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Abstract The knowledge and prediction of cyclones as well as wave models experienced

significant improvements in this last decade, opening the perspective of a better under-

standing of the wave sensitivity to the cyclone characteristics (e.g. track angle of approach

h, forward speed Vf, radius of maximum wind Rm, landfall position xo, etc.). Physically,

waves are strongly linked to the time-varying evolution of the relative cyclone position.

Thus, even assuming the main cyclone characteristics to be stationary, exploring the role

played by each of them should necessarily be conducted in a dynamic manner. This

problem is investigated using the advanced statistical tools of variance-based global sen-

sitivity analysis (VBSA) in different ways to provide an overall view of wave height

sensitivity to cyclone characteristics: (1) step-by-step: by computing the time series of

sensitivity measures; (2) aggregated: by summarising the time-varying information into a

single sensitivity indicator; (3). mode-based: by studying the sensitivity with respect to the

occurrence of specific temporal patterns (e.g. up-down translation of the overall series).

Yet, applying this multi-look dynamic sensitivity analysis faces two major difficulties: (1)

VBSA requires a large number of simulations (typically[ 10,000), which appears to be

incompatible with the large computation time cost of numerical codes ([several hours for a

single run); (2) integrating the time dimension imposes to process a large amount of

information via vectors of large size (e.g. series of significant wave height HS discretised

over several hundreds of time steps). In this study, we propose a joint procedure combining

kriging meta-modelling (to overcome the 1st issue) and principal component analysis

techniques (to overcome the 2nd issue by summarising the time information into a limited

number of components). The applicability of this strategy is tested and demonstrated on a

real case (Sainte-Suzanne city, located at Reunion Island) using a set of 100 cyclone-

induced HS series, each of them being computed for different scenarios of cyclone
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97491 Sainte-Clotilde Cedex, France

123

Nat Hazards (2016) 84:1765–1792
DOI 10.1007/s11069-016-2513-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-016-2513-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-016-2513-8&amp;domain=pdf


characteristics, i.e. using only 100 long-running simulations. The key role of Rm over the

whole evolution of HS is shown by means of the aggregated option, with a more specific

influence in the vicinity of Sainte-Suzanne (when the cyclone eye is located less than

200 km away from the site) as highlighted by the step-by-step option. The step-by-step

option also highlights the influence of the landfall position on the HS peak reached in

strong interaction with h and Rm. Finally, the role of Vf in the occurrence of a turning point

marking a shift near landfall between regimes of low-to-high HS values is also identified.

The above results provide guidelines for future research efforts on cyclone characteristics

prediction.

Keywords Tropical cyclones � Waves � Reunion Island � Uncertainty �
Functional variables � Kriging meta-modelling

1 Introduction

Tropical cyclones are among the world’s most destructive natural disasters that devastate

properties and cause loss of life (e.g. Terry and Gienko 2010; Diamond et al. 2012). It can

produce not only extremely powerful winds and heavy rainfall, but also large atmospheric

storm surge and waves, which can generate an additional increase in the water level at the

coast (wave setup) as well as overtopping over coastal defences. Storm-generated waves can

propagate very far away from the cyclone eye until reaching nearshore regions and are

affected by the characteristics (denoted x) of the cyclone approaching the coastline. To a first

order, these characteristics basically correspond to the track angle of approach h, the landfall
position xo (or the cyclone eye position closest to the studied site), the forward speed Vf, the

radius of maximum winds Rm, the maximum wind speed Vm and the shift around the central

pressure dP. These are the primary inputs for generating regional databases of synthetic

cyclone scenarios, which are necessary for regional flooding and coastal hazard studies

(Kennedy et al. 2012; Resio et al. 2009) and more specifically for probabilistic hurricane risk

evaluation (Irish et al. 2011; Niedoroda et al. 2008, 2010). Depending on these character-

istics, waves and atmospheric storm surge at the coast can significantly vary. For instance,

Irish et al. (2009) and Song et al. (2012) showed the effect of varying the cyclone size, the

intensity and the track on the peak magnitude and location of the atmospheric surge variation

as a function of the alongshore distance from landfall position. Getting better insight in the

relative contributions of each cyclone parameter is of interest:

• To improve predictions by identifying on which parameters, the characterisation effort

should primarily be focused on;

• To set up flooding early-warning systems as well as scenarios of forcing conditions as

inputs of risk assessment;

• To diagnose model structure (a set of parameters represents a specific process assumed

to reflect the real world system under study);

• To support model calibration (to understand which periods of a time series are most

helpful in identifying a specific group of parameters).

However, the aforementioned sensitivity studies mainly focus on storm surges and to

the authors’ best knowledge, only a few address the temporal evolution of wave charac-

teristics. Yet, cyclone-induced waves may have a primordial importance regarding marine
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inundation issues, especially for volcanic islands like Reunion Island (south-west Indian

Ocean Basin) where the absence of continental shelf and the steep slopes limits the gen-

eration of high atmospheric storm surge but increases the potential impact of high waves

(Kennedy et al. 2012). Besides, from a methodological perspective, the question of sen-

sitivity is primarily addressed by varying in turn the values of the parameters while keeping

the others constant, i.e. by using local sensitivity approaches (see a review by Iooss and

Lemaı̂tre 2015): these have shown strong limitations as extensively discussed by Saltelli

and Annoni (2010). Best practices advocate to preferably address the problem in a global

manner using for instance variance-based global sensitivity analysis (VBSA) (Saltelli et al.

2008) whose applicability was demonstrated by a large variety of application cases in

different domains (hydrological modelling: Rousseau et al. (2012); landslide modelling:

Rohmer and Foerster (2011); marine flooding in a climate change context: Le Cozannet

et al. (2015), etc.).

Yet, conducting this type of analysis for cyclone-induced wave modelling faces two

major difficulties: (1) quantifying the sensitivity measures typically requires a large

number of model runs (of the order of several thousands), whereas the computational

requirements of the model (with typical computation time cost of the order of several hours

for a single run) usually limit the number of runs that can be made; (2) the processes vary

over space and time implying to consider functional (i.e. time varying) variables of

interest. A typical output can be the evolution of the significant wave height HS as a

function of time or equivalently as a function of the relative cyclone position (denoted s)

defined as the distance between the cyclone eye and the cyclone landfall position xo at a

given time instant (s being negative before landfall and positive after landfall). In the

following, we use the generic term ‘‘series’’ to designate both quantities (either time- or

space-dependent) and we preferably concentrate on the latter case.

Regarding the first issue (computational time), this can be overcome by means of a

meta-model (also called surrogate or proxy, see an introduction by Storlie et al. 2009). A

meta-model is a function, which aims at reproducing the behaviour of the ‘‘true’’ model in

the domain of model input parameters (here the characteristic feature of the cyclone track).

It is constructed using a few computer experiments (i.e. a limited number of time-con-

suming simulations, typically of the order of 50–100). Once its accuracy is validated (i.e.

the low level of meta-model error is demonstrated), it allows estimating the model

responses with a negligible computation time (few seconds for any new inputs’ configu-

ration). For instance, Jia et al. (2015) approximated storm surge responses by means of

kriging-type meta-models in combination of principal component analysis to handle the

temporal character of the response.

Second, the problem of dynamic sensitivity analysis has not a unique answer (as dis-

cussed by proposed by Campbell et al. (2006)) and can be looked in different ways (i.e.

‘‘one problem, multiple looks’’):

• Step-by-step: the objective is to identify the most dominant parameters given specific

time instants or intervals. This can be done by analysing the sensitivity for each relative

cyclone position separately;

• Aggregated sensitivity indicator: the objective is to summarise the overall temporal

(space) information on sensitivity in a single indicator. This can be done using

an aggregated sensitivity index as the one proposed by Gamboa et al. (2014);

• Mode-based: the objective is to identify the characteristics which can induce specific

functional patterns. In other words, the questions of primary interest are: What shifts

the evolution up or down? What makes a possible peak wider or narrower? What
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reverses the evolution? What accelerates the behaviour? This can be done by extracting

the dominant modes of time/space evolution, i.e. the focus is on the overall shapes/form

and key structures of the series as originally proposed by Campbell et al. (2006).

Applying these different options can bring complementary information on dynamic

sensitivity analysis. In this sense, it can broaden the perspective on each parameter’s role

and allow gaining deeper insights in their impact in order to refine decision-making with

respect to the four aforementioned issues (prediction improvement, risk scenarios, model

calibration and structure).

In this context, the objective of the present study is to perform dynamic sensitivity

analysis by following the different modes in order to detect the dominant parameters in the

cyclone-induced wave characteristics evolution. We focused on the evolution of the sig-

nificant wave height HS versus the relative cyclone position s. In a first section, we describe

the motivating application case of Sainte-Suzanne city located at Reunion Island, the grid

experiment (100 simulations) and the wave model set-up and validation. To overcome the

computational issues, a meta-modelling-based approach is used. In order to facilitate the

processing and manipulation of the high-dimensional HS signal, the meta-model is com-

bined with dimension reduction techniques following the strategies described by Jia et al.

(2015) and Rohmer (2014) for time-varying variables. These statistical methods are

described in Sect. 3. Finally, we perform the multi-look sensitivity analysis and discuss the

results (Sect. 4).

2 Cyclone-induced wave modelling

In this section, we describe in turn the motivating case study used for demonstrating the

applicability of the proposed statistical methods (Sect. 2.1), the assumptions made to

generate the 100 scenarios with varying cyclone characteristics (Sect. 2.2), and the mod-

elling scheme used to simulate the cyclone-induced waves and the output Hs series at

Sainte-Suzanne (Sect. 2.3).

2.1 Description of the case study

Reunion Island is a French Overseas Department located east of Madagascar (see location

in Fig. 1a). Due to the mountainous nature of the island, 80 % of the population is con-

centrated near the coastline, thereby resulting in high vulnerability of these coastal terri-

tories to tropical cyclones. The island is exposed to three dominant wave regimes as

described by Cazes-Duvat and Paskoff (2004) as well as Lecacheux et al. (2012): trade-

wind waves, southern waves and cyclonic waves. Among these regimes, cyclonic waves

are the most energetic events and occur only a few days a year between November and

March. Cyclone tracks often follow a south-westward trajectory: they usually come from

the north-east of Reunion and then continue their course northwards or, less frequently,

southwards from the island. Thus, they affect mainly the northern and eastern parts of the

island. The lack of continental shelf around the island (cf. Fig. 1b) increases the potential

impact of waves that are not dissipated before reaching the coast (except in the reef zones).

On the contrary, it reduces the generation of atmospheric storm surges that are essentially

due to the inverse barometer effect and then remain localised near the cyclone eye. Even if

atmospheric storm surges hardly generate marine inundation by overflowing (the coastal

topography being quite high), they may facilitate wave overtopping and then cannot be
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neglected. In the past decade, seven cyclones passed within 200 km of Réunion Island (see

some historical tracks in Fig. 2a).

In the present study, we focus on Sainte-Suzanne city, located along a pebble coast in

the north-east part of the island (see Fig. 1b). It is a town of 22,000 inhabitants, surrounded

by river Sainte-Suzanne and exposed to high cyclonic waves. During the last century, it has

been regularly impacted by cyclone-induced inundations, notably due to wave overtopping.

For example, the waves generated by cyclones Gamede (2007) and Dina (2002) induced a

considerable inundation of the seafront as well as the projection of heavy pebbles

(Chateauminois et al. 2014).

2.2 Setting up the simulation scenarios

In this study, we decided to focus on the six main cyclone characteristics and we made the

choice for them to remain constant over time (i.e. they remain constant along the cyclone

track).

Three parameters describe the intensity, the size and the shape of the cyclone:

• the maximum wind speed Vm;

• the radius of maximum winds Rm, namely the distance from the cyclone eye at which

the maximum wind intensity is reached;

• the shift around the central pressure dP. Here, we consider that a mean central pressure

Pc can be associated with the maximum wind speed Vm based on the cyclone best-track

database established by Météo-France (French national meteorological service) RSMC

(Regional Specialised Meteorological Center1) at Reunion Island by following the

climatology for south-west Indian Ocean basin. Making vary Pc influences the shape of

the cyclone wind profile whose energy is more or less concentrated near the radius of

maximum wind (see Sect. 2.3).

Fig. 1 a Location of Reunion Island and origin of the last 18 systems affecting the island of the investigated
site of Sainte-Suzanne city (map extracted from Climatic Atlas of Météo-France—French national
meteorological service, Jumeaux et al. 2011); b bathymetry around Reunion Island and locations of the point
of extraction of HS series from numerical simulations in front of Sainte-Suzanne and the RN4 buoy used for
the wave model validation

1 http://www.meteo.fr/temps/domtom/La_Reunion/webcmrs9.0/#.
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Three parameters enable to characterise the cyclone track:

• the forward speed Vf, defined as the translation speed of the cyclone eye;

• the track angle h, which is the angle of approach of the cyclone in the vicinity of the

studied site. Following Kennedy et al. (2012) and Jia and Taflanidis (2013), we

accounted for the variability of the track prior to landfall through an appropriate

selection of a limited number of historical cyclone tracks, so that important anticipated

variations, based on historical data, are efficiently described. In this study, we selected

seven historical tracks in the area of interest covering a broad range of cyclone

Fig. 2 a Seven historical tracks
selected in the region of Reunion
Island, b pseudo-historical tracks
obtained by translating the
original track relative to the
centre of Reunion Island,
c example of translation for
cyclone pseudo-Giovanna for
two opposite landfall positions x0
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angles of approach h (from *5� to *175�), hence covering both NE and NO

quadrants, in consistency with the track climatology (see Fig. 2a). Then, we translated

them so that they cross the centre of Reunion Island. Those final tracks are termed

‘‘pseudo-historical’’ (See Fig. 2b).

• the landfall position xo, that both characterise the minimum distance and the relative

position of the track to the studied site. Basically, we translate the selected track by

factor xo orthogonally to the direction defined by the angle of approach. It enables to

consider cyclones passing both west and east (or north and south) of the site at different

distances (See Fig. 2c).

Each parameter can vary in a range consistent with the climatology established for

south-west Indian Ocean basin based on Météo-France Réunion RSMC cyclone best-track

database whose lower and upper bounds are described in Table 1. For the landfall position

x0, we decided to consider only cyclones passing very close to the island (\100 km) and so

that (1) the studied site is in the main direction of wave forward travel and (2) the scenarios

are likely to generate overtopping due to the combination of local atmospheric storm surge

and waves. In total, five continuous input parameters are accounted for. Since our primary

purpose is to explore the influence of cyclone characteristics using synthetic cyclone

scenarios (instead of reproducing with high fidelity past historical cyclones), a commonly

used assumption is made regarding the uncertainty on the continuous cyclone character-

istics: they are assumed to follow a uniform probabilistic law. A possible option to refine

this assumption would take advantage of the long-term cyclonic risk for Reunion Island to

infer the underlying probability distributions. A parameter of discrete nature is accounted

for, namely the scenario of the cyclone track angle h (ranging from 5� for pseudo-Gael case
to 175� or pseudo-Bansi case, see Fig. 2): it is selected among discrete values {5�, 30�, 60�,
90�, 120�, 150�, 175�}. We take advantage of the pieces of information provided by

Fig. 1A, namely that values between 5� and 90� have higher frequency, i.e. cyclones

coming from NE have higher frequency: for this parameter, we assume that the discrete

probabilistic law is not uniform but with 72 % frequency occurrence for values from 5� to
90�.

Table 1 Six cyclone characteristics and associated ranges of variation

Cyclone characteristics Symbol Lower
bound

Upper
bound

Unit Probabilistic law

Angle of approach
(corresponding to a
pseudo-historical track)

h 5 175 Degrees
from the
zonal axis

Discrete (5�, 30�, 60�, 90�,
120�, 150�, 175�) with
72 % frequency occurrence
from values from 5� to 90�

Landfall position (shift
relative to the studied site)

xo -100 100 km Uniform

Forward speed Vf 5 20 kt Uniform

Radius of maximum wind Rm 10 50 km Uniform

Maximum wind speed Vm 60 130 kt Uniform

Cyclone central pressure
shift

dP -15 15 hPa Uniform
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2.3 Numerical modelling strategy and validation

2.3.1 Parametric cyclonic winds model

The use of wave models requires the reconstitution of a two-dimensional surface wind

input over the entire course of the storm. Here, we use the parametric wind model of

Holland (1980). In the southern hemisphere, cyclonic winds follow a circular flow in

clockwise direction towards the storm centre. For each scenario, the track is interpolated

every hour and the two-dimensional wind fields are calculated with a resolution of 0.1�.
The radial wind profile (Vr) depending on the distance from the eye (r) is estimated with

Eq. 1:

Vr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
with B � V2

mqae
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ð1Þ

where f is the Coriolis force, qa the air density (*1.15 kg m-3), Vm the maximum wind

speed, Rm the radius of maximum wind, Pc the central pressure and Pn the environmental

pressure (*1010 hPa in this region). The influence of parameters Vm, Rm and dP on the

wind profile is illustrated on Fig. 3. While an increase of Rm leads to a widening of the

wind profile over hundreds of kilometres and, in a way, an expansion of the fetch (surface

over which the wind blows), an increase of Vm accentuates the amplitude of the profile in

the vicinity of Rm. A negative perturbation of dP (the shift around the central pressure Pc)

leads to an increase of the dispersion of wind profile (but to a lesser extent than Rm), but

without affecting the maximum wind amplitude.

It should be noted that the aforedescribed model remains a simplification since cyclonic

wind speed and shape are usually not symmetric (Shapiro 1983; Wang and Holland 1996):

the shape of historical cyclones is usually corrected based on observations of radial extents

of 34–50–64 kt winds in the four quadrants (Xie et al. 2006). But to the authors’ best

knowledge, no consensus exists in the literature on how these contributions could be

integrated into parametric models. Besides, the correction with observations of 34–50–

64 kt winds cannot be applied in our case. Therefore, the symmetrical assumption

is chosen to be kept.

Fig. 3 Comparison of
parametric cyclonic wind profiles
calculated with the formula of
Holland (1980) for different sets
of parameters
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2.3.2 Wave fields modelling, validation and description

The wave model (see Fig. 4a) is a combination of a two-way nested Wavewatch 3 mod-

elling framework (Tolman 2014; hereinafter denoted WW3) enabling the offshore waves

generation and propagation to Reunion Island coastlines. The version 4.18 of WW3 is used

with the source term package described by Ardhuin et al. (2010) and a discretisation in 32

frequencies and 36 directions. The first grid R1 covers a large part of the south Indian

Ocean with a regular resolution of 0.1� while R2, centred on Reunion island, is composed

of finite elements whose resolution reach about 300 m at the coast. For R2, the global time

step is set to 200 s and the maximum CFL time steps to 50 s (spatial advection) and 20 s

(angular advection). The computational time of the whole chain is about half an hour to

simulate 1 day on 24 central processing unit (CPU). The bathymetric data used come from

ETOPO1 with a spatial resolution of 1 min (Amante and Eakins 2009) as well as the

bathymetric measurements from the SHOM (French Naval Hydrographic and Oceano-

graphic Service) in the vicinity of the island. For each simulated cyclone, the time series of

HS (with 10-min-frequency) are extracted from the coastal grid at 50 m depth in front of

the site of Sainte-Suzanne.

An example of wave field simulated with the WW3 modelling framework for cyclone

Bejisa (January 2014) is given in Fig. 4a. The associated-wind field was calculated (1) by

applying the same formula used for the synthetic scenarios and the parameters extracted

from the re-analysed cyclone best-track (Météo-France Réunion RSMC cyclone database)

and (2) by merging the previous cyclonic wind field with environmental wind fields of GFS

Fig. 4 a Boundaries of the two WW3 grids (R1 and R2) and map of HS (colour shading) and Tp (white
contours) computed for cyclone Bejisa on 2, January at 0 h UTC using the south Indian Ocean grid. Bejisa’s
track and forward direction are symbolised by the red line and arrows. b zoom on the core of the wave field
and indications on wave direction (arrows). c comparison between simulated (lines) and measured (dots) HS

and Tp at NorteckMed RN4 buoy
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analysis operated by NOAA/NCEP. This process enables to obtain more realistic waves

before the cyclone landfall by taking into account background non-cyclonic waves.

The simulated wave field (Fig. 4a, b) exhibits (1) a circular outward pattern with large

waves near the radius of maximum wind that propagate far away from the cyclone eye and

(2) a calmer zone in the neighbourhood of the eye whose size is controlled by the extension

of Rm. The amount of energy transferred from the wind to the waves and then the height of

generated waves, is mainly controlled by parameters Vm and Rm that influence, respec-

tively, the intensity and the extent over which the wind blows (fetch). Yet, the translation

speed also plays an important role in the wave generation zone and may modify the

aforementioned symmetrical circular pattern (Liu et al. 2007; Phadke et al. 2003):

• In the left-forward quadrant, the coincidence of the forward speed with the wave

propagation direction increases the transfer of energy from wind to growing waves by

prolonging the wind action and then induces the generation of higher and longer waves.

While the forward speed remains lower than the induced wave’s group velocity, HS

monotonically increases with the translation speed. However, in the event of a cyclone

travelling faster than the generated waves, the duration of the wind action is reduced

and decreases the transfer of energy and the related wave heights;

• In the other quadrant, the locally generated waves are lower and shorter due to the

limited fetch and duration as the cyclone moves on the opposite direction of wave

generation zone.

It should be noticed that the zone of influence of the forward speed exceeds the wave

propagation zone and affects the wave pattern far away from the cyclone eye. When Vf is

much below the dominant wave group velocity, generated waves can propagate far forward

the cyclone centre and the wave field is more extended ahead. On the other hand, for fast

moving cyclones, if the forward speed is similar or faster than the wave propagation speed,

waves remain close or lag behind the core of the cyclone. Then, the wave field seems to be

more extended backward.

The wave parameters simulated for cyclone Bejisa were compared with the measure-

ments of the AWAC wave gauge deployed by NortekMed at RN4 station (located at

20�51,7670S and 55�27,0550E, see Fig. 1a, b). The comparison of significant wave heights

and peak periods is considered satisfactory (Fig. 4c) despite discrepancies near the peak of

wave heights, which are possibly related to the simplified symmetrical shape of cyclonic

winds: improving this issue is out of the scope of the present study.

2.3.3 Computation of the HS series

Using the aforedescribed modelling strategy, the HS series as a function of the relative

cyclone position s (recall that s is negative before landfall and positive after landfall) are

computed for the Sainte-Suzanne case considering a hundred of randomly generated

configurations for the cyclone characteristics (Sect. 2). The random sampling of the con-

tinuous parameters is performed using the Latin hypercube sampling (LHS) method

(McKay et al. 1979) in combination with the ‘‘maxi–min’’ space filling design criterion

(Koehler and Owen 1996) in order to optimise the exploration of the input domain space,

while minimising the number of simulations. The sampling of cyclone track angle h
(parameter of discrete nature) is done by traditional sampling with replacement.

The computation of the 100 scenarios with the modelling chain described above took

about 8 days with 24 CPU. Figure 5 provides the mean and the quantiles at 95 and 75 %.

The simulation scenarios cover a large broad of HS peak values up to *17.44 m. As
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illustrated by the two scenarios of largest HS peaks (scenario N�48 and N�92 depicted in

red in Fig. 5), the series of HS are not necessarily symmetrical with respect to s = 0

(landfall) and the peak values of HS do not necessarily correspond to s = 0 since some

translated tracks may pass on the opposite side of the island relative to Sainte-Suzanne (the

maximum wave height occurring then before landfall).

3 Statistical methods

This section addresses the issue of dealing with functional outputs for sensitivity analysis

of long-running models. The term ‘‘functional’’ is used to refer to variables, which are not

scalar (i.e. they do not take a single value), but they are complex functions of time or space

(or both). In this study, we restrict the analysis to the case where the output is a function of

one variable (here the relative cyclone position s) but this analysis can be extended to

account for space-dependent (e.g. Jia and Taflanidis (2013)) and space–time variables (e.g.

Antoniadis et al. 2012). The proposed strategy (described in Sect. 3.1) relies on the one

proposed by different authors (e.g. Jia et al. 2015; Rohmer 2014) for handling time-varying

outputs. Some adaptations of the methods were necessary to overcome the difficulties in

the considered case, namely: (1) handling scenario-like input parameter, aka categorical: in

our case, this corresponds to the limited number of scenarios of cyclone track angles h; (2)
accounting for the meta-model error (the uncertainty introduced by replacing the true

numerical code by an approximation) in the presentation of the results.

3.1 Strategy description

The whole strategy aims at identifying the most dominant cyclone characteristics regarding

HS uncertainty given the relative cyclone position s. This is done by relying on VBSA and

by adopting different perspectives for conducting this analysis in a dynamic manner

(Sect. 3.2). Since the simulator f for wave modelling is of high computation time cost

Fig. 5 Set of HS as a function of
the cyclone relative position
s considering the 100 scenarios
generated by varying the cyclone
characteristics’ values using the
assumptions described in Table 1
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(several hours), a necessary procedure aims at approximating the series of HS as a

mathematical function of the cyclone characteristics x. This function named meta-model

should be costless to evaluate and should be constructed using a limited number of

x configurations (typically 50–100) as generated in Sect. 2.3. We chose to focus on meta-

models of type kriging (Sect. 3.4). Since the model output is of functional nature, a

preliminary step aims at summarising the functional information using a limited number of

components (typically of the order of 10) based on basis set expansion techniques

(Sect. 3.3). Once the quality of the approximation (Sect. 3.5) has been validated, the

kriging meta-model can replace the simulator for conducting dynamic VBSA.

3.2 Variance-based sensitivity analysis

The basic concepts of VBSA are first briefly introduced considering a scalar output h. For a

more complete introduction, the interested reader can refer to Saltelli et al. (2008) and

references therein. VBSA aims at determining the part of the total unconditional variance

Var(h) of the output h resulting from the variation of each the m input independent random

variable Xi. This analysis relies on the functional analysis of variance (ANOVA) decom-

position of f based on which two sensitivity indices ranging between 0 and 1 (aka Sobol’

indices), namely the main and total effects (respectively, denoted Si and STi), can be

defined as follows:

Si ¼
Var E hjXið Þ½ �

VarðhÞ ; STi ¼ 1� Var E hjX�ið Þ½ �
VarðhÞ ð2Þ

where X-i = (X1,…, Xi-1, Xi?1,…, Xm). The main effect Si can be interpreted as the

expected amount of Var(h) (i.e. representing the uncertainty in h) that would be reduced if

it was possible to learn the true value of Xi. This index provides a measure of importance

useful to rank in terms of importance the different input parameters (Saltelli et al. 2008).

The total index STi corresponds to the fraction of the uncertainty in Y that can be attributed

to Xi and its interactions with all other input parameters. STi � 0 means that the input factor

Xi has little effect so that Xi can be fixed at any value over its uncertainty range (Saltelli

et al. 2008).

Different algorithms are available for the estimation of the Sobol’ indices (an extensive

introduction is provided by Saltelli et al. (2008: chapter 4)). In the present study, we used

the algorithm proposed by Jansen (1999) and Saltelli et al. (2010). The common feature of

all those estimation algorithms is their cost in terms of number of required simulations

(typically of several thousands). This can be overcome using meta-modelling techniques as

described in Sect. 3.4. As underlined in the introduction, when it comes to dynamic sen-

sitivity analysis, i.e. dedicated to functional outputs, different options are available in the

literature:

1. Step-by-step option: This can be done at each time step. VBSA is then re-conducted

N times, N being the number of time discretisation of the time series. Though this is

the simplest approach, this may also become intractable for long series (N exceeding

several hundreds), and it may introduce a high level of redundancy, because it neglects

the strong relationship between output values from successive steps;

2. Aggregated option: This can be done by relying on aggregated sensitivity measures

like the one proposed by Gamboa et al. (2014), which basically averages all the

sensitivity indices weighted by the variance of the functional output. This is detailed in

‘‘Appendix 1’’;
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3. Mode-based option: This consists in the reduction of the dimensionality of the output

quantity N by expanding it in an appropriate and new functional coordinate system

described by a limited number d (d\\N) of new basis functions ujðsÞ, with j = 1,

…, d: these correspond to the main modes of variation. Further details are provided

below in Sect. 3.3. This procedure is then followed by VBSA for the coefficients of the

expansion hj. For instance, if the expansion coefficients h1 for the first basis function

u1 are sensitive to a particular input parameter, this means that this parameter is

important in producing the type of behaviour described by u1.

3.3 Basis set expansion

In this section, we introduce the basic concepts for processing functional variables in order

to make feasible the dynamic sensitivity analysis. Formally, consider a set of n0 functional

model outputs, H
ðiÞ
S (with i = 1,…, n0) and discretised into N steps.

In the Reunion Island case, the set of functional model outputs correspond to n0 = 100

vectors of HS with N = 500 (number of relative cyclone positions). The objective of the

basis set expansion is then to project the set of curves onto an appropriate functional

coordinate system, i.e. in terms of some basis functions of s, denoted ukðsÞ (with k = 1,…,

d) whose dimension d\\ 500 so that the new functions ukðsÞ describe the key features of

the evolution of the calculated HS, i.e. their dominant modes of variations. The basis set

expansion of the set of centred temporal curves HC
S ðsÞ reads as Eq. (3):

H
C;ðiÞ
S ðsÞ ¼ H

ðiÞ
S ðsÞ � �HSðsÞ �

X

d

k¼1

hikukðsÞ ð3Þ

where the mean temporal function �HS is computed as the mean of HS at each discretisation

step s. The scalar expansion coefficients hik indicate the ‘‘weight’’ (contribution) of the kth

basis function (k = 1,…, d) in the approximation of the ith considered curve (i = 1,…, n0).

Usually, the dimension d is chosen so that most information is concentrated in the d first

basis functions. For instance, a criterion based on the explained variance in the set of

curves can be used by selecting at a minimum level of, let say, 99.9 % (see further details

in ‘‘Appendix 3’’).

The basis functions uk can be of various forms, such as pre-defined Legendre poly-

nomials, trigonometric functions, Haar functions, or wavelet bases, etc. (Ramsay and

Silverman 2005). The disadvantage is to give beforehand an idea of the modes of varia-

tions. Alternatives are adaptive basis functions, which determine the basis functions from

the data. The classical data-driven method is the multivariate principal component analysis,

denoted PCA (Jolliffe 2002), which can be applied to the functional model outputs viewed

as vectors of finite dimension. Further details are provided in ‘‘Appendix 3’’. Another

attractive feature is the ability to interpret these new basis functions as perturbations from

the mean temporal function, i.e. deviations from the ‘‘average’’ behaviour following the

recommendations of Campbell et al. (2006). In the following, we will focus on this

approach.

3.4 Kriging-based meta-modelling

Once the functional information has been summarised using Eq. 3, the basic idea aims at

approximating the expansion coefficients hk as a function of the input parameters x for
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each new dimension k = 1,…, d. For sake of presentation, we omit the underscript k in the

following. We use the kriging meta-modelling technique whose basic concepts are briefly

described hereafter for the scalar case. For a more complete introduction to kriging meta-

modelling and full derivation of equations, the interested reader can refer to Sacks et al.

(1989); Forrester et al. (2008).

Let us now define XD the design matrix composed of the vectors of cyclone charac-

teristics x (i.e. typically of small number n0 = 50–100) so that XD = (x(1); x(2); …; x(n0))

and hD the vector of expansion weights associated with each selected training samples so

that hD = (h(1) = f(x(1)); h(2) = f(x(2)); …; h(n0) = f(x(n0))). Under the assumptions

underlying the kriging meta-model, the statistical distribution of h for a new input vector x*

follows a Gaussian distribution conditional on the design matrix XD and of the corre-

sponding results hD with expected value ~hðx�Þ for the new configuration x*given by the

kriging mean (using the ordinary kriging equations):

~hðx�Þ ¼ ĥþ trðx�Þ � R�1
D � ðhD � I � ĥÞ ð4Þ

where ĥ ¼ ðtI � R�1
D � IÞ�1 � ðtI � R�1

D � hDÞ is a constant; r(x*) is the correlation vector

between the test candidate x* and the training samples; RD is the correlation matrix of the

training samples XD, and I is the unit matrix of size n0. In this article, the difficulty is to

handle continuous and categorical input variables (in our case, these correspond to the

limited number of scenarios of cyclone tracks h): to do so, a covariance function adapted to
this case is chosen as described in ‘‘Appendix 2’’ based on Storlie et al. (2013).

In practice, the learning phase of the kriging meta-mode is performed using a modified

version of the mlegp function provided in the package named ‘‘CompModSA’’ (available

at: http://www.lanl.gov/expertise/profiles/view/curtis-storlie) of the R software (R Devel-

opment Core Team, 2014).

3.5 Validating the meta-model

Since the true numerical code is replaced by the meta-model, the results of the whole

procedure may be associated with some degree of uncertainty reflecting this approximation

(meta-model) error. Two options can be considered to address this issue.

The first one aims at assessing the level of approximation error by estimating the

expected level of fit (i.e. quality of prediction) to a data set that is independent of the

original training data that were used to construct the meta-model, i.e. to ‘‘yet-unseen’’ data.

This can rely on cross-validation procedures (e.g. Hastie et al. 2009). This technique can be

performed as follows: (1) the initial training data are randomly split into q equal subsets;

(2) a subset is removed from the initial set, and a new meta-model is constructed using the

remaining set; (3) the subset removed from the initial set constitutes the validation set; the

expansion weights of the validation set are estimated using the new meta-model; (4) the

functional observations of the validation set are then ‘‘reconstructed’’ using the estimated

expansion weights; the residuals at each discretisation step (here the relative track position

s) are then estimated. Finally, the coefficient of determination Q2 can be computed:

Q2ðsÞ ¼ 1�
Pn0

i¼1 H
ðiÞ
S ðsÞ � ~H

ðiÞ
S ðsÞ

� �2

Pn0
i¼1 H

ðiÞ
S ðsÞ � �HSðsÞ

� �2
ð5Þ
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where HS
(i)(s) corresponds to the ith HS value at a given relative cyclone position s

(i = 1,…, n0), �HSðsÞ to the corresponding mean and ~H
ðiÞ
S ðsÞ to the approximated HS value

using the joint approach meta-model and PCA analysis. A coefficient Q2 close to 1 indi-

cates that the meta-model is successful in matching the observations.

The second approach aims at reflecting the meta-model error directly in the presentation

of the VBSA results. In the present study, we choose a bootstrap-based technique (e.g.

Kleijnen 2014). The procedure is conducted B times (typically B = 100) as follows:

At each iteration B,

1. A new training data set (XD
(B); hk

(B)) is generated by sampling with replacement from

the original training data set for each new dimension k = 1,…, d. In this manner, the

new training data set is composed of fewer elements than the original one;

2. A new kriging meta-model is then constructed for each new dimension d using the new

training data set following the procedure described in Sect. 3.4;

3. Using the d new meta-models, the HS series can be reconstructed using the PCA

analysis (Sect. 3.3);

4. The dynamic VBSA can then be conducted by following a Monte-Carlo-based

approach (Sect. 3.2). This provides the sensitivity indices: S
ðBÞ
i ; S

ðBÞ
Ti

, either at each

relative cyclone position (step-by-step option), or the aggregated ones (aggregated

option), or related to a given basis function (mode-based option).

The procedure results in a set of B sensitivity indices, from which quantiles and mean

values can be estimated: this is used to associate an error bar to the sensitivity indices. In

addition to this meta-model error, the Monte-Carlo sampling error can also be accounted

for in the presentation of the results by conducting an additional bootstrap-based procedure

at the fourth step as described by Archer et al. (1997).

4 Application

In this section, we apply the whole strategy described in Sect. 3 to the Sainte-Suzanne case

(described in Sect. 2). Based on the construction of the meta-model (Sect. 4.1), the dif-

ferent options for dynamic VBSA are implemented in turn (Sects. 4.2–4.4) and the results

are summarised in Sect. 4.5.

4.1 Setting up the meta-model

The set of HS series discretised into N = 500 steps of the relative cyclone position s were

computed using 100 different configurations of the cyclone characteristics (see Sect. 2.3).

This set is used as input of the PCA decomposition. This allowed their expansion onto a

new mathematical domain: Fig. 6a shows that the dimension of this new domain can be

reduced from 500 to d = 11, so that 99.9 % of the variability can be retained. The analysis

of the absolute differences between the projected and the original series shows that the

maximum value given the 100 series does not exceed *0.75 m. Figure 6b shows two

examples of projected series (scenario N�64 and N�77) to illustrate the negligible error

introduced by this procedure.

For each of the d = 11 new dimensions (derived from the PCA analysis), a meta-model

of type kriging (Sect. 3.4) with adapted covariance function (see ‘‘Appendix 3’’) was

constructed. A tenfold cross-validation procedure (q = 10 in the procedure described in
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Sect. 3.5) was performed to assess the level of approximation error. Figure 7a shows that

the quality indicator Q2 exceeds 80 % for a large part of the cyclone positions s: the

average value reaches *83 % and the maximum value *89 % (for instance, Storlie et al.

(2009) used a threshold at 80 % for judging the satisfactory level of the approximation).

Although Q2 drops down to *75 % far from the studied site (s\-400 km &

s[ 300 km), the approximation can still be considered ‘‘satisfactory’’. Figure 7b shows

that the absolute difference between the approximated and the original series: the mean

value reaches a maximum value of *1.3 m, and the 95 %-quantile remains below 1.5 m

except at s = 0, where it reaches values of the order of 3 m. This confirms the satisfactory

level of approximation. In addition to this analysis, a bootstrap-based indicator of meta-

model error is integrated in the presentation of the VBSA results as described in Sect. 3.5.

4.2 Step-by-step option

Using the validated kriging meta-models, the Sobol’ indices (main and total effects) can be

calculated given the relative cyclone position s. The Monte-Carlo algorithms of Jansen

(1999) and Saltelli et al. (2010) are applied using 40,000 random samples and assuming

uniform probability distributions for each input parameter (lower and upper bound

described in Table 1). The discrete variable linked to the selection of track angle h is

randomly sampled by integrating that values from 5� to 90� (‘‘pseudo-Gael’’ to ‘‘pseudo-

Dumile’’, see Fig. 1b) have 72 % more chance to occur, i.e. the frequency of north-eastern

cyclone track is higher (Jumeaux et al. 2011).

The mean value for the sensitivity measures is computed from the bootstrap procedure

applied for the training data set of the meta-models (as described in Sect. 3.5) as well as for

the Monte-Carlo samples used for computing the Sobol’ indices (Archer et al. 1997). An

indicator reflecting the error from both the meta-model and the Monte-Carlo sampling is

computed using the quantiles at 5 and 95 % from the 100 bootstrap samples. Figures 8 and

Fig. 6 a Amount of total variance explained by expanding the set of 100 HS series in a new mathematical
domain of dimension corresponding to the number of PCs; b examples of two HS series projected on a
domain with 11 dimensions (corresponding to 99.9 % of explained variance)
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9, respectively, depict the evolution of the main and total effects over s. Several obser-

vations can be made:

• Despite the meta-model and the Monte-Carlo sampling error, the importance ranking of

the characteristics using the main effects is possible since the confidence intervals are

not overlapping;

Fig. 8 Main effects versus the relative cyclone position s for the different cyclone characteristics. The thick
straight line corresponds to the mean value derived from 100 bootstrap samples and the limits of the grey-
envelope are derived from the 5 and 95 % quantiles

Fig. 7 a Indicator Q2 derived from the tenfold cross-validation procedure of the kriging meta-models. The
closer to 1, the better the approximation; b the mean together with the confidence envelope at 95 % for the
absolute differences between the original and approximated HS derived from the tenfold cross-validation
procedure
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• When the cyclone is in the vicinity of Reunion Island before and after landfall (for

s between -200 and 200 km), the most important characteristic is the radius of

maximum wind Rm with a contribution[40 % (i.e. the relative contribution of Rm to

the variance of HS is[40 %);

• Far away before landfall (for s below -300 km), the forward speed Vf is the primary

contributor to the uncertainty on HS with a contribution[40 %;

• Far away after landfall (for s above 300 km), two main contributors, namely Vf and Rm

are identified;

• At landfall (s = 0), the landfall position xo has the largest influence with a main effect

of *30 %; when analysing the total effects (Fig. 9), we show that this parameter

participates to the variability of HS through interactions with the other characteristics

since the difference between the total and the main effect is of the order of 10–15 %.

The computation of the Sobol’ indices of second order revealed that xo mainly interact

with h and Rm with joint effects of the order of *15–20 %;

• The commonly used indicator for describing the cyclone intensity, namely the

maximum wind Vm contributes only moderately to the uncertainty in HS (with main

effects no larger than 15 %). The contribution appears to be of same importance than

the shift of the central pressure dP. The analysis of the total effects (Fig. 9) reveals that
the total and main effect are of the same order of magnitude, hence revealing that the

contribution of both parameters does imply very little interactions with other

characteristics;

• Despite the low-to-moderate value of the main effects for h (in average *15 %), the

corresponding total effect is large of the order of 20–30 %, hence indicating that this

parameter mostly participates to the variability of HS through interactions with the

other characteristics. As underlined above, this effect mainly stems from the interaction

with the landfall position xo.

The step-by-step option highlights interesting physical behaviours of wave responses to

cyclonic wind fields depending on the relative position of the cyclone.

Fig. 9 Total effects versus the relative cyclone position s for the different cyclone characteristics. The thick
straight line corresponds to the mean value derived from 100 bootstrap samples, and the limits of the grey-
envelope are derived from the 5 and 95 % quantiles
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First, the major influence of Vm and Rm when the cyclone is in the vicinity of the site is

intuitive, because they, respectively, control the intensity and the fetch of cyclonic winds

around the eye (see Sect. 2.3). Yet, the sensitivity analysis clearly highlights that the

contribution of Rm is more than twice the one of Vm. Likewise, the dominant effect of the

position xo at landfall (in strong interaction with Rm and h) can be explained by the

particular structure of the cyclonic wave field. Actually, xo mainly controls the relative

position (right- or left-forward quadrant) and the distance of the studied site to the core of

wave field. Thus, it directly influences the maximum wave height value that can be

reached. Moreover, Sainte-Suzanne being situated on a small island, variations of xo in

opposite directions can have a decisive influence since they may change the side on which

the storm pass and induce an island shadow effect on waves.

Second, the major influence of Vf when the cyclone is far away from the site (before and

after landfall) is related to the process described in Sect. 2.3: for slow moving cyclones,

locally generated waves have the time to propagate far forward the storm centre. In other

words, they can reach coastal regions early before landfall. For fast moving cyclones, the

waves’ effect becomes perceptible within a narrow time interval before landfall but can

remain longer after landfall. As an example, a typical cyclonic wave group velocity for

periods around 12 s is about 18 kt. This implies that the cyclones of our dataset (where Vf

ranges from 5 to 20 kt) may generate these two dynamics at Sainte-Suzanne. Anyway, the

sensitivity analysis underlines that the effect of the translation speed on local waves can

overcome the influence of Vm and Rm in some situations, especially for distant cyclones.

Overall, the analysis confirms the importance of an accurate characterisation of three

parameters, namely xo, Rm and Vf: increasing knowledge on those parameters could

potentially take advantages of satellite-based remote sensing data (e.g. Osuri et al. 2012).

4.3 Aggregated option

In order to a have a more global vision of the contribution of each cyclone characteristics

over s, the aforedescribed results can be completed by using an average sensitivity mea-

sure. This can be done by applying the recently developed aggregated sensitivity measure

of Gamboa et al. (2014). Overall, the aforedescribed conclusions are confirmed (Fig. 10):

• The radius of maximum wind Rm has the largest contribution with a main effect

exceeding 30 %;

• The second most important contributors to the HS variability appear to be the landfall

position xo, the cyclone angle of approach h and the maximum wind speed Vm with

contributions of the order of 10–15 %;

• Though the angle of approach h and the landfall position xo have low-to-moderate main

effect, the difference between the total and the main effect is[15 %, which indicates

that those parameters influence through interaction with the other characteristics;

• No parameter can be considered of negligible influence since they all present total

effects[5 %;

4.4 Mode-based option

The third option aims at identifying the cyclone characteristics which influence the most

the occurrence of given specific functional patterns. Here we considered the ones described

by the third three PC eigen-functions: the cumulative explained variance, respectively,

reaches 74.5, 87.6 and 94.8 %. Following the recommendations of Campbell et al. (2006),
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those basis functions are interpreted as the perturbation of the mean function �HS. Figure 11

provides the evolution of �HS � c:PC1�3 over s (with some multiplicative constant c = 20).

On this basis, this allows providing a more physical interpretation of PC1-3:

• The first PC1 can be seen as an up-down shift over s so that input parameters resulting

in positive (resp. negative) expansion weights for PC1 (dashed and dotted lines in

Fig. 12a) lead to a HS series above (resp. below) the mean function: this mode of

Fig. 10 Main and Total effects (a, b) for the difference cyclone characteristics using the aggregated
sensitivity measures. The error bars are derived from the 5 and 95 % quantiles of the bootstrap procedure

Fig. 11 a First eigenfunction PC1 derived from the PCA analysis of HS seen as the perturbation of the mean
function by plotting the mean ?/- PC1 (amplified by a multiplicative factor of 20); b second eigenfunction
PC2 derived from the PCA analysis of HS seen as the perturbation of the mean function; c third
eigenfunction PC3 derived from the PCA analysis of HS seen as the perturbation of the mean function. See
text for details
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variation can be interpreted as a global amplification/damping of wave response to

cyclonic wind fields at a particular location;

• The second PC2 can be seen as the occurrence of a regime shift at s = 0: input

parameters resulting in positive (resp. negative) expansion weights (dashed and dotted

lines in Fig. 12b) lead to a switch from a first regime for s\ 0 where HS is above (resp.

below) the mean function and to a second one for s[ 0 where HS is below (resp.

above) the mean function: this mode of variation can be interpreted as an inversion of

the rate of HS evolution before and after landfall;

• The third PC3 (Fig. 12c) can be interpreted as the occurrence of two regime shifts in the

landfall region (approximately between s * -90 km and s * 20 km) corresponding

to the peak of wave heights. Input parameters resulting in positive expansion weights

lead to a switch from a first regime where HS is above the mean function before and

after the landfall region to a second one where HS suddenly drops in the landfall region,

which results in the occurrence of two peaks of wave height: this mode of variation

expresses a very particular situation when the eye of the cyclone crosses Sainte-

Suzanne.

The sensitivity measures for each of these modes are provided in Fig. 12. To support the

discussion and to get a more physical picture of the influences of the cyclone parameters,

Fig. 13 (top) provides three examples for each PC: scenarios n�64–84 show a high con-

tribution of PC1 while scenario n�18–51 and n�74–32 reveal substantial contribution of,

Fig. 12 Main (left) and Total
(right) effects for the difference
cyclone characteristics regarding
the occurrence of the pattern
described by the three first PCs.
The error bars are derived from
the 5 and 95 % quantiles of the
bootstrap procedure
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respectively, PC2 and PC3. The spatial fields of the corresponding HS at relevant time steps

are also provided to support the discussion.

Let us first consider PC1. Figure 12 (top) indicates that the maximum cyclone radius Rm

has the largest influence regarding this response (with main effect[40 %). The second

most important parameters are the relative landfall position xo with a high interaction term

(total effect exceeds by *10 % the main effect) and the maximum wind speed Vm with

contributions of*15 % (but a little interaction term). The forward speed Vf appears to be a

negligible contributor to uncertainty (Fig. 12, top right). Scenario n�64 (Fig. 13a) provides

a good example of the high influence of Rm and Vm. This scenario exhibits large radius

(*40 km) and maximum wind speed (*125 kt), that both increase the wave heights.

Besides, the relative landfall position and angle of approach make the core of the wave

field pass very close to Sainte-Suzanne so that the peak of wave height is amplified

(Fig. 13a). These characteristics result in overall high HS values at Sainte-Suzanne all

along the cyclone track. On the contrary, scenario n� 84 has a moderate wind speed

Fig. 13 Scenarios illustrating the pattern induced by PC1 (a), PC2 (b) and PC3 (c). On the maps, the colours
represent the significant wave height and the white contours, the wave peak period (relevant time steps were
selected to illustrate the text). The red circle indicates the distance of 100 km away from the centre of
Reunion Island and the white line gives the cyclone track in the vicinity of Reunion Island
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(*90 kt) and a very small radius (*15 km) associated with a relative landfall position on

the other side of the island that induce overall low HS values at Sainte-Suzanne. These

physical behaviours were also verified on other members of the simulation scenarios.

Considering PC2, the largest contributor is the forward speed Vf (Fig. 12, middle) with

an influence of almost 50 %. The second most important parameter is the angle of

approach h with a high interaction term (total effect exceeds by *15 % the main effects)

with a contribution of*30 %. To illustrate and clarify this, let us first consider scenario n�
51, which exhibits a high forward speed of *18 kt (Fig. 13b). If the fast cyclone motion

tends to increase the height of waves in the left-forward quadrant, it also limits the forward

propagation of waves ahead the eye so that they lag near and behind the eye (as explained

in Sects. 2.3, 4.2). This results in low early wave heights at Sainte-Suzanne followed by (1)

a large and abrupt rise occurring within a short period before landfall and (2) a slower

decrease of wave heights after landfall. If we now pay attention to scenario n� 18 (with a

low forward speed around 10 kt, Fig. 13b), we see that the shape of the wave pattern and

the associated HS series at Sainte-Suzanne have opposite behaviours than those of scenario

n�51. Finally, the angle of approach together with the landfall position influence the

relative position of Sainte-Suzanne to both the main propagation direction and the core of

the wave field. This modulates the effect of the translation speed on HS evolution and then

the influence regarding PC2.

Finally, the analysis for PC3 highlights the high individual contribution of h (main effect

of *40 %) and the high contribution of xo and Rm regarding interactions with high total

effects of the order of *30 % (Fig. 12, bottom, right). This can be explained by the

important roles that play these three parameters in the size and relative position of the eye

to the studied site so that variations in their combination may change the form and the way

the wave pattern crosses the site. For example, in scenario n�32 (Fig. 13c), the radius of the
cyclone is quite large (*45 km), so that Sainte-Suzanne is affected successively by the

circular wave pattern generated in two opposite quadrants of the cyclone separated by a

calmer zone, which creates the ‘‘double peak’’ in the HS series. As for the scenario n� 74
(Fig. 13c), the radius of maximum wind is too small (*10 km) to obtain a distinct circular

structure of the wave field. This results in a single peak when the eye of the cyclone crosses

the site.

4.5 Summary

Using the results of the multi-mode dynamic sensitivity analysis, the identification of the

most important cyclone characteristics can be performed depending on the objective of the

study.

• If the interest is on the identification of the most important parameter whatever s, the

aggregated option should be selected. Here, its application highlights the large

contribution of the radius of maximum wind Rm as well as the moderate role of the

landfall position xo;

• If the interest is on the phasing of the influence and the understanding of the role of the

different parameters given the cyclone positions, the step-by-step option should be

selected. Here it reveals (1) a major influence of Vf when the cyclone is still far away

from the site (2) the high contribution of Rm in the vicinity of the studied site except

when the cyclone is the closest to the island at s = 0 where the landfall position (here

xo) is the most important characteristic that determines the amplitude of peak of wave

heights;
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• Finally, the mode-based option should be viewed as a supplement of the two first

options: the role of the cyclone characteristics regarding specific evolution patterns can

be investigated. In our case, the forward speed Vf, though of low-to-moderate

importance (when the cyclone approaches the site) considering the step-by-step and the

aggregated option, appears to play a major role for the initiation of a turning point

(regime shift) at s = 0 meaning that depending on this characteristic, the HS values

may be categorised as moderate for s\ 0, but when the cyclone hits the Reunion

Island for s = 0, the regime might switch to high HS values.

Table 2 summarises the main conclusions of the multi-look dynamic sensitivity

approach.

5 Concluding remarks and further works

The problem of dynamic sensitivity analysis can be looked in different ways. In the present

study, we proposed a whole strategy for getting a deep insight in the role played by the

different cyclone characteristics regarding the variability of HS as a function of the relative

cyclone position s: this was done by adopting three perspectives to this dynamic VBSA. A

particular attention was paid to relate those conclusions with physical interpretations;

though some of them were very intuitive, the proposed strategy has the great benefit to

quantify the different contributions given the assumptions on their variations.

These conclusions are valid keeping in mind that we considered a restricted sample of

cyclones all passing close to Reunion Island and that we assumed that the cyclone char-

acteristics are held constant over time. We acknowledge that this last point remains a

simplification, and accounting for more complex and time-varying characteristics (for

example by using statistical-based datasets such as the one constituted by Emanuel et al.

(2006)) constitutes a line for future research. From a methodological point of view, this

imposes to consider functional variables for both inputs and outputs of the meta-model-

based procedure, i.e. to perform function-on-function high-dimensional regression, which

still constitute a matter of ongoing research due to the so-called ‘‘small n, large p’’

paradigm (e.g. Morris 2015). Second, we focused on HS series which are the primary

quantities of interest for local flooding risk assessment. Yet, a second necessary step should

focus on the joint analysis of the series for both wave period and direction, which should

also play a major role in wave overtopping potential.

Table 2 Synthesis of the importance ranking: ?? high influence (largest main effect), ?/- moderate
(main effect between 10–20 %); - low-to-moderate (main effect below 10 %), – negligible (total effect
close to 0). The relative cyclone position s is expressed in km

h xo Vf Rm Vm dP

Step-by-step ?/- ?? (s = 0) ?? (far) ?? (-200\ s\ 200) ?/- -

Aggregated ?/- ?/- - ?? ?/- -

Mode 1: ‘‘up-down shift’’ ?/- ?/- – ?? ?/- ?/-

Mode 2: regime shift at
s = 0

?? ?/- ?? – - –

Mode 3: two regime shifts
at s = -100 km and
s = 50 km

?? – – ?/- – –
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Finally, it should be underlined that the meta-models were used here for computing

variance-based sensitivity measures so that the meta-model error (of low level as indicated

by the results of the cross-validation procedure) has little influence on the importance

ranking (as indicated by the bootstrap analysis). Yet, such meta-models could also be used

to perform predictions (forecasting), for instance for early-warning purposes or for

assessing low probability/high consequences events. Although, this particular application

is expected to require (1) the consideration of a complete data set including more distant

and various tracks as well as time-varying cyclone characteristics as mentioned above (2)

more robust functional meta-models whose accuracy and predictive quality should be more

carefully accounted for (for instance by relying on existing studies for scalar variables,

Janon et al. 2014).
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Appendix 1: generalisation of Sobol’ indices for multivariate (functional)
outputs

Consider the functional output HS(s) discretised on a regular grid of track positions s

viewed as vectors of large but finite dimension, and X the vector of input parameters

following Gamboa et al. (2014), the generalised Sobol’ index Sagg,i for the ith parameter

holds as:

Sagg;i ¼
TrðCiÞ
TrðCÞ ð6Þ

where Tr is the trace; C ¼ cov HSð Þ and Ci ¼ cov E HSjXið Þð Þ are covariance matrices.

Equation 6 is the index of first order, which measures the relative contribution of the ith

input parameter. Higher order indices as well as total effect can also be defined in the same

way than the Sobol’ indices for scalar output. These sensitivity measures can be estimated

using a pick-and-freeze as proposed by Gamboa et al. (2014).

Appendix 2: correlation function adapted to categorical inputs

This appendix is mainly based on Storlie et al. (2013): Sect. 2.1. A variety of correlation

(and covariance) functions have been proposed in the literature (see e.g. Stein 1999). The

commonly used model is the exponential correlation function defined as follows:

Rðu; vÞ ¼ exp �
X

d

i¼1

ui � vij jqi
bi

 !

ð7Þ

where q is the vector of power parameters (typically between 0 and 2) controlling the shape

of the correlation function, and the vector b determines the rate at which the correlation

decreases as one moves in the ith direction (with i from 1 to d). Intuitively, if u = v then

the correlation is 1, whereas if the distance between both vectors tends to the infinity, then
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the correlation tends to 0. In this article, the difficulty is to handle continuous and cate-

gorical input variables (in our case, these correspond to the limited number of scenarios of

cyclone tracks h): to do so, we chose to a covariance function, which is adapted to this

case, as described by Storlie et al. (2013). Consider x1,…, xq the continuous input

parameters, xq?1,…, xd the unordered categorical ones. Consider first the case of one

categorical variable xj, a possible correlation function is:

Rðxj; x�j Þ ¼ exp �
Ind xj 6¼ x�j

� �

b

0

@

1

A ð8Þ

where Ind is the indicator function so that Ind = 1 if xj 6¼ x�j and 0 otherwise; b is the

corresponding length-scale parameter.

By using Eq. 7 for continuous variables, a separable correlation function (i.e. product of

one-dimensional correlation) can be defined:

Rðxj; x�j Þ ¼ exp �
X

q

i¼1

xi � x�i
�

�

�

�

qi

bi
�
X

d

i¼qþ1

Ind xj 6¼ x�j

� �

bi

0

@

1

A ð9Þ

As underlined by Storlie et al. (2013), the correlation as aforedescribed is isotropic,

which is a reasonable assumption in many cases. More sophisticated approaches may rely

on Qian et al. (2008).

Appendix 3: Principal Component Analysis

The PCA decomposition is based on the empirical eigenfunctions and vectors of the

variance-covariance matrix R ¼ tHC
S �HC

S with HC
S the matrix of n0 N-dimensional HS

series centred around the mean function �HS. Let us define the eigenvalues

k1 [ k2 [ � � � [ kN of R ordered in increasing order and V a N9N matrix of normalised

eigenvectors v of R, each column being associated with a given eigenvalue k. The n09N

matrix HPC of principal components PCs holds as follows:

HPC ¼ HC
S � V ð10Þ

The column h of HPC are mutually orthogonal linear combination of the columns of HC
S

so that hk ¼ HC
S � vk and hkk k2¼ kk. By construction the trace of HPC is the same as R so

that the d first PCs concentrate a given level of explained variance, aka inertia, i.e. of a

given amount of information.
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