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Abstract In this paper, a semiautomatic method for landslide detection from satellite

images and digital terrain information using generalized improved fuzzy Kohonen clus-

tering network (GIFKCN) classifier is presented. The proposed method classifies the pre-

and post-landslide images using the GIFKCN classifier which is trained using spectral

indices such as normalized difference vegetation index, normalized difference building

index and normalized difference water index. The changes in the vegetation class are

identified using the pre- and post-classified images. Generally, landslides result in loss of

vegetation; thus, using this property, candidate landslides are identified. Finally, false

positives are removed using a rule set created from DEM derivatives slope and aspect. The

proposed method is applied on Landsat 5 and Advanced Land Imager EO-1 satellite

images to detect earthquake-induced landslides that occurred in Sikkim state of India due

to the September 18, 2011, earthquake of magnitude Mw = 6.9. The terrain information

used is ASTER Global Digital Elevation Model of the area. The accuracy assessment of

the method is done, and the results show that the landslides are identified and classified

efficiently.

Keywords Landslide � KCN � ASTER GDEM

& Krishna Kant Singh
krishnaiitr2011@gmail.com

1 Department of Electrical and Electronics Engineering, Dronacharya College of Engineering,
Gurgaon, India

2 Department of Computer Science and Information Technology, The NorthCap University,
Gurgaon, India

123

Nat Hazards (2016) 83:1027–1044
DOI 10.1007/s11069-016-2361-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-016-2361-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-016-2361-6&amp;domain=pdf


1 Introduction

Landslides pose a serious threat to life and property generally in mountainous regions.

Remote sensing data are used in three main phases of a landslide-related study: landslide

detection and identification, monitoring of landslides and spatial analysis and hazard

prediction. There are a wide range of methods that are present in the literature for landslide

detection using satellite images. Most of the early researches made use of aerial pho-

tographs of varying scales (1:50,000–1:10,000) and satellite images of Landsat TM and

SPOT (Cheng et al. 2013; Ren and Lin 2010; Zhou et al. 2002). Many experts have used

image interpretation as a tool of landslide identification; they analyzed the satellite images

using different keys to identify landslides in areas. These methods give quick and timely

response for rescue teams to carry out relief operations. Some examples of landslide

detection using image interpretation techniques are discussed in Kääb (2002), Casson et al.

(2003) and Van Westen and Lulie Getahun (2003). With the advancement of remote

sensing technology and easy availability of remote sensing data, many automatic

approaches for landslide mapping and identification have been developed. There are two

approaches for landslide characterization. The first one involves determination of quali-

tative characteristics such as number, distribution, type and character of debris flow using

airborne or satellite images. The second approach involves computation of dimensions

such as length, width, thickness, and slope using stereo SAR, interferometric SAR (InSAR)

and topographic profiles (e.g., LASER altimeter) (Singhroy and Molch 2004; Singhroy

2002).

Monitoring of landslides involves the comparison of landslide conditions such as speed

of movement, surface topography and soil humidity to assess landslide activity (Mantovani

et al. 1996). Cheng el al. (2004) proposed an automated landslide detection method using

multi-temporal satellite images and DTM data. The method involves differing band ratio of

two co-registered images to identify changed areas representing landslides. The landslides

were further refined using terrain information. Nagarajan et al. (1998) presented a similar

approach for landslide identification using IRS images. Another semiautomatic method for

monitoring of landslides made use of multi-temporal VHR images. The method involved

image orthorectification, relative radiometric normalization, change detection using image

difference, thresholding and spatial filtering to eliminate pixel clusters that could corre-

spond to man-made land use changes (Hervás et al. 2003).

In mountainous areas, major earthquakes induce landslides in broad areas with high

intensity and high scale, which causes enormous economic and human life loss. Nor-

malized difference vegetation index (NDVI) and terrain slope information of 8-day

moderate resolution imaging spectroradiometer (MODIS) images are used to detect

Wenchuan earthquake-induced landslide (Zhang et al. 2010). NDVI filtering and change

detection analysis are applied on remote sensing images to identify landslides in southern

Taiwan (Tsai et al. 2010). An automated method for landslide detection classified the

remote sensing images into landslide and non-landslide areas using a scene classification

method based on BoVW and pLSA (Cheng et al. 2013). Another method for landslide

detection uses high-resolution panchromatic images from Cartosat-1 and IRS along with

10-m gridded DTM data. The method is based on change detection techniques and global

contextual criteria in an object-based environment (Martha et al. 2012). Landslides that

occurred due to a 6.9-magnitude earthquake in Sikkim Himalaya, India, on September 18,

2011, were detected using the decision tree method applied to two Indian remote sensing
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satellites linear imaging self-scanning sensor (LISS III) images acquired from 2007 and

2011 which were taken before and after the earthquake (Siyahghalati et al. 2014).

The Himalayas which is an active fold-thrust belt is frequently hit by earthquakes. On

September 18, 2011, at 06:10:48 PM (Indian Standard Time), an earthquake of magnitude

Mw = 6.9 hit the Nepal border with its epicenter located at 27.723�N and 88.064�E and

focal depth 19.7 km (USGS). The earthquake induced a large number of landslides in the

region. In this paper, a semiautomatic approach for landslide detection from remote

sensing images and digital terrain information is presented. The method classifies the pre-

and post-landslide images using generalized improved fuzzy Kohonen clustering network

(GIFKCN) classifier. Landslides result in loss of vegetation; thus, the changed areas in

vegetation class are identified as landslide candidates. The pre- and post-classified images

are used to identify candidate landslides. The candidate landslides are validated using the

rule set developed using slope and aspect derived from DEM data. The proposed method is

applied to detect the September 18, 2011, earthquake-induced landslides that occurred in

Sikkim state. Pre- and post-earthquake Landsat 5 and Advanced Land Imager (ALI) EO-1

satellite images, respectively, are used in this study. The terrain information is obtained

using ASTER Global Digital Elevation Model (GDEM) of the area. The results show that

the landslides are detected accurately and efficiently.

2 Data sources

2.1 Satellite data

Aerial photographs provide detail about landslides, but they are rarely available as

obtaining pre- and post-earthquake images is difficult in all cases. Steerable sensors and an

increasing number of operational satellites have led to satellite data increasingly replacing

aerial photographs for landslide studies. Also, satellite images not only cover a larger area

but also are cheaper as compared to aerial photographs. Thus, a novel method for landslide

detection using satellite images and DEM data is proposed here. Pre- and post-earthquake

satellite images and topographic data are used. Pre- and post-earthquake Landsat 5 and EO-

1 ALI images acquired on August 27, 2011, and October 19, 2011, respectively, are used

for the study (USGS). The EO-1 ALI image is level 1GST product which is terrain

corrected, and Landsat 5 is level 1T which is precision and terrain corrected by incorpo-

rating ground control points while employing a DEM for topographic accuracy. A small

subset from these images showing areas of Sikkim state such as Lachung, Lachen, Lig-

tham, Chungthang, and Mangan as shown in Fig. 1 is selected to demonstrate the proposed

method.

2.2 DEM

The method also requires elevation information for the validation of landslide candidates.

ASTER GDEM data give topographic information. The ASTER GDEM data cover land

surfaces between 83�N and 83�S and are comprised of 22,702 1� 9 1� tiles. The ASTER

GDEM data are available in GeoTIFF files with geographic latitudes and longitudes. The

data are posted on a 1 arc-second (approximately 30-m at the equator) grid and referenced

to the 1984 World Geodetic System (WGS84)/1996 Earth Gravitational Model (EGM96)

geoid.
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The ASTER GDEM is resampled with about 30-m resolution using ERDAS Reproject

module in order to facilitate subsequent landslide spatial statistical analysis. Resampling

will not affect the topographic information of the original ASTER DEM data. In this study,

ASTER GDEM data acquired on October 18, 2011, are used. The DEM data used are

shown in Fig. 2.

3 Proposed methodology

The flowchart of the proposed method is shown in Fig. 3. It consists of the following steps:

1. Image preprocessing

2. Computation of spectral indices

3. Image classification using GIFKCN

4. Landslide candidate detection

5. DEM and its derivatives

6. Creation of rule set for validation of landslides

These steps are discussed in detail in the following sections:

3.1 Image preprocessing

The input images are preprocessed to obtain accurate results and remove any sort of

distortions. Two preprocessing steps are carried out on the input image: image geometric

correction and top of atmospheric reflectance calculation. The study area covers moun-

tainous region, and therefore, there is brightness difference due to image acquisition under

different sun illumination conditions. Thus, to compensate for this difference the ToA

reflectance of the images is computed.

3.2 Computation of spectral indices

Spectral indices are used for highlighting a particular type of land cover such as NDVI for

vegetation, normalized difference building index (NDBI) for built-up areas and normalized

difference water index (NDWI) for water. In the proposed method, spectral indices are

used for training of the GIFKCN classifier. The study area is classified into four classes:

vegetation, water, clouds and bare land. Thus, those spectral indices that highlight these

land cover types are used for training. NDVI, NDWI and NDBI are derived from the

different wavelength bands. In NDVI, the vegetated area pixels have higher values as

compared to other features. Similarly, NDWI and NDBI highlight the water and bare land

areas, respectively. These images are normalized into (0, 255) using Eq. (1) for deter-

mining the optimal threshold value,

I ¼ SI � SIminð Þ
ðSImax � SIminÞ

� 255 ð1Þ

where I is the normalized image, SI is the input image and SImax and SImin represent the

maximum and minimum pixel value of the input image, respectively. In pre-landslide

bFig. 1 Geographical location of the study area. a False natural color image (red band 5, green band 4, blue
band 3) acquired on August 27, 2011 and b false natural color image (red band 8, green band 6, blue band 4)
acquired on October 19, 2011
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image, vegetated areas have NDVI values [190, water has NDWI values[135, urban

areas have NDBI values[192 and clouds have NDBI values in the range 158–192. In post-

landslide scene, the vegetated areas have NDVI values[182, clouds have NDBI values in

the range 144–185, water pixels have NDWI values[160, and urban area and bare land

have NDBI values[185.

3.3 Image classification using GIFKCN

GIFKCN classifier is a neuro-fuzzy classifier that hybridizes the Kohonen clustering

network (KCN) (Kohonen 1990) and generalized improved fuzzy partition FCM (Zhu et al.

2009). The classified pre- and post-landslide images are used to identify candidate land-

slides. Since post classification comparison requires that the individual classification

method should have high accuracy, GIFKCN classifier (Singh et al. 2014) is used to

classify the pre- and post-landslide images into four classes: vegetation, cloud, water and

bare land. Both the pre- and post-landslide images are classified using the following

method. The images are classified into four classes; thus, four centers are computed. First,

initialize the cluster center zi 2� i� cð Þ, the threshold eðe[ 0Þ and topological

Fig. 2 ASTER GDEM data of the study area acquired on October 18, 2011
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neighborhood parameters. Set t = 1, maximum iteration limit tmax and m[ 1. The

fuzziness index mt is updated by

mt ¼ mþ t m� 1ð Þ
tmax

for 1\t� tmax and m[ 1 ð2Þ

Calculate fuzzy membership matrix uik and learning rate cik,t using Eqs. (3) and (5).

uik ¼
Xc

l¼1

k zi � Ik k2 �bk
k zl � Ik k2 �bk

� �1= m�1ð Þ !�1

for 1� i� c and 1� k� n ð3Þ

where

Pre Landslide Image Post Landslide 
Image

Image Preprocessing

Computation of
Spectral Indices

Image Classification
Using GIFKCN 

classifier

Landslide Candidate 
detection

Creation of Ruleset 
for validation of 

Landslides

Topographical 
Map

DEM

AspectSlope

Landslide 
Identification

Fig. 3 Flowchart of the proposed method
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bk ¼ a �minfkzs � Ikk2 s � 1; . . .; cf ggj ; ð0� a\1Þ ð4Þ

and the membership matrix U ¼ ½uik� represents a fuzzy c-partition matrix constrained by

the probabilistic conditions 0� uik � 1, and
Pc

i¼1 uik ¼ 18i ¼ 1; . . .; c:
The learning rate cik,t of the ikth neuron for tth iteration is given by Eq. (5).

cik;t ¼ uikð Þmt ð5Þ

The weight of the output neuron is updated using Eq. (6).

zi;t ¼ zi;t�1 þ
Xn

k¼1

cik;t Ik � zi;t�1

� �
=
Xn

s¼1

cis;t ð6Þ

The learning rate cik,t. is updated and t is incremented. The termination condition

z1;t � z1;t�1 [ e is checked. If the termination condition is not met, then algorithm con-

tinues recursively. Otherwise, the final clustered image is formed by assigning the pixel xk
to the class c with highest membership value. GIFKCN is trained using the mean values of

spectral indices. The mean values of the spectral indices for different classes are sum-

marized in Table 1.

3.4 Landslide candidate detection

Bare rocks or debris is exposed after a landslide event, giving a bright appearance to

landslide-affected areas in an image. One of the commonly observed properties of land-

slides is that it results in loss of vegetation. This property can be utilized as the first step in

identification of landslides. Thus, the pre- and post-classified image is compared to obtain

the change information from these images. All the possible change classes from vegetation

class are identified. The vegetation to bare land class represents loss of vegetation, and

thus, these are identified as candidate landslides.

3.5 Digital elevation model and its derivatives

Since landsliding is a geomorphic process, using DEMs as additional data during image

analysis will yield better classification results in comparison with spectral data alone. The

DEM data can be utilized to extract important information such as slope and aspect of an

area.

Table 1 Mean values of the various spectral indices scaled in 8 bits

Indices Vegetation class Snow and water class Urban and bare land
class

Cloud class

August
27, 2011

October
19, 2011

August
27, 2011

October
19, 2011

August
27, 2011

October
19, 2011

August
27, 2011

October
19, 2011

NDVI 238.83 207.62 150.75 96.16 162.87 124.62 163.40 109.63

NDBI 132.62 129.75 117.36 88.82 201.70 199.38 177.76 164.78

NDWI 41.96 113.36 150.60 160.33 50.56 89.71 80.07 112.40

1034 Nat Hazards (2016) 83:1027–1044

123



3.5.1 Slope

The slope is expressed as the change in elevation over a certain distance. In this case, the

distance is the size of the pixel. The resulting grayscale image shows flat areas as dark

pixels, and pixel brightness increases as the terrain becomes steeper. The slope of the study

areas is derived from the DEM data using ERDASTM IMAGINE software. The slope

image is classified into four classes with slope values in the following ranges 0�–15�, 15�–
30�, 30�–45� and above 45�.

3.5.2 Aspect

Another important derivative is surface aspect that gives the direction of slope for a DEM

file. Aspect uses a 3 9 3 pixel moving window centered on each pixel to calculate the

prevailing direction of its neighbors. For pixel x, y, the average changes in elevation in both

x and y directions are calculated first. Then, the average slope is the average change in

elevation in the y direction divided by the average change in elevation in the x direction.

The aspect is the arc tangent of the average slope. Their values represent a direction in

degrees measured clockwise from north, ranging from 0 to 361. 0–22.5 indicates a north-

facing slope, 22.5–67.5 indicates northeast-facing slope, 67.5–112.5 indicates an east-

facing slope, 157.5–202.5 indicates a south-facing slope, 202.5–247.5 indicates southwest-

facing slope, 247.5–292.5 indicates a west-facing slope and 361 indicates areas that are

perfectly flat (e.g., water bodies) with no aspect for the slope. The aspect image is classified

into ten classes showing different slope directions.

3.6 Creation of rule set for validation of landslide

The candidate landslides identified contain a large number of false positives as some

features such as roads, water bodies, barren rocky lands, agriculture terrace, built-up areas

and river beds are identified as landslides. Thus, to remove these false positives, the

elevation data and their derivatives slope and aspect are used. Slope angle is one of the key

factors in inducing slope instability. Landslides generally occur at steep slopes, and based

upon the landslide distribution, south- and east-facing slopes (i.e., slopes with aspect values

in the range 67.5–202.5) were considered to have more potential for landslides (Li et al.

2013). Slope values\15� correspond to built-up area and water bodies. Therefore, the

entire candidate landslides with mean slope values[15� and aspect values in the range

67.5–202.5 are validated as true landslides, while others are removed. So, the following

rule set is created.

For all Landslide candidates

if mean slope > 150 and mean aspect lies in the range 67.5-202.5

then validate as true landslide.

else

remove as false positive

end
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4 Experimental results

The method was implemented in MATLAB R2013a and ERDAS software. The spectral

indices were derived from ERDAS software, and the results of applying the various

spectral indices are shown in Fig. 4. The spectral indices were used as training for the

GIFKCN classifier. The various parameters used in the experiment are

c ¼ 4; fixedmt ¼ 2; a ¼ 0. The pre- and post-classified images are shown in Fig. 5a, b.

The change map showing the change in vegetation class is shown in Fig. 5c. The slope and

aspect were derived from the DEM data. The slope and aspect classified images are shown

in Fig. 6. The final landslides are detected by applying the rule set on the candidate

landslides. The final landslide detection results are shown in Fig. 8.

5 Accuracy assessment

The sampling strategy for collecting ground data for accuracy assessment is an important

step in classification. Some analysts continue to perform error evaluation based only on the

training pixels used to train or seed the classification algorithm. But the location of the

training sites is not random and is also biased by the analyst’s a priori knowledge of where

certain land use/land cover types existed in the scene. The purely random technique is also

not practical as it ignores the smaller categories. For these reasons, stratified random

sampling is usually used so that the sampling points are fairly spread in each of the classes

(Congalton and Green 2008). The error matrix of the pre- and post-classified images is

given in Tables 2 and 3, respectively. The overall accuracy and kappa coefficient values

show that the performance of the method is quite satisfactory. A number of accuracy

elements such as overall accuracy, producer’s accuracy, user’s accuracy and kappa coef-

ficient are computed from the error matrix. The accuracy assessment of the classification

results in this paper was done by the method combining stratified random sampling. A total

of 256 reference points were chosen using stratified random sampling. The confusion

matrices and the various assessment elements for both pre- and post-landslide classified

images are given in Tables 2 and 3, respectively. The qualitative analysis of the result is

done by overlapping the identified landslides on the original image. Figure 7 shows

the landslide inventory map prepared by National Remote Sensing Centre. The accuracy of

the results is validated by mapping the detected results (Fig. 8) with the landslide inventory

map (Fig. 7).

The overall accuracy is 96.10 and 96.48 % for pre- and post-landslide image, respec-

tively. The value of kappa coefficient is 0.9254 for pre-landslide and 0.9363 for post-

landslide image. The high overall accuracy and the value of kappa coefficient show that the

results obtained are satisfactory. The accuracy in terms of number of landslides detected is

also computed. A total of 274 landslides were manually detected by visual interpretation of

high-resolution imagery. The proposed method correctly identified and classified 260

landslides, while 14 landslides remained undetected and 8 landslides are wrongly identi-

fied. Based on this data, the accuracy of the method is 94.8 %, the omission error is

5.10 %, the commission error is 2.91 %, the largest landslide identified is 0.69 km2, and

the smallest landslide identified is 0.04 km2.
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Fig. 4 Response of various spectral indices on a pre-landslide image and b post-landslide image
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Fig. 5 a Classified pre-earthquake image, b classified post-earthquake image, c classified change map
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6 Conclusion and discussion

In this paper, a semiautomatic method for landslide detection using satellite images and

terrain data is presented. The pre- and post-landslide images are classified into four land

cover classes using the GIFKCN classifier. The classifier is trained from spectral indices

NDVI, NDBI and NDWI. The change in vegetation class is used to identify the candidate

landslides. The candidate landslides are validated using the rule set based on slope and

aspect values. The following advantages of GIFKCN have been observed.

(a) Sequential data feeds GIFKCN updates the centers after each training epoch. Thus,

GIFKCN works parallel and is independent of the feeding sequence.

(a) Complexity GIFKCN is less complex as compared to KCN, and due to its parallel

nature, it has a complexity of O(t*).

(c) Termination KCN always iterated to its maximum iteration number. However, due

to the stopping criteria used in GIFKCN, it stopped when the optimal result is

obtained making it faster.

Fig. 5 continued
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The method is applied on bitemporal images of Sikkim, India, to identify the September

18, 2011, earthquake-induced landslides. The accuracy assessment in terms of number of

landslides identified is computed, and it is observed that 94.8 % landslides are correctly

identified and the omission and commission error is 5.10 and 2.91 %, respectively. The

largest landslide identified is 0.69 km2 in size, and smallest landslide identified is

0.04 km2.

Fig. 6 a Classified aspect image, b classified slope image
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Table 2 Error matrix for pre-landslide image

Classified
data

Reference data Total Producer’s
accuracy
(%)

User’s
accuracy
(%)

Kappa

Vegetation Cloud Bare
land

Snow
and
water

Vegetation 164 0 1 2 167 97.04 98.20 0.9471

Cloud 2 44 0 1 47 97.78 93.62 0.9226

Bare land 2 0 20 0 22 95.24 90.91 0.9010

Snow and
water

1 1 0 18 20 85.71 90.00 0.8911

Total 169 45 21 21 256 Overall accuracy: 96.10 Overall kappa:
0.9254

Fig. 7 Distribution of co-seismically generated landslides within an area of 2000 sq. km in Sikkim from
satellite data. Source: NRSC, http://bhuvan.nrsc.gov.in/bhuvan/PDF/sikkim_earthquake.pdf
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