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Abstract Earthquakes cluster in space and time resulting in nonlinear damage effects. We

compute earthquake interactions using the Coulomb stress transfer theory and dynamic

vulnerability from the concept of ductility capacity reduction. We combine both processes in

the generic multi-risk framework where risk scenarios are simulated using a variant of the

Markov chain Monte Carlo method. We apply the proposed approach to the thrust fault

system of northern Italy, considering earthquakes with characteristic magnitudes in the range

*[6, 6.5], different levels of tectonic loading _s = {10-4, 10-3, 10-2} bar/year and a generic

stock of fictitious low-rise buildings with different ductility capacities lD = {2, 4, 6}. We

describe the process’ stochasticity by non-stationary Poisson earthquake probabilities and by

binomial damage state probabilities.We find that earthquake clustering yields a tail fattening

of the seismic risk curve, the effect of which is amplified by damage-dependent fragility due

to clustering. The impact of clustering alone is in average more important than dynamic

vulnerability, the spatial extent of the former phenomenon being greater than of the latter one.

Keywords Earthquake clustering � Damage-dependent fragility � Extreme event

1 Introduction

Earthquakes are known to cluster in space and time due to stress redistributions in the

Earth’s crust (e.g., King 2007). The impact of this clustering on building damage is

nonlinear, as the capacity of a structure degrades with increased damage (e.g., Polese et al.
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2013; Iervolino et al. 2014). Such physical interactions at both hazard and risk levels are

expected to lead to risk amplification toward the tail of the risk curve (e.g., Mignan et al.

2014), which relates to the concepts of extreme event and tail fattening (e.g., Weitzman

2009; Sornette and Ouillon 2012; Foss et al. 2013).

Performance-based seismic assessment consists in quantifying the response of a

structure to earthquake shaking using decision variables, such as damage or economic loss.

Such procedure is described in the benchmark Pacific Earthquake Engineering Research

(PEER) method, summarized by Cornell and Krawinkler (2000). Aftershock probabilistic

seismic hazard analysis was added to the PEER method in recent years (Yeo and Cornell

2009), as well as damage-dependent vulnerability (Iervolino et al. 2014). However, these

approaches express earthquake clustering analytically with the temporal component

defined from the Omori law (see the limits of this law in Mignan (2015, 2016)) and with an

ad hoc spatial component. In particular, they do not consider the coupling of large

earthquakes on separate fault segments that is observed in Nature.

This coupling can be the association of a great mainshock and its largest aftershock

where both events occur on distinct fault segments, such as the 2010 Mw 7.1 Canterbury,

New Zealand, mainshock and its 2011 Mw 6.3 Christchurch aftershock (Zhan et al. 2011).

There is also the case of successive large earthquakes occurring on neighboring fault

segments and within days or tens of days of each other. Well-known examples include the

2004–2005 Mw 9.0–8.7 Sunda megathrust doublet (Nalbant et al. 2005; Mignan et al.

2006), the 1999 Mw 7.4–7.1 Izmit and Duzce North Anatolian doublet (Parsons et al. 2000)

and the 1811–1812 Mw 7.3–7.0–7.5 New Madrid Central United States triplet (Mueller

et al. 2004). In contrast to aftershock statistics in which the largest aftershock is about one

magnitude below the mainshock magnitude (Bath 1965), clusters of large earthquakes with

similar magnitudes are relatively rare but have a high damage potential.

Here, we quantify the expected impact of the spatiotemporal clustering of large

earthquakes on seismic risk, considering the additional role of vulnerability increase. By

large, we refer to events that occur on distinguishable (and known) fault segments, so

roughly with magnitudes greater than 6. Combining explicit interactions between haz-

ardous events with dynamic vulnerability and exposure is the main feature of the generic

multi-risk (GenMR) framework (Mignan et al. 2014; Matos et al. 2015). The present work

takes advantage of the GenMR framework’s capability to cope with heterogeneous risk

processes and describes its conceptual application. We consider as underlying physical

processes (1) the Coulomb stress transfer theory (e.g., King et al. 1994; King 2007; Nalbant

et al. 2005; Parsons et al. 2000; Mueller et al. 2004; Zhan et al. 2011; Toda et al. 1998;

Parsons 2005) and (2) repeated building ductility capacity reduction (e.g., Iervolino et al.

2014) based on simple relationships between interstory drift and spectral acceleration (e.g.,

Baker and Cornell 2006). While Coulomb stress transfer is well established, other pro-

cesses could be considered such as fluid migration (e.g., Miller et al. 2004). The choice of

the underlying physical processes is independent of the GenMR modeling structure.

For illustration purposes, we consider the thrust fault system of northern Italy and a

generic building stock composed of fictitious low-rise buildings of different performances.

Note that other fault systems could have been laid below our generic building stock; we

considered the one of northern Italy, as the dataset is readily available and detailed.

Moreover, the analyzed region recently encountered a doublet of magnitude M * 6

earthquakes (the 2012 Emilia-Romagna seismic sequence; Anzidei et al. 2012) with the

second event yielding significantly more damage, partly due to buildings rendered more

vulnerable following the first shock (the number of homeless people raised from 5000 to

15,000 between the two events; Magliulo et al. 2014). Coulomb stress transfer has already
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been applied with success to describe the clustering of large earthquakes in Italy, including

the 2012 cluster (e.g., Cocco et al. 2000; Ganas et al. 2012). The aim of this study is to

provide an overview of the combined effects of earthquake clustering and damage-de-

pendent fragility on seismic risk, in particular on the shape of the seismic risk curve. The

method and the risk results apply in principle to any region subject to multiple active faults.

The paper is methodological in nature and not a risk study of the Emilia catastrophe, which

would require a more elaborate engineering approach to dynamic vulnerability.

2 Method

2.1 Large earthquakes clustering by Coulomb stress transfer

2.1.1 Coulomb stress transfer theory

The phenomenon of earthquake interaction is well established with the underlying process

described by the theory of Coulomb stress transfer (e.g., King et al. 1994). In its simplest

form, the Coulomb failure stress change is

Drf ¼ Dsþ l0Drn ð1Þ

where Ds is the shear stress change, Drn the normal stress change and l0 the effective

coefficient of friction. Failure is promoted if Drf[ 0 and inhibited if Drf\ 0 (see King

(2007) for a review). This is not to be confused with rupture propagation due to dynamic

stress changes, which may lead to greater earthquakes (Mignan et al. 2015a)

Coulomb stress transfer is generally not considered in seismic hazard assessment except

occasionally in time-dependent earthquake probability models where the ‘‘clock change’’

effect of a limited number of historical earthquakes is included (Toda et al. 1998; Field

2007; Field et al. 2009). The conditional probability of occurrence of an earthquake is then

expressed through a non-stationary Poisson process as

Pr Dtð Þ ¼ 1� exp �Nð Þ ð2Þ

where N is the number of events expected during Dt. Following Toda et al. (1998),

N ¼ kDt þ kAt ð3Þ

The first term represents the permanent stress change (so-called clock change) with

k ¼ 1

1
k0
� Drf

_s

ð4Þ

where k0 is the rate prior to the interaction, Drf the stress change and _s the stressing rate.

The second term of Eq. 3 represents the transient stress amplification (Dieterich 1994)

At ¼ ta log
1þ exp � Drf

Ar

� �
� 1

� �
exp � Dt

ta

� �

exp � Drf
Ar

� �
0
@

1
A ð5Þ

This transient phenomenon is described by Drf, the constitutive parameter Ar and the

aftershock duration ta = Ar/ _s (Dieterich 1994) (see Parsons (2005) for a review).
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2.1.2 Sensitivity analysis

The parameter set h ¼ fDrf ; _s;Arg is defined over the intervals 10-3 B Drf B 1 bar,

10-4 B _s B 10-1 bar/year and 10-2 B Ar B 10 bar for sensitivity analysis. These inter-

vals are representative ranges of known parameter variations (e.g., King 2007; Catalli et al.

2008; Toda et al. 1998). Figure 1 shows the influence of each one of the parameters on the

conditional probability Pr(Dt = 1 year, k0 = 10-3 year-1, h) (Eq. 2) averaged over the

ranges of the two remaining free parameters. Drf represents the relative local triggering

(static stresses decreasing with the inverse of the cubic distance), while _s controls the

absolute regional triggering (being related to the tectonic context).

We find that the parameter Ar has a relatively limited influence on probability changes

compared to Drf and _s, which show opposite effects compared to each other. A strong

earthquake clustering requires a low stressing rate (region-dependent) and/or a high stress

change (perturbing earthquake very close to the target fault) (e.g., Parsons 2005). These

characteristics remain similar for different values of k0. The role of Coulomb stress transfer

on seismic risk is investigated in the application to the thrust fault system of northern Italy

(see Sect. 3).

2.1.3 GenMR implementation

GenMR simulates Nsim multi-risk scenarios based on a variant of the Markov chain Monte

Carlo method (Mignan et al. 2014). Each simulation generates a time series in the interval

Dt = [t0, tmax] in which events are drawn from a non-stationary Poisson process. It requires

as input (1) an n-event stochastic set with identifier Evi and long-term recurrence rate

k0(Evi) and (2) an n 9 n hazard correlation matrix (HCM) with fixed conditional prob-

abilities Pr(Evj | Evi) or time-variant conditional probabilities Pr(Evj|H(t) = {Ev(t1),

Fig. 1 Sensitivity of the mean conditional probability Pr (Eq. 2) to different values of the parameter set
h ¼ fDrf ; _s;Ar with Dt = 1 year and k0 = 10-3 year-1 fixed. For the present application (see Sect. 3), we

fix Ar = 0.1 bar and test _s = {10-4, 10-3, 10-2} bar/year to represent strong, medium and weak clustering
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Ev(t2), …, Ev(t)}), H being the history of event occurrences up to time t (i.e., process

memory). Hazard intensities and damages are introduced in Sect. 2.2.

Let us note k(EQj, tk) the non-stationary rate of target event EQj at the occurrence time

tk of the kth event in the time series, k0(EQj) = k(EQj, t0) the long-term rate of EQj and

H(t0) = {Ø}. Due to the accumulation of permanent stress changes after each earthquake

occurrence, a summing iteration of Eq. 4 yields

k EQj; tk
� �

¼
k EQj; t0
� �

1� k EQj; t0
� �Pk

k¼1

Drf EQi tkð Þ;EQjð Þ
_s EQjð Þ

ð6Þ

with Drf(EQi(tk), EQj) the stress change on EQj due to EQi and _s(EQj) the stressing rate on

the receiver fault of EQj. Combining Eqs. 2 and 3, we obtain the time-variant HCM with

conditional probability of occurrence

Pr EQjjEQi tkð Þ;Dt
� �

¼ 1� exp k EQj; tk
� �

Dt þ At½ �
� �

ð7Þ

The HCM for EQ–EQ interactions (hereafter referred to as HCMEQ–EQ) thus depends

solely on the matrix Drf(EQi, EQj), the parameter set h ¼ f _s;Arg and the history of event

occurrences H defined by the summation term in Eq. 6. Since a ratio Drf= _s * 50:1 is

required to significantly skew occurrence probabilities with confidence great than 80–85 %

(Parsons 2005), we only consider Drf(EQi, EQj) values that fulfill this condition.

In any given simulated time series (Fig. 2), the occurrence time of independent events is

drawn from the uniform distribution with t [ [t0, tmax]. If EQj occurs due to EQi following

Eq. 7, its occurrence time is fixed to tj = ti ? e with e � Dt. If tj[ tmax, the event is

excluded from the time series. A small e represents temporal clustering within a time

series. Its choice has no significance on the results in the present study since dynamic

vulnerability depends on the number of earthquakes in a cluster and not on their time

interval (see Sect. 2.2). Temporal processes, such as reparations, are not included (i.e.,

non-resilient system).

Let us now define the null hypothesis H0 (simulation set S0) as the case where there is no

interaction and the hypothesis H1 (simulation set S1) as the case where earthquakes interact

with each other (Fig. 2). If Dt � 1/k0 in simulation set S0, time series with more than one

earthquake would be much rarer than time series with only one event (i.e., Poisson pro-

cess). As a consequence, the potential for clock delays (or removal of events) would be

much lower than for clock advances (or additions of events) in S1. With S1 likely to

produce more earthquakes than S0, the seismic moment rate would not be conserved. If the

sum of moment rates
P

i
_M0i ¼

P
i M0ik0i (Hanks and Kanamori 1979) in S1 is not in the 3-

sigma range of the natural fluctuations observed in S0, we correct k0(Evi) of the stochastic
event set, such that

k
0

0 ¼ k0
k̂ S0ð Þ
k̂ S1ð Þ

ð8Þ

with k̂ the estimated rate in a given simulation set. Simulation sets S0 and S1 are then

regenerated with the modified stochastic event set. This action is repeated until the 3-sigma

rule—i.e., until the regional seismic moment rate conservation—is verified (see example in

Sect. 3.2). k00 here represents the rate of trigger earthquakes, which is lower than the rate of
trigger and triggered earthquakes combined.
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2.2 Damage-dependent seismic fragility

2.2.1 Generic building characteristics and damage assessment

We consider a fictitious low-rise building with height Hb and fundamental period

Tb ¼ c1H
c2
b ð9Þ

with parameters c1 = 0.075 and c2 = 3/4 (for moment–resistant reinforcement concrete

structures), Hb in meters and Tb in seconds (see review by Crowley and Pinho 2010). The

low-rise building is subjected to the spectral acceleration Sa(Tb) due to earthquake

occurrences. We define the maximum interstory drift ratio DEQ as

DEQ ¼ exp aþ b log Sa Tbð Þð Þð Þ ð10Þ

with a and b empirical parameters (e.g., Baker and Cornell 2006).

We describe the generic capacity curve of the fictitious low-rise building by its stiffness

K, yield strength Q and ductility capacity lD (Fig. 3a). Further, we define the mean damage

d as a function f of the drift ratio (or shear deformation) D

d D\Dy

� �
¼ D

Dy

� 	3

d Dy �D�Dmax

� �
¼ 1þ ðnDS � 1Þ D� Dy

Dmax � Dy

d D[Dmaxð Þ ¼ nDS

8>>>><
>>>>:

ð11Þ

where nDS is the number of damage states, Dy = Q/K the yield displacement capacity and

Dmax = DylD the maximum plastic displacement capacity. The relationship between d and

Fig. 2 Examples of two simulation sets S0 and S1, representing no interaction (null hypothesis H0) and
interactions (H1), respectively. Each simulation set is composed of Nsim time series (or risk scenarios). The
second time series is here empty to illustrate the fact that large earthquakes are rare and that many
simulation-years ‘‘see’’ no earthquake (for northern Italy, the average return period of large earthquakes is c.
77 years). Modified from Mignan et al. (2014)
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D is assumed linear within the plasticity (or ductility capacity) range. Within the elasticity

range, we assume that d decreases faster toward zero by following a power-law behavior.

We fix the number of damage stages (DS), that is, nDS = 5 with DS1 to DS5 representing

insignificant, slight, moderate, heavy and extreme damage, respectively (Fig. 3b). Equa-

tion 11 indicates that DS1 is most likely at D = Dy and DS5 at D = Dmax (e.g., FEMA

1998). We here assume that extreme damage corresponds to building collapse and that the

building has a perfectly elasto-plastic behavior.

We then generate fragility curves from the cumulative binomial distribution

Pr �DSkjDEQð Þ ¼
ZDEQ

0

nDS!

k! nDS � kð Þ!
d DEQð Þ
nDS

� 	k

1� d DEQð Þ
nDS

� 	nDS�k
 !

dD ð12Þ

for each damage state DSk with 0 B k B nDS (e.g., Lagomarsino and Giovinazzi 2006)

(Fig. 3c). Equation 12 represents the uncertainty on the damage state for a given drift ratio,

which relates to the concept of imprecise probability (e.g., Caselton and Luo 1992). Note

that other formulations could have been used (e.g., for Italy, Faccioli et al. 1999; Dolce

et al. 2003; Rasulo et al. 2015).

2.2.2 Concept of damage-dependent fragility

Numerous structural engineering studies deal with damage-dependent fragility (e.g., Polese

et al. 2013; Iervolino et al. 2014—and references therein). Most of those studies include

extensive nonlinear dynamic analyses and numerical simulations of idealized two- or

three-dimensional buildings. The scope of GenMR, as its name indicates, is not to provide

an engineering-based platform for actual site-specific multi-risk assessment but a generic

Fig. 3 Damage assessment method: a generic capacity curve of a fictitious building; b matching damage
states (Eq. 11); c derived fragility curves (Eq. 12)
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framework for a general understanding of hazard interactions and of other dynamical

processes of the risk assessment chain. Here, damage-dependent seismic fragility must be

viewed from that overarching perspective where transparency is key and a given degree of

abstraction is required (Mignan et al. 2014, 2016a, 2016b; Komendantova et al. 2014; Liu

et al. 2015; Matos et al. 2015). Albeit simplified, the procedure of deriving damage-

dependent seismic fragility is not incompatible with engineering approaches and when

integrated with the GenMR approach can in fact provide a blueprint for future region- or

site-specific applications.

Conceptually, the capacity of a structure degrades with increased damage. We here

consider, as source of degradation, the decrease in the plasticity range (Dy, Dmax2 =

Dmax1-Dr) due to the residual drift ratio

Dr ¼ 0 for DEQ �Dy

Dr ¼ DEQ � Dy for DEQ [Dy



ð13Þ

This process yields a shift of the fragility curves toward lower D values (i.e., increased

vulnerability). This is illustrated in Fig. 4 where the evolution of fragility curves per

damage state is shown for different pre-damage levels. The solid curves represent the latent

vulnerability curves, which are only altered for a damage state equal or greater to DS2 (DS1
does not produce any residual drift in average). The role of changes in stiffness and

building resonance period—not included in this study—is discussed in Sect. 3.3.

2.2.3 Sensitivity analysis

We investigate the role of repeated earthquake shaking on the damage time series of

generic low-rise buildings of different structural performances. We define low, medium

and high levels of seismic performance of low-rise buildings due to increased plastic

displacement capacity by the ductility capacity values lD = {2, 4, 6}, respectively. We

analyze the N-time repeat of an earthquake producing a constant DEQ = 1.1Dy, which

represents insignificant damage (DS1) for the initial building (for any tested lD value). We

consider the stochastic damage process described by the random variables

fDS tið Þ� Bin nDS;
d DEQ;Dmax ti�1ð Þð Þ

nDS

� 	
ð14Þ

and

~Dmax tið Þ�Dmax ti�1ð Þ � f�1 fDS tið Þ
� �

� Dy

� �
ð15Þ

where ti is the occurrence time of the earthquake with 1 B i B N, Dmax(t0) the initial

maximum plastic displacement capacity and d = f(D) (Eq. 11). Results from 10,000

Monte Carlo simulations are shown in Fig. 5. Firstly, the median curves (solid black

curves) indicate that the building of poor performance (lD = 2) is the most prone to

damage amplification, while no amplification is observed in average for the buildings of

medium and high performances (lD = {4, 6}) for N B 10. Secondly, the first and third

quartiles (dashed curves) indicate that the results are highly variable across simulations due

to the stochasticity of the damage process, as described by the binomial distribution. Let us

note that the repeat of a multitude of events producing insignificant damage (here

DEQ = 1.1Dy) is expected in aftershock and induced seismicity sequences (e.g., Iervolino

et al. 2014; Mignan et al. 2015b). In the case of large earthquake clustering, N is expected
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to remain small but with events more likely to directly produce moderate to high damage,

thereby facilitating damage amplification (see Sect. 3).

2.2.4 GenMR implementation

For each realization of a stochastic event EQi in GenMR, a spatial footprint of the hazard

intensity ~I is generated such that

~I x; yð Þ� 10log10 I x;yð ÞþNorm 0;rIð Þ ð16Þ

with I the median of the expected hazard intensity and rI its standard deviation in the log10
scale (see example of ground motion prediction equation in Sect. 3.1.3). The footprint is

computed on the exposure grid (x, y), such that a hazard intensity value is attributed to each

building location of the considered portfolio. The damage state fDS x; yð Þ is then computed

from Eq. 14 with DEQ computed from Eq. 10. It means that three stochastic processes are

Fig. 4 Damage-dependent fragility curves per damage state (different plots) for different pre-damage levels
(different curves). The residual drift ratio (Eq. 13) is here directly defined from the pre-damage level, as
shown by the evolution of the ductility capacity range in the top left plot
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considered in GenMR: the earthquake occurrence (non-stationary Poisson), the hazard

intensity (lognormal) and the damage state (binomial).

Each location of coordinates (x,y) represents one building with the four attributes Tb, Dy,

lD and Dr. The first three parameters remain constant over time, while the fourth is a

function of DEQ(EQi) (Eq. 13). For each stochastic event EQi(tk), the loss is defined as the

total number NDS4? of buildings with damage state DS4 or DS5 in the exposure grid. Any

given simulated time series is thus defined by a list of events with identifier EQi, time of

occurrence t [ [t0, tmax] and produced loss NDS4? (the parent earthquake, if any, is provided

as metadata).

3 GenMR application

We provide an application of the proposed procedure tailored for a region in northern Italy

by considering available seismogenic faults and a generic building portfolio. It shall be

noted that the application is an illustrative example without considering the true building

stock of the region. Such inclusion requires information and accuracy of the built

Fig. 5 Sensitivity of damage to different building performances (low, medium and high, i.e., ductility
capacity values lD = 2, 4 and 6, respectively) for the nEQ-time repeat of an earthquake producing a constant
DEQ = 1.1Dy, which represents insignificant damage (DS1) for the initial building (for any tested lD value).
Gray curves represent the different simulations where the damage state is drawn from the Binomial
distribution (Eq. 14). Black solid and dashed curves represent the median and first and third quartiles,
respectively
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environment of the region beyond the scope of the present investigation. However, the use

of low-rise buildings with various seismic performance levels (i.e., low, medium and high)

provides a suitable starting point, as they represent the majority of residential building of

the Italian residential buildings. Additional building typologies could be added for analysis

that is more complex if exposure data are available. Thus, given inherent limitations (see

Sect. 3.3), this application remains theoretical and a summary of its main procedural steps

and elements is presented in the next sections.

3.1 Inputs

3.1.1 Stochastic event set

We define a set of n = 30 stochastic events representing characteristic earthquakes on

idealized straight fault segments. These segments are simplified versions of the 20 shallow

thrust composite faults defined in the 2013 European Seismic Hazard Model (hereafter

ESHM13) for northern Italy. This model represents the latest seismic hazard model for the

European–Mediterranean region (Woessner et al. 2015; Basili et al. 2013; Giardini et al.

2013). Table 1 lists the ESHM13 identifier, slip rate _s, dip, rake and maximum magnitude

Mmax of the 20 ESHM13 composite sources as well as the length L, width W, characteristic

magnitude Mchar and long-term rate k0 = k(t0) of the 30 stochastic events. Figure 6 shows

the map of northern Italy and the correspondence between the stochastic events EQi and

the ESHM13 sources. Only lateral triggering is considered on these simplified fault

geometries (Sect. 3.1.2). Potential interactions in the deeper parts of the crust are not

included.

Mchar is derived from the seismic moment M0 [dyn.cm]

logM0 ¼ cþ dMchar ð17Þ

with c = 16.05, d = 1.5 (Hanks and Kanamori 1979) and

logA ¼ �13:79þ 0:87 logM0 ð18Þ

with A = LW [m2] (Yen and Ma 2011; see Stirling et al. (2013) for a review). It follows

that Mchar [ [6.1, 6.6] in the present case.

The rate k0 is derived from the long-term slip rate _s and fault displacement u following

Wesnousky (1986)

k0 EQið Þ ¼ u EQið Þ _s EQið Þ
Pk¼n

k¼1 u EQkð Þ
� �2 ð19Þ

weighted by the number n of stochastic events EQk possible on a same ESHM13 source

(Table 1). It yields the total characteristic earthquake rate
P

k0 ¼ 0:013 or in average one

Mchar earthquake every *77 years somewhere in northern Italy. The fault displacement u

(also used in stress transfer calculations) is obtained from

u ¼ M0

lLW
ð20Þ

with the shear modulus l = 3.2 1011 dyn/cm2 (Aki 1966).
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3.1.2 HCMEQ–EQ

The HCMEQ–EQ is built from the matrix of Coulomb stress changes Drf(EQi, EQj), here

computed using the Coulomb 3 software (Lin and Stein 2004; Toda et al. 2005, 2011). The

inputs to the software are the effective coefficient of friction l0 = 0.4, the fault segment

characteristics (Fig. 6; Table 1) and the earthquake slip u [m] (Eq. 20). Drf [bars] is

computed on *10-km-wide dislocation patches and then averaged over the full fault

segments. Figure 6 shows as example the spatial distribution of Drf(EQ1, EQj), which

indicates that triggering occurs principally at the tips of the trigger segment on segments of

similar strike and mechanism (all reverse).

Table 1 Stochastic earthquake set

ESHM13 Id. Slip rate
(mm/year)

Dip (�) Rake (�) Mmax EQId. L
(km)

W
(km)

M k0
(/10-3 year)

ITC5001 0.300 35.0 90 6.8 1 21 10 6.3 0.205

2 14 10 6.1 0.192

ITC5002 0.300 32.5 90 6.9 3 47 13 6.6 0.185

4 21 13 6.3 0.164

ITC5007 0.900 35.0 90 6.8 5 35 10 6.4 2.133

ITC5009 0.500 30.0 105 6.9 6 36 12 6.5 1.155

ITC5010 0.300 35.0 90 6.7 7 53 9 6.5 0.688

ITC5011 0.300 30.0 90 6.8 8 15 10 6.1 0.200

9 17 10 6.2 0.204

ITC5012 0.520 30.0 100 6.9 10 31 12 6.4 0.326

11 21 12 6.3 0.308

ITC5018 0.175 32.5 75 6.7 12 26 11 6.4 0.430

ITC5044 0.510 30.0 90 6.8 13 13 10 6.1 0.311

14 29 10 6.4 0.353

ITC5045 0.300 30.0 90 7.0 15 30 16 6.5 0.683

ITC5046 0.300 30.0 90 6.9 16 38 12 6.5 0.690

ITC5047 0.300 30.0 90 6.9 17 28 12 6.4 0.209

18 10 12 6.1 0.179

ITC5048 0.300 35.0 85 6.7 19 50 9 6.5 0.201

20 17 9 6.1 0.172

ITC5049 0.175 40.0 75 6.8 21 21 11 6.3 0.444

ITC5050 0.420 40.0 90 6.9 22 25 11 6.3 0.261

23 25 11 6.3 0.260

ITC5051 0.375 35.0 90 6.9 24 37 12 6.5 0.861

ITC5060 0.650 40.0 80 6.9 25 26 12 6.4 0.405

26 21 12 6.3 0.393

ITC5072 0.300 37.5 90 6.7 27 22 10 6.3 0.770

ITC5073 0.300 35.0 85 6.8 28 34 10 6.4 0.202

29 15 10 6.1 0.178

ITC5076 0.300 30.0 90 7.1 30 33 16 6.6 0.673
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The impact of Drf on clustering patterns and of _s on clustering levels is investigated in

Sect. 3.2.1. It should be noted that the maximum stress changes, computed on segments

closest to a rupture, rarely exceed 1 bar. The stresses released on ruptured segments are of

the order of several bars. For central Italy, Catalli et al. (2008) obtained

7 9 10-5 B _s B 7 9 10-3 bar/year based on seismicity rates and Ar = 0.4 bar. For the

present application, we fix Ar = 0.1 bar and test _s = {10-4, 10-3, 10-2} bar/year to

represent strong, medium and weak clustering (Fig. 1). Loose constraints on the regional

value of _s (e.g., Catalli et al. 2008) do not allow us to determine which clustering regime is

the most likely in northern Italy.

3.1.3 Generic building characteristics and damage assessment

We consider a generic model of low-rise buildings with height Hb * 3.8 m and funda-

mental period Tb * 0.2 s (Eq. 9). A yield displacement capacity Dy of 0.01 is adopted as a

reference value for reinforced concrete buildings (e.g., Panagiotakos and Fardis 2001). We

test three different seismic performances, i.e., low, medium and high of low-rise buildings,

represented by different ductility capacity values lD = {2, 4, 6} (e.g., FEMA 1998), which

lead to plastic displacement capacities Dmax = {0.02, 0.04, 0.06}. Let us note that a low

ductility capacity is expected in the existing historic building portfolio of northern Italy

(and of Europe in general). Using different ductility capacities allows us to approximate

Fig. 6 Surface projection of the 20 ESHM13 shallow thrust composite faults in northern Italy (numbered
ITCxxxx). The fault traces were simplified to series of straight lines for Coulomb stress transfer calculations.
Stochastic earthquakes are defined as the characteristic earthquakes hosted by the 30 straight segments
(numbered 1–30). The smaller *10-km-wide patches represent the spatial resolution used for Coulomb
stress transfer calculations before averaging. Colors represent the stress changes Drf(EQ1, EQj) due to event
EQ1 (gray segment) on all other segments (i.e., hosts of EQj)
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variations observed in structures of different ages (residential houses from the 1960s to

present) and different performance levels (e.g., industrial buildings).

The damage to the building is evaluated from the interstory drift ratio (Eq. 11 or 14)

estimated itself from the spectral acceleration Sa(Tb) produced by the earthquake (Eq. 10).

We fix the parameters of Eq. 10 to b = 1 (e.g., Baker and Cornell 2006) and

a = log(Dy) ? log(lD) - log(Sacollapse(Tb, lD)) = -3.2, assuming that a spectral accel-

eration Sacollapse = 1 g leads to the collapse (DS5) of buildings of moderate performance

(lD = 4). This is a strong assumption, which controls the overall level of damage esti-

mated in this study. However, it provides a reasonable and transparent calibration of

damage for our structural model of the fictitious low-rise buildings. Let us note that

a = -3.2 is close to existing values (e.g., Baker and Cornell 2006). For lD = 2 or 6, our

calibration leads to Sacollapse = 0.5 g and 1.5 g, respectively.

We compute Sa(Tb) for each stochastic event using the ground motion prediction

equation (GMPE) of Akkar and Bommer (2010)

log Sað Þ ¼ b1 þ b2M þ b3M
2 þ b4 þ b5Mð Þ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
jb þ b26

q
þ b7SS þ b8SA þ b9FN þ b10FR

ð21Þ

with Sa in cm/s2, M = Mchar the earthquake magnitude (Table 1), Rjb the distance to the

fault surface trace in km, SS = 1 and SA = 0 (soft instead of stiff soil) and FN = 0 and

FR = 1 (reverse instead of normal faulting). The fitting parameters b1–10, which depend on

period T, are given in Akkar and Bommer (2010). We computed Sa(Tb) on a regular grid of

generic buildings spaced every 0.01� (*1 km) in longitude and latitude in northern Italy.

Figure 7 shows the hazard and damage footprints for EQ30 and for the three building

performances. The left column presents the median estimates, while the right column

presents stochastic realizations (or scenarios), which include the spatial correlation of the

ground motion fields (Eq. 16) and uncertainties at the damage levels (Eq. 14). In Eq. 16, rI

is defined as the intra-event sigma, as provided in Akkar and Bommer (2010). The use of

intra-event sigma prevents the inflation of the ground motion fields, which in turn might

introduce bias to the risk estimates (Jayaram and Baker 2009). Only stochastic versions are

considered in GenMR. The role of damage-dependent fragility on damage footprints is

investigated in Sect. 3.2.2.

3.2 Results

3.2.1 Hazard characteristics of earthquake clustering

Four simulation sets are produced, each composed of Nsim = 106 simulations. The simu-

lation set S0 represents the null hypothesis H0 that earthquakes are independent following a

Poisson process. The simulation sets S1, S2 and S3 represent the hypothesis H1 that

earthquakes interact with each others following the Coulomb stress transfer theory,

respectively, with _s = {10-4, 10-3, 10-2} bar/year.

cFig. 7 Hazard and damage spatial footprints of event EQ30. The stochastic version of hazard represents the
spatial correlation of the ground motion fields defined by the intra-event sigma (Eq. 16). The stochastic
version of damage represents imprecise probabilities described from a binomial distribution (Eq. 14) (on top
of the random ground motion field). Low, medium and high building performances correspond to ductility
capacity values lD = 2, 4 and 6, respectively
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We verify that the total seismic moment rate _M0 is conserved in all simulation sets by

first evaluating the natural variation of _M0 H0ð Þ in 1000 iterations of S0. The resulting

normalized distribution _M0 H0ð Þ=
P

i M0ik0i, with k0i the long-term expected rate of EQi

(Table 1), is shown in Fig. 8a. We then consider that the total seismic moment rate is

conserved if the values _M0 S1ð Þ, _M0 S2ð Þ and _M0 S3ð Þ normalized by
P

i M0ik0i remain

within ±3r(H0) = 0.025 (dotted lines on Fig. 10a). For S1 and S2 for which it is not the

case, the long-term rate k00 is corrected by removing the implicit role of interactions from

k0 (Eq. 8) (dashed lines on Fig. 8a). It assumes that the k0 values derived from slip rates in

ESHM13 represent the long-term behavior of earthquakes in northern Italy and include the

phenomenon of clustering.

Figure 8b shows the distribution of the number of earthquakes N per year for simulation

sets S0 and S1. The distribution is best fitted by a Poisson process for H0 and by a negative

binomial process for H1 with index of dispersion / ¼ Var nEQð Þ=nEQ ¼ 1:38; 1:07; 1:01f g
for sets S1, S2 and S3, respectively (combining maximum likelihood estimation and Akaike

information criterion). The values taken by / verify that the degree of clustering (or over-

dispersion) increases with decreasing stressing rate. This represents an instance of hazard

migration (or hazard clustering), as described at the abstract level by Mignan et al. (2014).

In the case of strong clustering (S1), earthquake doublets become relatively common in

comparison with the null hypothesis of no earthquake interaction. In rare cases, earthquake

triplets and even quadruplets are also observed. Only results from S1 ( _s = 10-4 bar/year)

Fig. 8 Earthquake clustering statistics: a distribution of the natural variation of the normalized total seismic

moment rate _M0 H0ð Þ=
P

i M0ik0i in 1000 iterations of simulation set S0 where earthquakes are independent.

The long-term rate is corrected to k00 by removing the role of interactions from k0 (Eq. 8) for sets S1 and S2
in order for the normalized seismic moment rate to remain within ±3r(H0) = 0.025 (dotted lines) (i.e.,
seismic moment rate conservation); b distribution of the number of earthquakes per annual simulation, best
fitted by a Poisson process for H0 (no interactions) and by a negative binomial process for H1 (earthquake
clustering). Numbers correspond to the amount of cases in 106 simulations
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are considered in the rest of this study to illustrate the potential impact of earthquake

clustering on seismic risk.

Let us note that clusters correspond to combinations of individual ruptures on a same

fault or on several neighbor faults (i.e., where stress increases are the strongest). Some of

the longest observed chains of earthquakes exemplify this characteristic with EQ12 ?
EQ13 ? EQ14 ? EQ6, EQ25 ? EQ26 ? EQ5 or EQ4 ? EQ3 ? EQ29 (see Fig. 6).

3.2.2 Risk characteristics of earthquake clustering (including dynamic vulnerability)

We now analyze additional simulation sets, which include loss values defined by the metric

NDS4? for low, medium and high building performance, respectively, lD = {2, 4, 6}.

Hypothesis H1 represents the case of strong earthquake clustering with constant vulnera-

bility. Hypothesis H2 also includes strong earthquake clustering but with dynamic vul-

nerability. All simulation sets are compared to their respective null hypotheses H0 where

earthquake is independent and buildings have the same performance.

Figure 9 shows seismic risk curves with losses defined by the metric NDS4?. They are

computed for the hypotheses H0 (dotted curves), H1 (dashed curves) and H2 (solid curves)

and for the three building performances (low, medium and high represented in brown, red

and orange, respectively). Independently of the building performance, an increase is

observed at the tail of the risk curve for both H1 and H2, compared to H0. The increase is

more notable for earthquake clustering than for dynamic vulnerability. However, the

impact of damage-dependent fragility increases with increasing losses, in agreement with

the concept of risk amplification (Mignan et al. 2014). This tail fattening is representative

of extreme seismic catastrophes, which in the present case would be large earthquake

clusters combined with nonlinear vulnerability increase.

This tail fattening, although non-negligible, increases losses in the present example of

only two third at most compared to the Poisson hypothesis for a fixed return period. It

means that the absolute impact of earthquake clustering remains limited in our generic

application, even when the clustering level is high and building performance poor. Let us

note that the increase in risk is here compared to the Poisson case where clusters of events

can occur randomly. This case is rarely considered in seismic risk analysis (e.g., Bazzuro

and Luco 2005) although random clusters are known to be fat-tail phenomena (see Foss

et al. (2013) for a review). Comparing to 1-event occurrences only, losses can almost triple

when dynamic effects are considered, while they only double if earthquakes are inde-

pendent and damage static. These values should, however, be taken with caution. Overall, a

detailed hazard and risk assessment that would include earthquake clustering seems

unwarranted for common buildings. Only for critical infrastructures do the dynamic effects

start to have an impact on seismic risk (i.e., at the tail). The present results are generic in

nature, and only site-specific analyses will allow investigating to what extent this tail

fattening is significant for specific portfolios.

The relative impacts of earthquake clustering and dynamic vulnerability are illustrated

in Fig. 10 where damage maps with and without damage-dependent fragility are compared

in the case of the triplet EQ12 ? EQ13 ? EQ14. To improve visualization, we show the

mean damage d evolution of moderate performance buildings without spatial hazard

correlation. We first see that earthquake clustering has the strongest impact since it mul-

tiplies roughly the amount of expected damage by the number of earthquakes in the cluster

compared to the damage due to only one individual event in the null hypothesis. While the

increase in damage due to damage-dependent vulnerability is clear from Figs. 9 and 10, it
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remains a limited phenomenon localized at fault segment intersections (where hazard

footprints overlap).

It is the clustering process, as illustrated in Fig. 11, that explains the unusual step-like

structure of the seismic risk curves of Fig. 9. The usual concave shape observed in log

plots is characteristic of a homogeneous process where risk is due to an N-event cluster (or

N-cluster) with N constant (note again that N = 1 in standard seismic risk analyses). This is

best described in the Poisson case where we observe ‘‘standard’’ risk curves for the 1-event

and 2-events systems, separated by a transitional risk curve. This transitional phase of the

risk curve corresponds to the loss range where 1-event and 2-event clusters are mixed. This

pattern is observed systematically, with the dynamic risk curve showing additional jumps

for the transitions between 2- and 3-event clusters and between 3- and 4-event clusters.

3.3 Limitations

In the analysis of earthquake interactions, we assumed a simplified fault geometry (Fig. 6),

a constant displacement slip model and an effective coefficient of friction l0 = 0.4.

Average fault characteristics (strike, rake, dip) were taken from the ESHM13 database.

King (2007) showed that small errors in dip and strike, such as simplified fault geometry,

do not significantly impact the stress values except in the near field. Zhan et al. (2011)

observed that different slip models only result in significant differences in the near field.

Near-field analysis is important for the study of the distribution of small aftershocks but not

so for the study of fault segment coupling. Parsons (2005) investigated the role of

numerous parameters, including the friction coefficient, rake, dip and slip model, on

earthquake probability estimates. The author concluded that stress transfer modeling

Fig. 9 Seismic risk curves defined as the annual probability of exceeding a given NDS4? threshold, NDS4?

being the number of fictitious buildings experiencing damage state DS4 (heavy damage) or DS5 (extreme
damage or collapse). Results are shown for the three building performances (low, medium and high) and for
the three hypotheses H0 (no interaction), H1 (earthquake clustering) and H2 (earthquake clustering and
damage-dependent fragility). The tail of the risk curve fattens from H0 to H2 due to the addition of multi-risk
processes
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carries significant uncertainty. In agreement with Parsons (2005), we only considered the

case Drf= _s C 50:1 to limit the analysis to significant stress changes.

For seismic hazard assessment, the attribution of magnitudes and rates was based on

standard methods (Aki 1966; Hanks and Kanamori 1979) and the GMPE selection on

recent and well-established results (Akkar and Bommer 2010). However, we solely con-

sidered characteristic earthquakes (M[ 6.0) while classical probabilistic seismic hazard

assessment (PSHA) often considers the Gutenberg–Richter law or a combination of both

Gutenberg–Richter and characteristic models (e.g., Field et al. 2009; Basili et al. 2013).

Moreover, the choice of a different GMPE will yield different outcomes, as well as a

different sigma (i.e., total rather than intra-event) as ground motion uncertainties (both

epistemic and aleatory) are leading factors in seismic hazard assessment (e.g., Mignan

et al. 2015b; Marzocchi et al. 2015). Our choices were made for sake of simplicity and

transparence. They limit the number of scenarios considered, provide a clear constraint on

fault segment limits and avoid cumbersome computations involving floating ruptures

(within and across fault segments) and logic trees. Note that while the Gutenberg–Richter

power law naturally leads to a fat tail of the seismic risk curve, consideration of earthquake

interactions and dynamic vulnerability would make this tail fatter.

Other simplifications are in the structural damage analysis, including damage calibra-

tion and damage-dependent fragility curve derivation. Damage calibration (parameters a

and b in Eq. 10) is highly approximate but remains reasonable in the context of a fictitious

low-rise building with generic characteristics. The impact of our choice is clearly illus-

trated on the damage maps of Fig. 7. The definition of fragility curves is based on the

fundamental link between building capacity curve and expected damage, in agreement

Fig. 10 Median damage maps with and without dynamic vulnerability in the case of the triplet EQ12 ?
EQ13 ? EQ14 for moderate performance buildings (lD = 4). Earthquake clustering has widespread effects,
while dynamic vulnerability has more local effects (at fault intersections)
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with existing recommendations (e.g., FEMA 1998; Lagomarsino and Giovinazzi 2006).

Damage-dependent vulnerability is here controlled by the decrease in the ductility range,

which is known to be the main process of structure deterioration (e.g., Iervolino et al.

2014). However, other parameters, such as the stiffness and the strength of the building,

also evolve with increasing damage (FEMA 1998; Polese et al. 2013). One could, for

instance, consider the decrease in stiffness K0 = kKK with the generic reduction factor

kK = 1.2-0.2d, which can be derived from the FEMA (1998) guidelines. This material

property change (additional cracks) additionally influences the effective period of the

building

T 0
b ¼ Tb

ffiffiffiffiffi
K

K 0

r
ð22Þ

(FEMA 1998). Due to the non-monotonic behavior of Sa(Tb), the influence of stiffness

reduction on cumulated damage is non-trivial. We consider that using the reduction in the

ductility capacity, as sole engineering demand parameter, is reasonable (e.g., Iervolino

Fig. 11 Risk curve shape analysis. The step-like structure of the risk curves is explained by transitional
phases between N-clusters of different N. The main transition is highlighted by vertical dotted lines in both
Poisson and dynamic cases
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et al. 2014) in the scope of illustrating the concept of dynamic vulnerability. Building-

specific applications would, however, require more advanced structural analyses (e.g.,

Polese et al. 2013).

4 Conclusions

We have described how to combine spatiotemporal clustering of large earthquakes and

dynamic vulnerability in the generic multi-risk (GenMR) framework to quantify seismic

risk. With an illustrative application to the thrust fault system of northern Italy, we have

shown that consideration of these two physical processes yields a fattening of the tail of the

seismic risk curve (Fig. 9). The relative impact of clustering alone is in average more

important than dynamic vulnerability since earthquake clustering on neighboring fault

segments significantly extends the spatial hazard footprint while dynamic vulnerability has

localized effects at the intersections of fault segments. Our results are in agreement with

the general aspects of multi-risk (e.g., Mignan et al. 2014). With the risk curve being

populated with more extreme scenarios when interactions at the hazard and risk levels are

considered, its tail becomes fatter.

While earthquake clustering is likely to impact spatially extended infrastructures or

distributed portfolios, damage-dependent vulnerability is more likely to impact elements

localized at fault intersections (Fig. 10). This shows the need for the definition of an

exposure topology (e.g., local versus extended, system connectivity) to clarify what are the

risks most relevant to each exposure class. Although obvious here, defining topologies of

exposure—but also of multi-risk processes—shall help better understanding and better

mitigating increasingly complex risks, which are defined from multiple hazard interactions

and from other dynamical processes in the system at risk. The observation of transitional

phases in the dynamic risk curves (Fig. 11) also highlights the increasing complexity of the

processes in play and the non-trivial behavior of risk. Although well documented in the

case of random processes (e.g., Foss et al. 2013), this concept should be generalized to the

broader context of multi-risk processes.
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