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Abstract The evolution of unidirectional nonlinear sea surface waves is calculated

numerically by means of solution of the Euler equations. The wave dynamics corresponds

to quasi-equilibrium states characterized by JONSWAP spectra. The spatiotemporal data

are collected and processed providing information about the wave height probability and

typical appearance of abnormally high waves (rogue waves). The waves are considered at

different water depths ranging from deep to relatively shallow cases (kph[ 0.8, where kp is

the peak wavenumber, and h is the local depth). The asymmetry between front and rear

rogue wave slopes is identified; it becomes apparent for sufficiently high waves in rough

sea states at all considered depths kph C 1.2. The lifetimes of rogue events may reach up to

30–60 wave periods depending on the water depth. The maximum observed wave has a

height of about three significant wave heights. A few randomly chosen in situ time series

from the Baltic Sea are in agreement with the general picture of the numerical simulations.

Keywords Rogue waves � Finite depth � Intermediate depth � Numerical simulations �
Wave height statistics � Wave asymmetry

1 Introduction

Direct numerical simulations of irregular sea waves have attracted much interest due to at

least the following reasons. The estimation of probability and significance of extreme wave

events needs big data of waves, which is not currently available from merely in situ
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measurements. One of the most representative statistics of sea waves discussed by Christou

and Ewans (2014) contains 122 million individual waves, which would correspond to less

than 40 years of continuous measurements in a single point, assuming all waves have

period 10 s. It is also important to keep in mind that if the statistical averaging is performed

inaccurately (e.g., different sea states should not be mixed), the result will be meaningless

and therefore the available statistics diminishes significantly. Meanwhile, existing regu-

lations for permissible wave loads on offshore platforms operate with wave parameters,

which may be observed once in 100 or even 10,000 years. The significance of the problem

has received the general recognition in recent years. The phenomenon of rogue waves

implies that extreme waves are in fact much more frequent than it has been usually

assumed, due to various physical mechanisms, see reviews Kharif and Pelinovsky (2003),

Dysthe et al. (2008), Kharif et al. (2009), Slunyaev et al. (2011) and references therein.

Controlled experiments may solve the problem of statistical homogeneity of the wave

data, though laboratory measurements are time and money consuming. The numerical

simulations of kinetic equations cannot serve as a solution of the rogue wave problem,

since the most interesting situations correspond to dynamics, when the assumption of near-

Gaussianity of the waves is broken. The direct numerical simulation of large wave

ensembles within primitive water equations with the purpose to produce rich statistics has

become recently a feasible task due to the new fast algorithms and availability of powerful

computers. The statistical data obtained from the direct numerical simulations have

potential to fill the gap in trustworthy in situ data. As a result, a number of papers on

intensive stochastic simulations of approximate and full equations appeared in 2000s

(including, among others, Onorato et al. 2001, 2002, 2009; Dysthe et al. 2003; Janssen

2003; Socquet-Juglard et al. 2005; Chalikov 2005, 2009; Ducrozet et al. 2007; Xiao et al.

2013, see also a brief review in Slunyaev and Sergeeva 2011). The general approach is as

follows: The initial condition is specified in the form of a realization of irregular waves

with given spectrum and random phases. The evolution of the wave ensembles is simulated

directly (most often—for not more than a few tens of wave periods); the wave data at a few

subsequent instants compose the statistical data. The validity of numerical simulations has

been confirmed in many comparative laboratory experiments (e.g., Onorato et al. 2009;

Shemer et al. 2010). Most of these studies concerned the deep-water regime, and at the

same time there are numerous observations of anomalously high waves in the coastal area

(Didenkulova et al. 2006, 2013; Nikolkina and Didenkulova 2012).

Several main outcomes of the deep-water wave research may be formulated. First, if the

initial condition is characterized by sufficiently narrow frequency and angle spectra (for a

given wave energy), then waves undergo an extreme transient state, when the kurtosis and

probability of high waves grow significantly; the duration of this transient process is 1–2

characteristic scales of the cubic nonlinearity (see Slunyaev 2010). The process, which is

responsible for the extreme state, is the modulational (Benjamin—Feir) instability; the

instability criterion (Benjamin—Feir Index, BFI) was suggested to assess the significance

of this effect for a given spectrum (Onorato et al. 2001; Janssen 2003). BFI is often

considered to be a warning criterion of high likelihood of occurrence of abnormally high

waves (rogue waves), when BFI[ 1. After the stage of the modulational instability, the

portion of high waves decreases, and momentary BFI drops down to BFI * 1. Stationary

sea states seem to be modulationally stable. Thus, extreme wave statistics due to the

modulational instability takes place in transient states; the effects of modulational insta-

bility are much less pronounced in stationary sea conditions (see discussion in Slunyaev

and Sergeeva 2011; Slunyaev et al. 2015). In particular, the relation between the BFI and
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the wave statistics was not confirmed in fully nonlinear simulations of unidirectional waves

by Chalikov (2009).

Besides simulations of model spectra, the direct numerical simulations are used to

reconstruct the sea condition on the basis of hindcasting data (Bitner-Gregersen et al. 2014;

Dias et al. 2015).

The majority of the studies concern the infinitely deep-water case. Shallow water

simulations were performed by Pelinovsky and Sergeeva (2006), which claim that the

probability of high waves increases when the shallow water nonlinear parameter, the Ursell

number, is large. Papers by Sergeeva et al. (2011, 2014), Trulsen et al. (2012), Zeng and

Trulsen (2012), Viotti and Dias (2014) consider variable depth and thus correspond to the

situation, when waves are not in a stationary state. The nonlinear mechanism of adiabatic

wave enhancement due to decreasing water depth is discussed in Slunyaev et al. (2015).

Very recent stochastic simulations of waves in a constant-depth basin are reported in

Fernandez et al. (2016); there the numerical simulations are compared with laboratory

measurements as well. Since the modulational instability becomes three-dimensional for

kh\ 1.36 (where k is the carrier wavenumber and h is the local depth), strictly speaking

the 3D simulations should be carried out to take into account the effect of modulational

instability in such shallow water (e.g., Fernandez et al. 2014). The longitudinal modula-

tional instability vanishes when kh\ 1.36 and thus the high wave probability is expected

to decrease in shallow water. Indeed, the calculated probability of large wave heights was

below the Rayleigh distribution in the in situ measurements by Mori et al. (2002),

Didenkulova and Anderson (2010), Mai et al. (2010), Didenkulova (2011); all that mea-

surements were performed in relatively shallow conditions. Numerical simulations of the

Euler equations for relatively short distances performed by Fernandez et al. (2016) confirm

this conclusion. In Gemmrich and Garrett (2010), the dynamical nonlinear effects were

disregarded, and only second non-resonant harmonic was taken into account. Their sim-

ulations showed good agreement with in situ data retrieved at deep and relatively shallow

water conditions

Besides wave height probability functions, there are other important parameters char-

acterizing abnormally high waves (rogue waves), such as the characteristic life time, wave

shapes, etc. The ‘holes in the sea,’ i.e., very deep wave troughs, are considered sometimes

to be even more dangerous than waves with high crests. The numerical simulations of

deep-water waves within the framework of the Euler equations reported in Sergeeva and

Slunyaev (2013) and Xiao et al. (2013) showed specific asymmetry of strongly nonlinear

rogue waves: The rear wave slope is usually higher than the preceding front slope. At the

same time, the well-known examples of rogue waves on Agulhas current have different

shape—a very long and deep preceding trough, which ends with a high crest (Mallory

1974; Lavrenov 1998). It was shown in numerical simulations that deep-water rogue wave

lifetimes may be rather large: up to 60 wave periods (Sergeeva and Slunyaev 2013). Rogue

waves are determined by the condition

H

4r
[ 2; ð1Þ

where H is the wave height and r is the root-mean-square sea surface displacement. The

significant wave height is roughly equal to 4r.
In this paper, we extend the study of irregular infinitely deep sea waves, reported in

Sergeeva and Slunyaev (2013), to conditions of an intermediate depth. The wave system is

assumed to stand in a quasi-stationary condition with an exception of small energy leakage

due to effects associated with occasional wave breaking. The ability of the approach to
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reproduce the given wave condition in the numerical simulation is examined. The effect of

a finite depth on the wave statistics and appearance of rogue waves is in the focus of the

study.

In Sect. 2, the approach for the numerical simulation is described. In Sect. 3, we define

the simulated wave conditions. The wave height probability is discussed in Sect. 4, while

in Sect. 5 the asymmetry and lifetimes of rogue waves are addressed. In Sect. 6, a few

examples of in situ wave records from the Black Sea are considered in view of the results

of the numerical simulations. The main conclusions are formulated in the end.

2 Approach for the simulation of stationary sea states

The approach for numerical simulations generally follows the one used in Sergeeva and

Slunyaev (2013). The wave data result from numerical simulations of the potential Euler

equations by means of the high-order spectral method (West et al. 1987). Parameter

M characterizes the nonlinear property of the method; the nonlinear surface boundary

conditions are solved accurately to order M of the wave steepness (i.e., up toM ? 1 wave–

wave interactions are resolved).

Each wave realization is taken in a form of a linear superposition of waves with a given

wavenumber spectrum and random phases (i.e., the assumption of a Gaussian wave field

holds); it is used as the initial condition for a simulation. The sea surface elevation and

velocity potential are related according to the linear relation for waves at a constant depth

h. During the initial stage, which lasts for about 20 wave periods, the nonlinear terms in the

solver are being enabled slowly; this transition procedure helps to adjust the waves to

nonlinearity (Dommermuth 2000), and eventually to reduce the level of spurious waves.

During this period, the energy of the wave system may change and thus the values of r in

Table 1 are slightly different from values which characterize the initial condition. The

statistical characteristics are calculated after this transitional stage, when the waves achieve

quasi-stationary state. The averaged parameters which characterize the peak period and

wavenumber, and wave intensity are given in Table 1.

For the initial condition, we use the JONSWAP spectrum with peakedness c = 3 for

less intense waves, and c = 3.3 for steeper waves; these parameters are similar to ones

Table 1 Parameters of numerical simulations

Series code A0.8 A1.2 A1.6 A2 A? E1.2 E1.6 E2 E?

c 3 3 3 3 3 3.3 3.3 3.3 3.3

Tp (s) 10.2 10.2 9.9 9.8 9.8 10.3 10.8 10.8 10.4

4r (m) 3.33 3.26 3.32 3.38 3.50 6.20 6.34 6.45 6.61

H1/3 (m) 3.13 3.13 3.05 3.26 3.37 6.06 6.17 6.35 6.53

H (m) 12.4 24.8 37.3 49.7 ? 27.4 41.1 54.8 ?

kp (rad/m) 0.062 0.049 0.043 0.041 0.042 0.044 0.038 0.036 0.031

d : kph 0.76 1.2 1.6 2.1 ? 1.2 1.6 2.0 ?

2kpr 0.10 0.08 0.07 0.07 0.07 0.14 0.12 0.12 0.10

l 0.51 0.16 0.10 0.08 0.07 0.27 0.17 0.13 0.10

The italicized columns correspond to the conditions studied in Sergeeva and Slunyaev (2013)
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used in Sergeeva and Slunyaev (2013); the peak wave period of the initial condition is 10–

10.5 s. To characterize the strength of nonlinearity in conditions of intermediate depth, the

generalized nonlinear parameter l is estimated for the considered cases,

l ¼ rKþ; Kþ ¼ kp
4 tanh dþ tanh 2dð Þ 1� tanh2 d

� �

tanh d 2 tanh d� tanh 2dð Þ þ 2kp tanh d; d ¼ kph: ð2Þ

(see Toffoli et al. 2007). In the deep-water limit (large d), parameter l tends to 2kpr, while
in the shallow water limit it reduces to the Ursell number, 3kpr/d

3. Values of l are given in

Table 1. Each wave realization has a length of about 10 km; it is simulated for 20 min in a

domain with periodic boundary conditions. The output data grid consists of 2048 9 2048

points, which corresponds to about 5 m 9 0.6 s mesh size. One hundred wave realizations

are used for each condition, which gives in total O(107) single waves in time series or in

space series for each case. A few intermediate depths are concerned, see Table 1. The

infinitely deep condition was simulated and discussed in Sergeeva and Slunyaev (2013),

and they correspond to the shaded columns in Table 1.

3 Simulated sea states

The simulated series correspond to two intensities of the initial conditions; series A cor-

responds to less intense waves, which mainly do not break (only two realizations from

series A0.8 experienced wave breaking and were redone). Realizations from series A are

simulated with a high order of the code nonlinearity,M = 6, which guarantees almost fully

nonlinear simulations of the Euler equations, with very small energy change (relative error

is of the order of 10-5). Thus, in the course of simulations A the root-mean-square sea
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Fig. 1 Ensemble averaged frequency and wavenumber spectra for cases A2 (a, b), A1.2 (c, d) and A0.8 (e, f)
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surface elevation r remains almost the same. Significant evolution of neither the peak

wavenumber of the average momentary wavenumber spectrum nor its width was observed.

The spectra of simulated waves in the infinitely deep water, reported in Sergeeva and

Slunyaev (2013), correspond to the prescribed initially JONSWAP shape very well. For

shallower cases simulated in this study, the spectra are shown in Fig. 1 by red solid lines.

Above the figures, the peak and mean cyclic frequencies and wavenumbers are given. The

black dashed curves in Fig. 1a, c, e show the JONSWAP frequency spectrum for given xp,

r and c. Figure 1b, d, f displays the corresponding wavenumber spectra; the curves for the

JONSWAP wavenumber spectra result from the corresponding JONSWAP frequency

spectra taking into account the linear dispersion relation for finite water depth. One may

see that the frequency and wavenumber spectra in cases A2 and A1.2 agree with the desired

JONSWAP shape very well, and this conclusion holds for the spectral tails plotted in

logarithmic coordinates as well. Case A1.6 is not shown here as it is similar to series A2 and

A1.2.

In the shallowest case A0.8, a new long-wave component is excited by the initial

condition. These long waves have smaller amplitudes, but may be clearly seen in the wave

spectra (Fig. 1e, f). The spectral shape of generated shorter waves is evidently different

from the prescribed JONSWAP function. A more detailed examination reveals that the

long-wave component corresponds to free waves (i.e., they obey the shallow water dis-

persion relation); the mean wavenumber of the long waves shifts downwards in the course

of evolution. Thus, the situation A0.8 is found unsatisfactory for reproduction of the desired

spectrum; some extraneous wave dynamics is detected. Therefore, the case A0.8 is not

considered below.

Interestingly, that curves of wavenumber spectra for deeper waters (Fig. 1b, d) are much

more smoother than the corresponding frequency spectra (Fig. 1a, c). Most likely, this

peculiarity is caused by the dispersion, which is more significant over deep water and

results in different widths of wavenumber and frequency spectra.

The simulations for series E correspond to steeper initial conditions; some waves from

time to time reach the breaking onset resulting in numerical instability. For these simu-

lations, the order of nonlinearity is reduced to M = 3 (four wave interactions are properly

resolved) and artificial damping is introduced at small scales in the manner similar to
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Chalikov (2005), i.e., the linear damping coefficient m in Fourier space is described by a

parabolic function

mk ¼ rK2 kj j � kd

K � kd

� �2

; if kj j[ kd;

0; otherwise;

8
<

:
ð3Þ

where k belongs to the interval -K\ k\K, kd = K/4. The value of coefficient r = 2 was

found after a set of trial simulations. Sometimes wave breaking still occurs; then, the wave

fields are relaxed with the help of specially designed procedure, which locates the source of

the heavy spectral tails and smoothes it out. As a result, in the course of evolution the

system loses up to about 10 % of its energy (see an example in Fig. 2a). The values of root-

mean-square sea surface elevation r used in Table 1 for series E correspond to the middle

values during the 20-min evolution. In the course of the evolution, the small-scale part of

the spectrum decays faster; the peak wavenumber shifts toward smaller values, and the

spectrum somewhat shrinks, see Fig. 3b for the case E2. The averaged wavenumber and

frequency spectra reproduce the designed JONSWAP spectra only approximately, see

Fig. 3. The two effects: spectral downshift and subsidence of the spectral tail may be

clearly seen. Case E1.6 is not shown in Fig. 3 since it is very similar to the situations E2 and

E1.2.

4 Wave height probability distributions (time series)

In Sergeeva and Slunyaev (2013), the exceedence probability distributions for simulated

waves at infinite depth (conditions A? and E? from Table 1) were computed by means of

space series processing. It is natural to deal with space series, when wave dynamics is

integrated in time. However, the space series are noticed to be affected by small-amplitude

small-scale waves, which may disturb the result of identification of single waves and lead

to the difference in analysis of time and space data series.

Here, we benefit from having the full spatiotemporal data and use time series of the sea

surface elevation for building the probability distributions. Thus, the approach is fully
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Fig. 3 Ensemble averaged frequency and wavenumber spectra for cases E2 (a, b) and E1.2 (c, d)
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consistent with the usual conventional processing in oceanography. The simulations result

in 100 time series which may be taken at any single location. There are 2048 points along

10 km with available time series, which enriches statistical data. Since the distance

between adjacent locations is less than one wave period, the data from close locations are

obviously not fully independent. It is straightforward to realize that this circumstance may

result in stepwise function of the exceedence probability in the area of sparse wave height

data. The characteristic length of correlation of the closely retrieved wave data was esti-

mated in Sergeeva and Slunyaev (2013) for space series. It was found to be drastically

shorter in nonlinear simulations as compared to the reference linear case. It is also nec-

essary to take into account that the tail of the probability functions is often underestimated

due to the limited amount of statistical data (see examination of this effect in Kokorina and

Pelinovsky 2002). There are also other effects which may lead to deviation of the height

exceedence probability from the theoretical Rayleigh curve, such as broad wave spectrum,

nonlinearity and finite depth.

The wave height exceedence probability distributions produced from the simulated data

are shown in Fig. 4 for two approaches, zero up- and zero down-crossing excursions in

time series (Massel 1996): red solid and blue dash-dotted curves, respectively. The hori-

zontal axis is the wave height normalized by 4r (which is approximately equal to the

significant wave height; see its estimation by averaging of the one-third of the largest wave

heights H1/3 in Table 1).

The simulated probabilities are compared with two theoretical distributions. The clas-

sical Rayleigh distribution for narrow banded linear waves over deep water

PR Hð Þ ¼ exp � H2

8r2

� �
; ð4Þ

is frequently used for the reference. As it is already claimed, it disregards the wave

nonlinearity and implies the narrow bandness of the spectrum.

The Glukhovskiy distribution (its classical form is used, see Massel 1996)

PG Hð Þ ¼ exp � p

4 1þ nffiffiffiffi
2p

p
	 
 H

�H

� � 2
1�n

2

4

3

5; n ¼
�H

h
; ð5Þ

which is a modification of (4), takes into account the finiteness of the water depth.

Parameter n varies from 0 (infinitely deep water) to 0.5 (surf zone) and for all our simu-

lations does not exceed the value 0.3. The distribution tends to the Rayleigh law when the

depth h grows to infinity. The Taylor expansion of (5) for small n (deep water) gives

PG Hð Þ � exp � H2

8r2

� �
1þ n

H2

8r2
1
ffiffiffiffiffiffi
2p

p � ln
H2

2pr2

� �� �
; ð6Þ

if the deep-water relation �H ¼
ffiffiffiffiffiffi
2p

p
r is used (which follows from the theory for Gaussian

statistics). The first exponential term in (6) is just the Rayleigh distribution (4), and the

term in parentheses changes its sign when

bFig. 4 Wave height exceedence probability functions for different cases: A2 (a), E2 (b), A1.6 (c), E1.6 (d),
A1.2 (e) and E1.2 (f). The thick green solid and magenta dashed lines correspond to the Rayleigh and
Glukhovskiy distributions, respectively. The thin solid red and dash-dotted blue lines, respectively, describe
results obtained by the up- and down-crossing methods
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H ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p exp
1
ffiffiffiffiffiffi
2p

p
s

� 3:06r: ð7Þ

Thus, when the depth decreases and n grows, the probability of small waves with

H\ 3r increases, while the probability of higher waves decreases.

The following conclusions may be drawn from examination of Fig. 4. In the situation of

moderate steepness A2, A1.6, A1.2, the simulated waves possess probability of high waves

about or lower than the Rayleigh distribution; this is even more significant in the shallow

cases A1.6, A1.2. The up- and down-crossing methods do not exhibit noticeable difference.

Some rapid decay of the far tails of the functions may be noticed; they are likely caused by

the correlation of time series from close locations, discussed above. Bearing this suppo-

sition in mind, one may conclude that the probability curves for A2 and A1.2 exceed the

Glukhovskiy distribution; the excursion is larger in the deep case A2. The curve for

experiments A1.6 (Fig. 4c) is very close to the Glukhovskiy distribution.

When waves are very steep, the difference between the up- and down-crossing pro-

cessing of time series becomes evident (Fig. 4b, d, f); up-crossing waves have appreciably

larger heights. This difference becomes apparent only for waves with heights significantly

larger than 8r; so that all of them belong to the rogue wave population. The probability

curves for series E exceed the Glukhovskiy distribution more significantly than for cases A;

and for the deeper water cases E1.6, and especially for E2 they also well exceed the

Rayleigh distribution. Meanwhile in the shallow situation E1.2, the curves remain below the

Rayleigh law (Fig. 4f).

The probability curves for deep-water cases A2, E2 do not differ much from the

probabilities for the infinitely deep water, obtained on the basis of data from Sergeeva and

Slunyaev (2013) (not shown). The Glukhovskiy distribution lies somewhat lower than the

Rayleigh distribution even in the infinitely deep-water case due to the breakdown of the

implied assumption on the relation between �H and r, �H ¼
ffiffiffiffiffiffi
2p

p
r; this circumstance holds

also for intermediate depths.

The maximum wave height is about 11.6r in the case of E2, and it is just slightly less

than 11.9r attained in simulations of waves over infinite depth, reported in (Sergeeva and

Slunyaev 2013). The maximum wave heights are smaller in the less nonlinear case A2 and

in shallower water.

The predominance of high up-crossing waves in cases E2, E1.6, E1.2 corresponds to

larger rear wave slopes similar to the rogue wave peculiarity noticed in the deep-water 2D

simulations by Sergeeva and Slunyaev (2013), and in the 3D simulations by Xiao et al.

(2013). In the in situ time series recorded near the coast of Brasil de Pinho et al. (2004)

identified 197 up-crossing and 108 down-crossing rogue waves, which gives the ratio of

65–35 %. The present simulations confirm existence of this asymmetry of high waves in

rough sea states in the situations of intermediate depth as well. On the other hand, for

waves of smaller amplitude corresponding to cases A, no significant difference between the

numbers of up- and down-crossing rogue waves is observed. This result is in agreement

with in situ observations in the coastal zone of the Baltic Sea under rather mild weather

conditions (Didenkulova and Rodin 2012).

S558 Nat Hazards (2016) 84:S549–S565

123



5 Typical rogue wave events (space series)

The evolution of rogue waves may be considered in more detail, having the spatiotemporal

wave data. In particular, we can estimate the lifetimes of rogue events and also study the

asymmetry of rogue waves at different instants. One can follow the rogue wave during its

occurrence and disappearance having the benefit of the spatial periodicity. Thus, space

series are used in this section.

Firstly, the rogue waves which fulfill the condition on the wave height (1) are selected,

and their shapes are analyzed. The rogue wave shapes are divided into four classes

depending on whether the crest height is larger than the trough height or not (positive or

negative waves), and whether the deep trough precedes or follows the high crest (front or

rear waves).

The charts characterizing the typical shape of rogue waves are shown in Fig. 5 for the

two utmost depths; simulations A1.6 and E1.6 correspond to the intermediate case and are

not shown here. Waves with larger crests dominate. Deep-water Stokes waves have higher

and sharper crests and thus this observation in cases A2 and E2 is not surprising. Shallow

water cnoidal waves are also strongly asymmetric, although cases A1.2 and E1.2, which

show even stronger vertical asymmetry than in deeper water, correspond to the interme-

diate depth kph * 1.2. In the case of steep waves over relatively shallow water E1.2, there

Fig. 5 Charts of rogue wave shapes divided in four classes: case A2 (a), E2 (b), A1.2 (c) and E1.2 (d). The
characteristic wave shapes are given in b, where arrows indicate the direction of wave propagation

Nat Hazards (2016) 84:S549–S565 S559

123



is practically no rogue waves represented by deep troughs (so-called holes in the sea), see

Fig. 5d.

Moderately steep waves do not exhibit horizontal asymmetry, as rogue waves in the

steeper wave conditions do. The portion of rogue waves with rear slope, which is higher

than the front slope, significantly exceeds the fraction of rogue waves with opposite

asymmetry in cases E (Fig. 5b, d). These conclusions fully agree with the statements on

difference between statistics of up- and down-crossing waves made in the previous section;

thus, the analyses of time series and space series have resulted in similar findings.

The spatiotemporal data of simulations are stored with high resolution, which allows

considering the occurrence of extreme events in detail. When rogue waves selected

according to the criterion (1) are detected in consequent space series at close locations,

they are consolidated forming clusters of longer rogue events in the time–space wave

diagrams. Within the event, the condition (1) on the extreme wave height may be violated,

but only for short times (up to 2.5 wave periods). The resulting lifetimes of the rogue

events are plotted in Fig. 6 versus the amplification index, AI = H/(4r) (Fig. 6a) and

versus the sequence number of the rogue event (Fig. 6b), for two rates of nonlinearity and

two water depths.

The number of rogue waves is much larger in the case E2, which is the deepest and the

most nonlinear one. Rogue waves in deep sea seem to amplify stronger (Fig. 6a). Typi-

cally, longer living events result in stronger wave amplification. From Fig. 6b, one may see

some weak regularity that rogue waves which occur in deeper water seem to live longer,

though this statement is rather uncertain due to a very different number of the events in the
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Fig. 6 Rogue event lifetimes
versus wave amplification (a) and
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cases. There is no significant difference between simulations A and E for the same depths,

deep or shallow. It may be noted that the analytic estimation of lifetimes of extreme waves

caused by linear dispersive focusing and nonlinear self-modulation, made by Slunyaev and

Shrira (2013), resulted in a similar conclusion about proximity of these values. Hence, the

effect of nonlinearity seems to contribute insignificantly to the rogue wave life time.

The maximal lifetimes in the considered cases differ almost twice, which may be due to

a very different number of rogue waves counted in the cases. Most of rogue waves live for

a few, up to ten wave periods; though there is a less numerous population of rogue waves,

which may live up to 30–60 wave periods. Thus, the upper limit is in agreement with the

results reported by Sergeeva and Slunyaev (2013). Of course, the present work does not

answer the question about the effect of transverse dimension.

6 A case study from the Baltic Sea

A variety of spectral shapes may characterize waves in the coastal area. The JONSWAP

spectrum is one of the most used model spectra for wind waves. It has no explicit

dependence on the water depth and originally was obtained for relatively deep North Sea.

The frequency spectra of waves in coastal waters of Taiwan turned out to fit the JONS-

WAP function with different values of the peakedness parameter rather frequently (Doong

et al. 2015). Using our own database of surface wave records from the Baltic Sea, we

examine below whether the coastal waves may be described by the JONSWAP spectrum,

and what is the corresponding probability function.
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Fig. 7 a Examples of in situ
wave spectra from the Baltic Sea
versus the JONSWAP spectrum.
The numbers on the left of the
curves denote values of the
spectrum peakedness c. b The
corresponding wave height
exceedence probabilities. Solid
and broken curves correspond to
the up- and down-crossing wave
analysis, respectively; the wide
green curve reproduces the
Rayleigh law. The examples in a,
b correspond to dimensionless
depths kph & 2.6, 1.6, 2.5 and
steepnesses 2kpr & 0.10, 0.13,
0.13 correspondingly for the
consequent dates (see the
legends)
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The details of the relevant in situ experiments in the Baltic Sea may be found in

Didenkulova and Anderson (2010), Didenkulova (2011), Didenkulova and Rodin (2012).

The sea surface elevation caused by wind waves was recorded at water depth h = 2.7 m by

ultrasonic echosounder (LOG_aLevel� device) with acquisition frequency 5 Hz. The

measurements were performed continuously during rather mild weather conditions in

June–July of 2008 and 2009. To separate wind waves from intense ship wake signals

observed during the day, we consider only night records for the duration of 7 h (from 0:00

till 7:00). For our purposes, we select randomly a few days with single-peaked frequency

spectra. Firstly, the selected 7-h records are cut into 20-min segments, and the samples are

investigated searching for periods of quasi-equilibrium, characterized by similar-shaped

single-peaked spectra with close values of the peak frequency and standard deviation for

the sea surface elevation, r. The duration of the obtained quasi-equilibrium records is from

2 to 4 h for different records. Then, frequency spectra are obtained for even shorter wave

samples; three examples of the spectra are shown in Fig. 7a (see the legend). The spectra

are compared with the JONSWAP function for given r and peak frequency xp, and

different values of peakedness c, from 2 to 6 (gray curves with numbers indicating values

of c). Amplitudes of the power spectra and frequencies in Fig. 7a are scaled. Due to the

difference between the peak frequencies of the records from different days, the effective

depth conditions are different; they correspond to kph & 1.6…0.2.6, where kp is the peak

wavenumber, related to the peak frequency by the linear dispersion law, xp
2 = gkp

tanh kph (g is the gravity acceleration). The characteristic wave steepness defined as 2kpr
varies from 0.10 to 0.13 for these records.

It may be seen from Fig. 7a that the high-frequency tails of the measured waves agree

with the JONSWAP spectrum with small c rather well; the agreement is perhaps somewhat

worse in the long-wave domain. The most energetic parts of the spectra seem to correspond

to the JONSWAP spectrum with c & 2…4. It should be stressed that the directional

spreading of the in situ waves was not measured, and the assumption of unidirectional

waves is not justified directly. On the other hand, the conditions of measurements seem to

favor narrow angle spectrum of waves: waves are propagating in slowly shoaling water,

and wave reflection from the coast is weak.

Considering the characteristic steepness and depth parameters, the following rough

correspondence between the data from the Baltic Sea (see caption for Fig. 7) and the

numerical simulations (see Table 1) may be set: the record made on July 1, 2008, is similar

to case A2, the record from July 18, 2008, is similar to E1.6, and the time series from 2009

is close to case E2.

The wave height exceedence probability functions for the in situ time series are plotted

in Fig. 7b which is similar to Fig. 4 wave height exceedence probability (the Glukhovskiy

distributions differ for these cases and are not plotted). There are a few rogue waves

according to condition (1), but their maximal wave heights only slightly exceed the value

8r. No clear difference between the up- and down-crossing statistics is found in Fig. 7b.

The records from 2008 exhibit wave height probabilities similar to the numerical simu-

lations (Fig. 4a, c); they are mainly below the Rayleigh distribution. The steeper record

from 2009 definitively exceeds it similar to Fig. 4b. It may be pointed out that the fre-

quency spectrum of the record from 2009 seems to be more peaked compared to the others.

Thus, the considered examples from the Baltic Sea agree with the general picture which

follows from the performed numerical study, though the agreement between curves for

simulation E1.6 and for the record from July 18, 2008, is not very good.
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7 Conclusion

Unidirectional surface sea waves with JONSWAP spectrum are simulated numerically for

conditions of moderate and strong nonlinearity. The main focus is made on the effect of the

finite depth in the intermediate range of kph from 2 to 0.8 on the probability and char-

acteristic appearance of rogue waves. In each case, individual waves of the order of O(107)

are used for the statistical analysis. Much attention is paid to the adequate reproduction of

the equilibrium sea state for given conditions. The cases kph & 2, kph & 1.6 and

kph & 1.2 are considered in more detail. The findings are compared with our previous

work on the infinitely deep-water simulations Sergeeva and Slunyaev (2013). The results

of numerical simulations are also compared versus the analysis of a few in situ time series

from the coastal zone of the Baltic Sea.

The main outcomes of the study may be formulated as follows.

The spatiotemporal dynamics of the sea waves for given JONSWAP spectrum was

successfully replicated in the numerical simulations for conditions kph & 2, kph & 1.6

and kph & 1.2. Both wavenumber and frequency wave spectra are reproduced accurately;

though in the steepest case, they are altered by the downshift and decay due to the

parameterized wave breaking. In the shallowest case kph & 0.8, spurious wave dynamics

affects the wave parameters significantly.

The use of time records at different locations helps to increase the amount of statistical

data, and to describe rarer events. The wave height exceedence probability functions

exceed the Glukhovskiy distribution, but may drop below the Rayleigh law in situations of

relatively shallow water and weak nonlinearity. The difference in probabilities between the

infinitely deep-water condition and the case kph & 2 is not significant; the probability of

high waves under intense wave conditions exceeds the Rayleigh distribution.

The maximal wave height achieved in numerical experiments reaches 11.6r, which is

about three times the significant wave height. The rogue events may last for 30–60 wave

periods depending on the local depth.

The analyses of time series and space series result in similar conclusions on the typical

shape of the rogue wave. The waves have strong vertical asymmetry in all situations from

deep water to kph * 1.2; the rogue waves are characterized by larger rear slopes when the

waves are strongly nonlinear (extreme up-crossing waves are higher/more frequent) at all

considered depths kph C 1.2. The horizontal asymmetry becomes apparent for the rare

population of sufficiently high waves only.

Randomly chosen in situ time series from the Baltic Sea, which are characterized by a

single-peak steady spectrum, agree with the general picture drawn from the performed

numerical simulations.
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