a = -2.04 ± 0.09, b = 0.88 ± 0.03. In their formula, N repre-

sented the mean annual number of earthquakes per 0.1 unit of M. A similar procedure was

applied later by Gutenberg and Richter (1954) to obtain the following values of a and b from

global earthquakes at different depth ranges: (1) shallow shocks: a = -0.48 ± 0.02,

b = 0.90 ± 0.02; (2) intermediate-depth shocks: a = -1.2 ± 0.2, b = 1.2 ± 0.2; (3) deep

shocks: a = -1.9 ± 0.2. b = 1.2 ± 0.2. It should be pointed out that these a and b values

were all referred to the arithmetic mean annual seismicity rate. In addition to the linear least-

squares regression, another commonly used method developed by Aki (1965) is to make

maximum likelihood estimate of the b value in the G–R relation and its confidence limits.

Since then the Gutenberg–Richter (G–R) relation has been widely used in quantitative

seismicity studies. Here are several recent examples: Hutton et al. (2010) used the G–R

relation to determine the magnitude of completeness (Mc) of the southern California

earthquake catalog over different periods from 1932 to 2008. Michael (2014) recently used

it to check the completeness of the ISC-GEM global earthquake catalog. Konsuk and Aktas

(2013) also made use of the G–R relation to estimate the recurrence period of earthquakes

in Turkey. The G–R relation also plays a major role in probabilistic seismic hazard analysis

(Reiter 1990). For example, Frankel et al. (1996) included the G–R relation in their original

development and subsequent updates of the US National Seismic Hazard Maps.

It should be pointed out that in previous studies the a and b values in the G–R relation

were all determined by applying either the least-squares regression or the maximum

likelihood method on the mean annual seismicity rate as a function of magnitude. The

annual seismicity rate in the conventional G–R relation represents an arithmetic mean

(AM), as it is commonly obtained by dividing the total number of earthquakes with the

number of years covered in a catalog. It does not account for the variability in individual

annual seismicity rates. In this case, the arithmetic standard deviation is incompatible with

the log-linear G–R relation and thus cannot be explicitly incorporated therein. Moreover, it

has been found that the AM representation is susceptible to significant influence of spu-

riously large numbers of aftershocks of major earthquake sequences.

In order to avoid these major shortcomings, we propose an alternative representation of

the G–R relation in terms of the logarithmic mean annual seismicity rate and its standard

deviation. Instead of obtaining the overall arithmetic mean annual seismicity rate for N(M),

we begin by plotting in series the logarithmic annual seismicity rate of individual year,

log10N(M), chronologically throughout the whole period of the catalog for earthquakes

with magnitudes equal or greater than a given M. We then calculate the mean and standard

deviation of this series. By plotting these logarithmic mean and standard deviation values

for a series of M on a log10N(M) versus M chart, we can obtain the G–R relations for the

logarithmic mean annual seismicity rate and its ± standard deviation, respectively. These

three equations are finally combined into a single G–R relation expressed explicitly in

terms of the logarithmic mean annual seismicity rate and its standard deviation.
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In order to illustrate our simple methodology and its merits, we select two contemporary

instrumental earthquake catalogs from 1973 to 2011 to cover crustal earthquakes in different

magnitude ranges over very different size of areas. First, the CWB catalog was compiled by

combining the seismicity data obtained by the Taiwan Telemetered Seismic Network

(1973–1991) and theCentralWeatherBureauSeismicNetwork (1992–2011) inTaiwan region.

The original MD and ML magnitudes in this catalog have been further converted to homoge-

neous Mw (Chen and Tsai 2008; Chang et al. 2016). Another catalog was compiled by the

Fig. 1 Epicenter distribution of Taiwan crustal earthquakes with magnitude M C 3.0 from 1973 to 2011
(after Chen and Tsai 2008; Chang et al. 2016)
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National Earthquake Information Center (NEIC) which used actual or adoptedMw for global

earthquakes. These two earthquake catalogs are arguably among the most complete and

homogeneous catalogs available in the world. In the followings, we use M to represent the

momentmagnitude, as both the CWBandNEIC catalogs contain some actual (Harvard CMT),

adopted (NEIC) or converted (CWB) moment magnitude values.

In the followings, we will first begin by comparing the logarithmic mean annual seismicity

rate and its standarddeviationwith their arithmetic counterparts, all ofwhichareobtaineddirectly

from series of the annual seismicity rate in individual years of different magnitude ranges from

both catalogs.Next, we proceed to show that the annual seismicity rates can be fitted betterwith a

lognormal distribution than a normal one, especially for the Taiwan regional data set, which

contains spuriously large numbers of aftershocks from twomajor earthquake sequences. Finally,

we will obtain the G–R relations expressed in terms of the logarithmic mean and its standard

deviation for crustal earthquakes from these two regional andglobal catalogs, respectively.At the

end, we will present a numerical table listing the corresponding observed and estimated median

annual seismicity rates and its upper and lower bounds at ± one standard deviation, as calculated

from these alternative G–R relations for 5:0�M� 9:0.

2 Comparison between the logarithmic mean annual seismicity rate
and its standard deviation with their arithmetic counterparts

We begin by comparing the logarithmic mean annual seismicity rate and its standard

deviation with their arithmetic counterparts, all of which are obtained directly from series

of the annual seismicity rate in individual year for different magnitude ranges. We use two

Fig. 2 Epicenter distribution of global crustal earthquakes with magnitude M C 5.0 from 1973 to 2011
(from NEIC Web site: http://earthquake.usgs.gov/earthquakes/search/)
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crustal earthquake data sets based on the CWB Taiwan earthquake catalog with homog-

enized moment magnitudes (Chen and Tsai 2008; Chang et al. 2016) and the NEIC global

earthquake catalog. Both data sets cover the same time period from 1973 to 2011, as shown

in Figs. 1 and 2, respectively. The former data set provides sufficient seismicity data from

3:0�M� 5:0, whereas the latter one covers the magnitude range from 5:0�M� 7:0, for
our methodology to make meaningful comparisons.

First, we use the logarithmic and arithmetic earthquake numbers in individual years to

calculate the corresponding mean annual seismicity rate and its standard deviation for

Taiwan crustal earthquakes, as shown in Fig. 3a–h. Figure 3a, b shows a total of 35,507

earthquakes with M C 3.0 that had occurred in Taiwan region from 1973 to 2011. During

this period, there were two major earthquake sequences in 1986 and 1999, which had

produced over 5500 and 3000 aftershocks, respectively. As a result, the arithmetic mean

annual seismicity rate of 910.4 is apparently overestimated and biased above the main

body of the data population, as shown in Fig. 3a. In the meantime, its standard deviation of

873.0 is also significantly increased, so that only the two largest data points lie far above

the mean-plus-one-standard-deviation level. On the other hand, Fig. 3b shows that both the

logarithmic mean of 2.87 (with a corresponding median value of 747.5 event/year) and its

standard deviation of 0.24 (with a corresponding multiplication factor of 1.7) match much

better with bulk of the data population. Similar observations can be said by comparing

Fig. 3c, d for M C 4.0 and Fig. 3e, f for M C 5.0 respectively.

Finally, Fig. 3g, h shows the series of annual seismicity rate for M C 6.0 as plotted on

linear and logarithmic scales, respectively. We can see zero count or just one count of

events in many years over the series, resulting in the arithmetic-mean-minus-one-standard-

deviation value to become negative. In this case, the logarithmic measure cannot be

applied or will yield many zero values. These examples suggest that the mean annual

seismicity rate needs to be greater than about 10 for our method to produce robust results.

In summary, from above comparisons we can see the logarithmic mean value is smaller

than its arithmetic counterpart, as expected by the AM-GM (geometric mean) inequality.

More significantly, the logarithmic standard deviation is much smaller than its arithmetic

counterpart for the magnitude range 3:0�M� 5:0 where sufficient data are available for

logarithmic measure. Both the arithmetic mean and its standard deviation are significantly

influenced by spuriously large number of aftershocks from the two major earthquake

sequences in 1986 and 1999, respectively. On the other hand, the logarithmic measures are

able to significantly suppress the influences by spuriously large numbers of aftershocks in

individual years.

Next we use the NEIC global crustal earthquake data for similar comparisons over a

range of higher magnitudes and a much larger area of coverage. Figure 4a–h shows series

cFig. 3 a Annual seismicity rates of Taiwan crustal earthquakes with magnitudes M C 3.0 from 1973 to
2011 with corresponding arithmetic mean and standard deviation. b Annual seismicity rates of Taiwan
crustal earthquakes with magnitudes M C 3.0 from 1973 to 2011 with corresponding logarithmic mean and
standard deviation. c Annual seismicity rates of Taiwan crustal earthquakes with magnitudes M C 4.0 from
1973 to 2011 with corresponding arithmetic mean and standard deviation. d Annual seismicity rates of
Taiwan crustal earthquakes with magnitudes M C 4.0 from 1973 to 2011 with corresponding logarithmic
mean and standard deviation. e Annual seismicity rates of Taiwan crustal earthquakes with magnitudes
M C 5.0 from 1973 to 2011 with corresponding arithmetic mean and standard deviation. f Annual seismicity
rates of Taiwan crustal earthquakes with magnitudes M C 5.0 from 1973 to 2011 with corresponding
logarithmic mean and standard deviation. g Annual seismicity rates of Taiwan crustal earthquakes with
magnitudes M C 6.0 from 1973 to 2011 with corresponding arithmetic mean and standard deviation.
h Annual seismicity rates of Taiwan crustal earthquakes with magnitudes M C 6.0 from 1973 to 2011 with
corresponding logarithmic mean and standard deviation
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Fig. 3 continued
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of annual seismicity rate from 1973 to 2011 for global crustal earthquakes with

5:0�M� 8:0, as plotted on linear and logarithmic scales, respectively. Figure 4a, b shows

that a total of 36,089 crustal earthquakes with M C 5.0 took place globally from 1973 to

2011, resulting in an arithmetic mean of 925.4 with a ± one standard deviation range of

337.4 (from 756.7 to 1094.1), and a logarithmic mean of 2.96 with a standard deviation of

0.08, equivalent to a multiplication factor of 1.2. The logarithmic values give a corre-

sponding median of 910.8 with a ± one standard deviation range of 334.0 (from 759.0 to

1093.0). In this case, the logarithmic mean annual seismicity rate and its standard deviation

yield slightly smaller values than their arithmetic counterparts, consistent with the AM–

GM inequality. Similar observations can be said for the cases of M C 6.0 in Fig. 4c, d and

of M C 7.0 in Fig. 4e, f respectively.

Finally, Fig. 4g, h shows the series of annual seismicity rate for earthquakes with

M C 8.0 as plotted on linear and logarithmic scale, respectively. Figure 4g shows zero

count or just one count of event occurrence in many individual years, resulting in the

Fig. 3 continued

Nat Hazards (2017) 85:1297–1322 1305

123



arithmetic-mean-minus-standard-deviation value to become negative. For these years, the

logarithmic measure cannot be applied or will yield zero values. Like the previous case of

Taiwan seismicity data, our methodology can yield robust determination of the logarithmic

mean annual seismicity rate and its standard deviation for a magnitude range only when

sufficiently large annual seismicity rates in individual years, say more than 10 events per

year, are available.

In summary, we can see from above comparisons the logarithmic mean and standard

deviation can yield slightly better measurement of the annual seismicity rate than their

arithmetic counterparts for global crustal earthquakes in the magnitude range of

5:0�M� 7:0. For M C 8.0, the annual event numbers become too sparse for our method

to be applicable.

3 Lognormal versus normal distributions of the annual seismicity rates

Next we proceed to compare whether the annual seismicity rates shown previously in

Figs. 3 and 4 fit better with a lognormal or a normal distribution function. For this purpose,

we apply least-squares fitting to the observed ensembles of annual seismicity rate, as

follows:

YðxiÞ ¼ ayðxiÞ ð1Þ

a ¼
PN

i¼1 YiPN
i¼1 yðxiÞ

ð2Þ

where Yi ¼ observed values, yðxiÞ ¼ e
�ðx�lÞ2

2d2 , l ¼ mean and d ¼ standard deviation, as

given in Figs. 3 and 4. Then, we use the calculated a value to replace 1ffiffiffiffiffiffiffi
2pd2

p and

R2 ¼
PN

i¼1 Yi � ayðxiÞ½ �2, where R is the root-mean-square (RMS) error.

We aggregate the annual seismicity rates of Taiwan crustal earthquakes with M� 3:0,
M� 4:0, M� 5:0 and M� 6:0, in equal bins of 100, 10, 2, 1, respectively, for the normal

distribution, and an equal bin of 0.05 for the lognormal distribution. The results are shown

in Fig. 5a–h. Figure 5a clearly shows the peak of the normal distribution curve is offset to

the right of the bulk of data population, primarily due to two large annual seismicity rates

in 1986 and 1999, respectively. This results in a relatively large RMS error of 0.77. In

contrary, Fig. 5b shows the peak of the lognormal distribution curve is centered in the bulk

of data population of M� 3:0, with a much reduced RMS error of 0.61. Similar

cFig. 4 a Annual seismicity rates of global crustal earthquakes with magnitudesM C 5.0 from 1973 to 2011
with corresponding arithmetic mean and standard deviation. b Annual seismicity rates of global crustal
earthquakes with magnitudes M C 5.0 from 1973 to 2011 with corresponding logarithmic mean and
standard deviation. c Annual seismicity rates of global crustal earthquakes with magnitudes M C 6.0 from
1973 to 2011 with corresponding arithmetic mean and standard deviation. d Annual seismicity rates of
global crustal earthquakes with magnitudes M C 6.0 from 1973 to 2011 with corresponding logarithmic
mean and standard deviation. e Annual seismicity rates of global crustal earthquakes with magnitudes
M C 7.0 from 1973 to 2011 with corresponding arithmetic mean and standard deviation. f Annual seismicity
rates of global crustal earthquakes with magnitudes M C 7.0 from 1973 to 2011 with corresponding
logarithmic mean and standard deviation. g Annual seismicity rates of global crustal earthquakes with
magnitudes M C 8.0 from 1973 to 2011 with corresponding arithmetic mean and standard deviation.
h Annual seismicity rates of global crustal earthquakes with magnitudes M C 8.0 from 1973 to 2011 with
corresponding logarithmic mean and standard deviation
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Fig. 4 continued
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observations can be said about the matching between the observed data populations and

their respective probability distribution curves, as shown in Fig. 5c, d for M� 4:0 and in

Fig. 5e, f forM� 5:0, respectively. Finally, Fig. 5g, h shows breakdown of such matchings

for M� 6:0 because available observed data are too sparse.

In summary, we can see from above comparisons the observed annual seismicity rates

for Taiwan crustal earthquakes can be fitted significantly better with a lognormal distri-

bution than a normal one, as judged by the RMS errors. We can also see from Fig. 5g, h

such matching would breakdown when available observed data are too sparse.

Similarly, we apply the same process to the global crustal earthquake data set. We select

data from 5:0�M� 8:0 on the basis of their completeness. In order to fit these observed

data with a probability density function, we aggregate them in equal bins of 100, 10, 1, 1

for M� 5:0, M� 6:0, M� 7:0 and M� 8:0, respectively, for the normal distribution, and

in an equal bin of 0.05 for the lognormal distribution. The results are shown in Fig. 6a–h.

We can see from Fig. 6a–f the RMS errors are small and comparable to each other between

Fig. 4 continued
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the lognormal and normal distributions for the three magnitude ranges of M� 5:0, M� 6:0
and M� 7:0. This is largely due to the absence of spuriously large annual seismicity rates

in individual years. Figure 6g, h again shows the available observed data for M� 8:0 are

too sparse to allow for meaningful probability assessment.

4 Alternative representation of the Gutenberg–Richter relation in terms
of the logarithmic mean annual seismicity rate and its standard
deviation

Realistic estimation of the annual seismicity rate of large future earthquakes is an

important issue in probabilistic seismic hazard analysis. The Gutenberg–Richter (G–R)

relation based on the arithmetic mean is commonly used for this purpose. However, the

mean annual seismicity rate of large future earthquakes can be overestimated with large

dispersion by using this conventional method, as shown above with the data set of Taiwan

crustal earthquakes, when the catalog contains spuriously large number of aftershocks from

major earthquake sequences. In order to reduce this undesirable influence, various methods

have been proposed to purge aftershock data from earthquake catalogs (i.e., Reasenberg

1985; Reasenberg and Jones 1989). In this study, we propose an alternative approach

which can significantly suppress the influence of large number of aftershocks by analyti-

cally representing the G–R relation in terms of the logarithmic mean annual seismicity rate

and its standard deviation. More significantly, this analytical representation can allow us

for the first time to estimate not only the median annual seismicity rate but also its

dispersion for any given magnitudes.

Once again, we use the CWB Taiwan regional earthquake catalog and the NEIC global

earthquake catalog from 1973 to 2011 to illustrate the methodology and merits of our

approach. For Taiwan crustal earthquakes, we select the data with M� 3:0 to calculate

both mean annual seismicity rates and their standard deviations directly from series of

annual seismicity rates in individual years at a magnitude increment of DM ¼ 0:1. The
results are plotted in the format of Gutenberg–Richter relation in Fig. 7. From the figure,

we can see the arithmetic means are greater than its logarithmic counterparts. More seri-

ously, the arithmetic standard deviation is not only large but also not symmetric about its

mean. This latter feature makes it impossible for us to incorporate the arithmetic standard

deviation explicitly in the G–R relation.

cFig. 5 a Least-squares fitting with normal distributions of the annual seismicity rates of Taiwan crustal
earthquakes with magnitudes M C 3.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 3a. b Least-squares fitting with lognormal distributions of the annual seismicity rates of Taiwan crustal
earthquakes with magnitudes M C 3.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 3b. c Least-squares fitting with normal distributions of the annual seismicity rates of Taiwan crustal
earthquakes with magnitudes M C 4.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 3c. d Least-squares fitting with lognormal distributions of the annual seismicity rates of Taiwan crustal
earthquakes with magnitudes M C 4.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 3d. e Least-squares fitting with normal distributions of the annual seismicity rates of Taiwan crustal
earthquakes with magnitudes M C 5.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 3e. f Least-squares fitting with lognormal distributions of the annual seismicity rates of Taiwan crustal
earthquakes with magnitudes M C 5.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 3f. g Least-squares fitting with normal distributions of the annual seismicity rates of Taiwan crustal
earthquakes with magnitudes M C 6.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 3g. h Least-squares fitting with lognormal distributions of the annual seismicity rates of Taiwan crustal
earthquakes with magnitudes M C 6.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 3h
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Fig. 5 continued

1312 Nat Hazards (2017) 85:1297–1322

123



On the other hand, we can see in the same figure both the logarithmic mean annual rate

and its standard deviation are smaller than their arithmetic counterparts. More significantly,

the logarithmic standard deviation is symmetric about the logarithmic mean, especially in

the magnitude range from 3:0�M� 5:0 where sufficient observed data are available. In

this case, the logarithmic standard deviation can be incorporated explicitly in the Guten-

berg–Richter relation. We can obtain from the observed data by regression from M C 3.0

to M C 5.0 the following G–R relations:

Logarithmicmeanþ std: log10 N ¼ 5:79� 0:88M ð3Þ

Logarithmicmean log10 N ¼ 5:62� 0:90M ð4Þ

Fig. 5 continued
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Logarithmicmean� std: log 10N ¼ 5:45� 0:93M ð5Þ

Combined: ð3�5Þ log10 N ¼ 5:62� 0:90M � ð0:02M þ 0:17Þ ð6Þ

where log10 N represents the logarithmic annual seismicity rate.

Equations 3 to 5 are plotted in Fig. 7, in solid lines constrained by the observed data and

in dashed lines by extrapolation. These three equations can be combined into one single

Eq. 6 owing to the symmetry of Eqs. 3 and 5 with respect to Eq. 4. Judging from the small

standard deviations and a nearly unity of R2 values from least-squares regression, above

equations are very well constrained by the observed data from M C 3.0 to M C 5.0,

resulting in robust determination of both a and b values. Accordingly, the analytical Eq. 6

can be extrapolated with confidence to obtain for the first time robust estimates of not only

the logarithmic mean annual seismicity rate but also its dispersion for Taiwan crustal

earthquakes with M C 5.0, as shown in Table 1. This is further confirmed below by the

NEIC global crustal earthquake data set, which provides sufficient data from 5:0�M� 7:0
to constrain the alternative Gutenberg–Richter relation.

The observed conventional arithmetic means are also shown for comparison in Fig. 7 in

open circles with their corresponding regression line. It is noticed from the figure that the

observed conventional arithmetic means are enveloped by the logarithmic mean � stan-

dard deviation lines. The portion from M3.0 to M6.0 lies above and M6.0 to M7.6 below

the logarithmic mean line, respectively. The deficiency of observed events in larger

magnitude range is probably due to the relative short period of coverage by the CWB

catalog we selected for this study, so that not enough numbers of large earthquakes are

included. Accordingly, the estimations obtained by Eq. 6 will encompass the observed

arithmetic mean annual seismicity rates from M3.0 to M7.6 for Taiwan earthquakes. It

should be pointed out further that Eq. 6 shows an increasing logarithmic standard deviation

with magnitude. This would result in greater dispersion in the estimation of annual seis-

micity rates for large Taiwan crustal earthquakes.

For global seismicity, we select from the NEIC catalog the crustal earthquakes with

focal depths in the 0–33 km range and M C 5.0 for its completeness. Both the logarithmic

and arithmetic means and their standard deviations at an increment of DM ¼ 0:1 are

plotted in the format of Gutenberg–Richter relation in Fig. 8. From the figure, we can see

both the logarithmic and arithmetic means and standard deviations differ only slightly from

each other for earthquakes with magnitudes 5:0�M� 7:0 where sufficient observed data

cFig. 6 a Least-squares fitting with normal distributions of the annual seismicity rates of global crustal
earthquakes with magnitudes M C 5.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 4a. b Least-squares fitting with lognormal distributions of the annual seismicity rates of global crustal
earthquakes with magnitudes M C 5.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 4b. c Least-squares fitting with normal distributions of the annual seismicity rates of global crustal
earthquakes with magnitudes M C 6.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 4c. d Least-squares fitting with lognormal distributions of the annual seismicity rates of global crustal
earthquakes with magnitudes M C 6.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 4d. e Least-squares fitting with normal distributions of the annual seismicity rates of global crustal
earthquakes with magnitudes M C 7.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 4e. f Least-squares fitting with lognormal distributions of the annual seismicity rates of global crustal
earthquakes with magnitudes M C 7.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 4f. g Least-squares fitting with normal distributions of the annual seismicity rates of global crustal
earthquakes with magnitudes M C 8.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 4g. h Least-squares fitting with lognormal distributions of the annual seismicity rates of global crustal
earthquakes with magnitudes M C 8.0 from 1973 to 2011. The mean and standard deviation are the same as
Fig. 4h
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Fig. 6 continued
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are available. Again only the logarithmic standard deviation can be incorporated explicitly

in the Gutenberg–Richter relation owing to its symmetry with respect to the logarithmic

mean. We can obtain from the observed data by regression from 5:0�M� 7:0 the fol-

lowing G–R relations at different logarithmic levels:

Meanþ std: log10 N ¼ 8:01� 0:99M ð7Þ

Mean log10 N ¼ 8:14� 1:03M ð8Þ

Mean� std: log10 N ¼ 8:28� 1:08M ð9Þ

Combined: ð7�9Þ log10 N ¼ 8:14� 1:03M � ð0:04M � 0:13Þ ð10Þ

where log10 N represents the logarithmic annual seismicity rate.

Equations 7 to 9 are plotted in Fig. 8, in solid line constrained by observed data from

M5.0 to M 7.0 and in dashed line by extrapolation from M7.0 to M 9.0. These three

Fig. 6 continued
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equations can further be combined into one single Eq. 10 owing to the symmetry of Eqs. 7

and 9 with respect to Eq. 8. Judging from the small standard deviations and near-unity R2

values from least-squares regression, above equations are very well constrained by the

observed data from 5:0�M� 7:0, resulting in robust determination of both a and b values.

Accordingly, the analytical Eq. 10 can be extrapolated with confidence to give estimates

for the first time since inception of the G–R relation, not only the logarithmic mean annual

Fig. 7 Plots of the logarithmic and arithmetic mean annual seismicity rates of Taiwan crustal earthquakes
with magnitudes M C 3.0 data. Open circle represents the observed arithmetic mean, and black dot
represents the observed logarithmic mean. The solid bar represents the upper and lower bounds of
logarithmic mean, and the dashed bar represents the upper and lower bounds of arithmetic mean both
at ± one standard deviation. The standard deviation of logarithmic mean is not only symmetric with respect
to the mean, but also smaller than the standard deviation of arithmetic mean. The solid lines represent
regression constrained by observed data, whereas dashed lines represent extrapolations
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seismicity rate but also its dispersion for global crustal earthquakes with M C 7.0, as

shown in Table 1.

The observed conventional arithmetic means are also shown for comparison by open

circles with their corresponding regression line in Fig. 8. From the figure, we can see the

observed arithmetic means are encompassed within the logarithmic mean ± standard

deviation range. The portion from M5.0 to M7.8 lies above and another portion from M7.9

to M9.0 below the logarithmic mean line. The deficiency in large events is probably due to

the relative short time period of the NEIC catalog we selected for this study, so that not

enough numbers of large earthquakes are included. This means that estimation on the

Fig. 8 Plots of the logarithmic and arithmetic mean annual seismicity rates of global crustal earthquakes
with magnitudes M C 5.0. Open circle represents the observed arithmetic mean; black dot represents the
observed logarithmic mean. Solid bar represents the upper and lower bounds of the logarithmic mean, and
the dashed bar represents the upper and lower bounds of the arithmetic mean. The solid lines represent
regression constrained by observed data, whereas dashed lines represent extrapolations
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annual seismicity rates for global crustal earthquakes by Eq. 10 will cover the whole range

of observed conventional arithmetic means. It should be pointed out further that Eq. 10

also shows an increasing logarithmic standard deviation with magnitude. This would imply

increasing uncertainties with magnitude in the estimation of annual seismicity rates for

large global crustal earthquakes.

5 Observed and estimated annual seismicity rates and their
corresponding return periods for Taiwan and global crustal
earthquakes

Finally, the analytical Eqs. 6 and 10 can be used to calculate the observed and estimated

median annual seismicity rate and its dispersion at ± standard deviation level and their

corresponding return periods for Taiwan and global crustal earthquakes from M5.0 to

M9.0, respectively. The results are listed in Table 1, with the observed values presented in

bold-type numbers and the estimated values in regular-type numbers.

For Taiwan crustal earthquakes, Table 1 gives an observed median annual seismicity

rate of 13.18 event/year with a range from 7.08 to 24.55 event/year for M C 5.0. The

corresponding median return period is 0.076 years with a range from 0.041 to 0.14 years.

The estimated median annual seismicity rate and its dispersion are 1.66 (0.85–3.24) event/

year, 0.21 (0.10–0.43) event/year, 0.026 (0.012–0.056) event/year and 0.0033

(0.0015–0.0074) event/year for M C 6.0, M C 7.0, M C 8.0 and M C 9.0, respectively.

The corresponding median return period and its dispersion are 0.60 (0.31–1.18) years, 4.76

(2.33–10.0) years, 38.46 (17.86–83.33) years and 303.03 (135.14–666.67) years for

M C 6.0, M C 7.0, M C 8.0 and M C 9.0, respectively.

For global crustal earthquakes, Table 1 gives an observed median annual seismicity rate

of 977.24 event/year with a range from 831.76 to 1148.16 event/year for M C 5.0. The

corresponding median return period is 0.001 years with a range from 0.0009 to

0.0012 years. Additional observed median annual seismicity rate and its dispersion are

91.20 (70.79–117.49) event/year and 8.51 (6.03–12.02) event/year for M C 6.0 and

M C 7.0, respectively. The estimated median annual seismicity rate and its dispersion are

0.79 (0.51–1.23) event/year and 0.074 (0.04–0.13) event/year for M C 8.0 and M C 9.0,

respectively. The corresponding median return period and its dispersion are 0.011

(0.0085–0.014) years, 0.12 (0.083–0.17) years, 1.27 (0.75–1.96) years and 13.51

(7.69–25.00) years for M C 6.0, M C 7.0, M C 8.0 and M C 9.0, respectively. It is

interesting to point out that the median annual seismicity rate of Taiwan crustal earth-

quakes with M C 5.0 accounts for about 1.35% of global crustal earthquakes.

6 Conclusions and discussion

The mean annual seismicity rate and its standard deviation are required for quantitative

estimation of the probability of future earthquakes. Their applications in earthquake studies

have advanced considerably in recent years. Relative occurrences between large and small

earthquakes have been found to follow closely the Gutenberg–Richter (G–R) relation

(Gutenberg and Richter 1941, 1944).

Conventionally, the G–R relation is represented in terms of the arithmetic mean annual

seismicity rate, which is commonly obtained by dividing the total number of events with
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the number of years of the catalog coverage. This conventional representation has the

advantage of being straightforward. However, it has two major shortcomings. First, the

arithmetic standard deviation cannot be incorporated explicitly in the log-linear G–R

relation because of its asymmetry with respective to the arithmetic mean in logarithmic

domain. Second, both the arithmetic mean and its standard deviation are susceptible to

significant influence of spuriously large numbers of aftershocks from major earthquake

sequences. These shortcomings are clearly illustrated by plotting the arithmetic mean and

standard deviation in Fig. 7 for Taiwan crustal earthquakes from 1973 to 2011.

As an alternative we propose to represent the Gutenberg–Richter relation in terms of the

logarithmic mean and its standard deviation, as given in Eq. 6 and shown in Fig. 7 for

Taiwan crustal earthquakes, as well as in Eq. 10 and Fig. 8 for global crustal earthquakes.

We can see in Fig. 7 both the logarithmic mean and its standard deviation are very well

constrained in the magnitude range from 3:0�M� 5:0, where sufficiently large annual

event numbers are available. Accordingly, the analytical Eq. 6 can be extrapolated to give

robust estimates of the corresponding median annual seismicity rate as well as its upper

and lower bounds at � one standard deviation for large crustal earthquakes with M C 5.0

in Taiwan, as shown in Table 1.

In order to further demonstrate the merits of our new method for greater magnitudes, we

apply the same process to the global crustal earthquake data from the NEIC catalog. The

results, as given in Eq. 10 and shown in Fig. 8, again show the Gutenberg–Richter relation

is very well constrained in the magnitude range from 5:0�M� 7:0, where sufficiently

large annual event numbers are available. The analytical Eq. 10 can be used to obtain

robust estimates of the corresponding median annual seismicity rate as well as its lower

and upper bounds at � one standard deviation for large global crustal earthquakes with

M� 7:0, as shown in Table 1. It is interesting to see in the table that Taiwan crustal

earthquakes with M� 5:0 account for about 1.35% of corresponding global crustal

seismicity.

It is noted that the new approach would not be applicable if there are many zero or lower

counts in earthquake occurrence in individual years. From the two data sets, we can see the

new approach can yield a well-constrained Gutenberg–Richter relation if the logarithmic

mean annual seismicity rate is greater than about 1.0, i.e., more than 10 events per year.

Such a G–R relation can be extrapolated to obtain robust estimates on corresponding

median annual seismicity rate and its dispersion for larger earthquakes.

In summary, our alternative representation of the Gutenberg–Richter relation provides a

convenient analytical means to make robust assessment and estimation of both the median

annual seismicity rate and its dispersion for any given magnitudes. Inclusion of the dis-

persion will account for the variability of individual annual seismicity rates, which is

missing in the conventional representation in terms of only the mean annual seismicity

rate. This alternative representation of the G–R relation can be used to improve the con-

ventional probabilistic seismic hazard assessment.

7 Data and resources

Taiwan earthquake data are taken from published works listed in References. The global

earthquake data are taken from the NEIC Web site: http://earthquake.usgs.gov/

earthquakes/search/. Some plots were made using the Generic Mapping Tools version

4.3.1 (www.soest.hawaii.edu/gmt; Wessel and Smith 1998, last accessed August 2006).
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