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Abstract Gully erosion is a key issue in natural resource management that often has

severe environmental, economic, and social consequences. The objective of the present

study is to assess the capability of weights-of-evidence (WofE) and frequency ratio (FR)

models for spatial prediction of gully erosion susceptibility and characterizing suscepti-

bility conditions at Chavar region, Ilam province, Iran. At first, a gully erosion inventory

map is prepared, using multiple field surveys. In total, of the 63 gullies which have been

identified, 44 (70 %) cases are randomly algorithm selected to build gully susceptibility

models, while the remaining 19 (30 %) cases are used to validate the models. The

effectiveness of gully erosion susceptibility assessment via GIS-based models depends on

appropriate selection of the conditioning factors which play an important role in gully

erosion. Learning vector quantization (LVQ), one of the supervised neural network

methods, is employed in order to estimate variable importance. In this research, the

selected conditioning factors are: lithology, land use, distance from river, soil texture, slope

degree, slope aspect, plan curvature, topographic wetness index, drainage density, and

altitude. Finally, validation of the gully dataset which has not been utilized during the

spatial modeling process is applied to validate the gully susceptibility maps. The receiver

operating characteristic curves for each gully susceptibility map (i.e., produced by WofE
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and FR) are drawn, and the areas under the curves (AUC) are calculated. The results show

that the gully erosion susceptibility map produced by the frequency ratio model

(AUC = 78.11 %) functions well in prediction compared with the WofE model

(AUC = 70.07 %). Furthermore, LVQ results reveal that distance from river, drainage

density, and land use are the most effective factors.

Keywords Gully erosion assessment � Bivariate statistical models � GIS � Learning vector
quantization � Iran

1 Introduction

Gully erosion is a major problem for natural resource management, leading to land

degradation and economic losses worldwide. This phenomenon causes different types of

damage to roads, natural resources, and agriculture (Burkard and Kostaschuk 1997; Nyssen

et al. 2002; Valentin et al. 2005; Choi et al. 2008; Takken et al. 2008; Akgün and Türk

2011; Chaplot 2013; Zakerinejad and Maerker 2015), which is considered as one of the

principal agents of geo-environmental degradation in Western Iran. Large parts of Ilam

province are affected by gully erosion (Noormohammadi et al. 2013, 2014). The gully

erosion and degradation processes are related to population growth and such interrelated

effects as expanding agricultural lands, overgrazing, and deforestation. Due to the semiarid

climate, intense precipitation events, and deforestation processes, gully erosion is con-

sidered an important source of land degradation in Ilam.

Geo-environmental factors controlling critical conditions for gully erosion occurrence

and development are primarily associated with topography, lithology, rainfall, soil, and

land use (Bryan and Jones 2000; Poesen et al. 2003; Martı́nez-Casasnovas et al. 2004;

Capra et al. 2009; Gómez Gutiérrez et al. 2009b; Cui et al. 2012; El Maaoui et al. 2012).

Kirkby and Bracken (2009) stated that surface runoff is one of the principal factors con-

tributing to the occurrence of gully erosion. The velocity and volume of concentrated

surface flow are also controlled by land use and topographic attributes (e.g., contributing

drainage area, slope steepness, and slope curvature) (Vandekerckhove et al. 2000; Valentin

et al. 2005; Zucca et al. 2006; Dondofema 2007; Samani et al. 2009; Capra et al. 2009;

Svoray and Markovitch 2009; Conoscenti et al. 2013).

Several models have been developed for assessing the gully erosion rate (USDA-SCS

1992; Poesen et al. 2003). Among these are the following physically based models:

Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS;

Knisel 1980), Water Erosion Prediction Project (WEPP; Flanagan and Nearing 1995),

Ephemeral Gully Erosion Mode (EGEM; Merkel et al. 1988; Woodward 1999), and the

method developed by Sidorchuk (1999). However, the above-mentioned models do not

predict spatial distribution of gullies which is an essential tool for evaluating the impact of

environmental changes on the occurrence of gullies and planning the erosion-control

practices (Conoscenti et al. 2013). Additionally, the spatial distribution of soil erosion,

especially gully erosion, is an important factor in watershed management (Popp et al. 2000;

Sidorchuk et al. 2003; Kumar and Nair 2006). There are also models that allow an

investigator to produce gully erosion susceptibility map (GESM) or assess the spatial

probability of gully occurrence by defining statistical relationships between geo-environ-

mental conditioning factors and the spatial distribution of gullies (Table 1).
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The main objectives of this study are as follows: (1) variable contribution analysis via

learning vector quantization (LVQ) algorithm, (2) analyzing the geo-environmental con-

ditions which determine the occurrence of gully erosion, and (3) assessing the capability of

frequency ratio (FR) and weights-of-evidence (WofE) models to predict gully erosion

susceptibility. In order to achieve these goals, the original research was carried out in

Chavar region, Ilam province, Iran, as an area prone to gully erosion. The frequency ratio

and weights-of-evidence models were selected as the bivariate statistical analysis for

gauging gully erosion susceptibility because of the following reasons: (1) The mentioned

models can work with different types of independent variables such as binary categorical,

ordinal, or continuous and (2) only few studies have tested bivariate statistical analysis for

calculating gully erosion susceptibility (Dube et al. 2014). Producing the GESM will be

useful to decision makers and engineers in land-use management to identify prone areas for

future plans (e.g., road development and urbanization).

Table 1 Methods adopted in the several studies on the spatial distribution of gullies

Article Method

Martı́nez-Casasnovas et al. (2004) Logistic regression

Chaplot et al. (2005a, b) Linear regression

Meyer and Martı́nez-Casasnovas (1999) Logistic regression

Lucà et al. (2011) Logistic regression; information value

Akgün and Türk (2011) Logistic regression

Conoscenti et al. (2014) Logistic regression

Conforti et al. (2010) Information value

Conoscenti et al. (2008) Conditional analysis

Conoscenti et al. (2013) Conditional analysis

Magliulo (2010, 2012) Conditional analysis

Martı́nez-Casasnovas (2003) Spatial information technology

Perroy et al. (2010) Airborne and ground-based LiDAR

Bou Kheir et al. (2007) CART

Geissen et al. (2007) CART

Märker et al. (2011) CART

Gómez Gutiérrez et al. (2009b) CART; MARS

Hughes et al. (2001) Gully density

Gómez Gutiérrez et al. (2009a) MARS

Dube et al. (2014) Weight of evidence

Kuhnert et al. (2010) Random forests

Svoray et al. (2012) Analytical hierarchy process; data mining techniques

Zakerinejad and Märker (2014) Maximum entropy modeling

Zakerinejad and Maerker (2015) Stream power index; USPED

Castillo et al. (2014) Normalized topographic method

Gómez-Gutiérrez et al. (2015) MARS

CART classification and regression trees, MARS multivariate adaptive regression splines, USPED unit
stream power-based erosion deposition
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2 Study area

The study area is located in the northern part of Ilam province, Iran, between latitudes of

33�210–33�470N and longitudes of 46�090–46�580E (Fig. 1). It covers an area of about

2,595 km2, and its altitude ranges from 423 to 2795 m above sea level, with an average of

1285 m. The study area is considered to have a semiarid climate with a mean annual

rainfall of 450 mm (WRCI 2013). It receives approximately 85 % of its annual rainfall

from December to April. In winter, the temperature ranges from -3 to 10.5 �C, while in

summer it varies from 25 to 39 �C. The major rivers in the study area are Chavar and

Seimare. Peak stream flows are experienced between February and June (WRCI 2013).

From a geological viewpoint, the study area is located in Zagros structural zone of Iran.

Zagros is identified as a region of polyphase deformation, fracture systems, and the latest

reflection of the collision of Arabia and Eurasia (Alavi 1994). The central part of the study

area is mostly covered by the massive limestone (Kazhdum formation). The vegetation

distributed above 2500 m is mainly chestnut forests or shrub grasslands. Three main soil

types occur within the study area, namely inceptisols, entisols, and vertisols. In this region,

the main erosive processes that affect the landscape are related to overland flow (diffuse

and/or linear) and gully formation that cause severe damages (Noormohammadi et al.

2013). The study area was selected because it is susceptible to gully erosion and land

degradation due to human activities (such as extension of agriculture and deforestation,

development of roads, and water transport project) and specific environmental and

socioeconomic settings (Noormohammadi et al. 2014). In the case of socioeconomic set-

ting, the people in this region earn a living by producing commodities through dry farming

and irrigated agriculture.

Four photographs of the recent gullies identified in the study area are shown in Fig. 2.

From the standpoint of people’s livelihood strategies, animal husbandry and agriculture

production are the main incomes in this area. From the viewpoint of natural resource

management, soil erosion is a major problem, especially in sub-humid, semiarid, and low-

and mid-latitude areas (Lal 2001) such as Chavar region in Iran.

3 Methodology

The methodological approach applied in the current study is a statistical bivariate analysis,

as illustrated in Fig. 3. It consists of six main steps:

1. Gully erosion inventory mapping

2. Preparing of maps of gully erosion conditioning factors

3. Importance analysis of gully conditioning factors

4. Application of frequency ratio and weights-of-evidence models

5. Creation of gully erosion susceptibility maps

6. Validation of the gully erosion susceptibility maps.

These steps are explained and expanded in the following sections.

3.1 Gully erosion inventory mapping

In the present study, gully erosion inventory map is a collection of gully occurrences which

took place in the period of 2012–2014. To prepare a detailed and reliable gully inventory
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map, extensive field surveys were performed in the study area (Guzzetti et al. 2000; Tien

Bui et al. 2012; Frankl et al. 2013). In the second step, gully areas (i.e., polygon format)

were converted to points and were used in building the gully erosion susceptibility model,

while the others were applied to validate it (Conforti et al. 2010; Lucà et al. 2011; Dube

et al. 2014; Zakerinejad and Maerker 2015). Among all the 63 detected gully locations,

Fig. 1 Gully erosion locations with the digital elevation model map of Chavar region, Iran
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70 % (44 gully cases) of them were randomly selected to train the gully erosion model,

while the remaining 30 % (19 gully cases) were employed to authenticate the result

(Chung and Fabbri 2003; Remondo et al. 2003; Dube et al. 2014). The locations of training

and test gullies are shown in Fig. 1.

3.2 Gully erosion conditioning factors

As gully erosion process is controlled by both erosivity of runoff waters and the erodibility

of soil cover, several geo-environmental attributes should be considered (Agnesi et al.

2011). It is essential to determine the gully erosion conditioning factors in order to perform

gully susceptibility mapping (Conoscenti et al. 2008; De Vente et al. 2009). Therefore, in

the first stage, gully erosion related to spatial database should be prepared. Through the

knowledge attained from the literature, availability of data and field surveys of the con-

ditioning factors were chosen (Kuhnert et al. 2010; Conforti et al. 2010; Lucà et al. 2011;

Märker et al. 2011; Svoray et al. 2012; Conoscenti et al. 2013, 2014; Zakerinejad and

Maerker 2015). Hence, ten gully erosion conditioning factors were selected to prepare the

GESM of the study area. These include lithology, land use, distance from rivers, soil

texture, slope degree, slope aspect, plan curvature, topographic wetness index (TWI),

drainage density, and altitude (Fig. 4a–j).

Contour and survey base points were extracted from 1:50,000-scale topographic maps,

and a digital elevation model (DEM) with a grid size of 20 9 20 m was constructed. Using

the DEM, several factors such as the slope degree, slope aspect, drainage density, distance

from rivers, and plan curvature can be produced. All the above-mentioned factors were

Fig. 2 Field photographs of some gullies occurred in the study area; the gullies are hazardous to
anthropogenic infrastructures such as roads and buildings (a–c), and agricultural lands (d)
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converted into a raster grid format with 20 m 9 20 m cells for application of FR and

WofE models. Furthermore, the quantile classification method was utilized to classify each

conditioning factor. In this method, each class contains the same number of features. This

technique is exercised in several studies due to its efficiency in classification (Tehrany

et al. 2014b; Umar et al. 2014; Youssef et al. 2015).

3.2.1 Lithology

The lithology factor is known as an important variable in the natural hazard analy-

sis (Pourghasemi and Kerle 2016). Lithological properties are associated with the geo-

morphological features and evaluation of a land (Dai et al. 2001; Zinck et al. 2001; Gorum

et al. 2008; Zhu et al. 2014). Moreover, gully erosion is particularly dependent on the

lithology properties of the material exposed or close to the earth surface (Casali et al. 1999;

Stotle et al. 2003; Agnesi et al. 2011; Conforti et al. 2010; El Maaoui et al. 2012; Golestani

et al. 2014). The lithology layer was concocted by digitizing the geological map (Geo-

logical Survey Department of Iran, Chavar sheet at 1:100,000 scale) (GSDI 1997). The

lithology map was prepared from an available 1:100,000-scale geological map. Chavar

region contains various geological formations (Table 2). The spatial distribution of

lithology units in the study area is demonstrated in Fig. 4a.

Fig. 3 Methodology flowchart including input data, six main steps (red boxes), and output of study (for
details, refer Sect. 3)
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Fig. 4 Gully conditioning factors: a lithology (see Table 2 for legend of lithology map), b land use,
c distance from rivers, d soil texture, e slope degree, f slope aspect, g plan curvature, h TWI, i drainage
density, and j altitude
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Fig. 4 continued

Table 2 Lithology of the study area

Code Lithology Formation Geological age

Ekn Tine-bedded argillaceous limestone with calcareous shale Kandavan Eocene

EMas-sb Undifferentiated limestone Shahbazan Eocene

Kbgp Bangestan Group: mainly limestone and shale Surgah Cretaceous

KEpd-
gu

Massive fossiliferous limestone Kazhdumi Cretaceous

KPeam Siltstone, sandstone locally with conglomerate and shelly
limestone

Amiran Cretaceous–
Paleocene

Mgs Anhydrite, salt, red marl, locally with argillaceous limestone Gachsaran Miocene

MuPlaj Sandstone (brown to gray), red marl, siltstone Aghajari Miocene

OMas Jointed limestone with intercalation of shale Asmari Miocene

Pd Cross-bedded, quartzitic sandstone Dorud Permian

Plbk Conglomerate locally with sandstone Bakhtyari Pliocene

Qft1 High-level pediment fan and valley terrace deposits – Quaternary
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3.2.2 Land use

Land-use management has a significant influence on the geomorphological slope stability

and gully occurrence (Anabalagan 1992; Zucca et al. 2006; Agnesi et al. 2011; Conoscenti

et al. 2013, 2014; Zakerinejad and Maerker 2015). Generally barren lands and sparsely

vegetated areas are more susceptible to erosion than forests where vegetation cover

strongly reduces the erosive action of surface runoff (Dai et al. 2001; Çevik and Topal

2003; Gómez Gutiérrez et al. 2009a). In other words, a negative correlation exists among

erosion rate and vegetation density (Snelder and Bryan 1995; Hughes et al. 2001; Chaplot

et al. 2005b). The land-use map was obtained from Iranian Department of Water Resource

Management (IDWRM 2012). Main land-use types having been identified in the study area

were agriculture, range, forest, and urban classes (Fig. 4b). In particular, more than 81 %

of the study area presents an agricultural land-use type in which the large part of the gullies

(90.9 %) is included. Consequently, range land, forest, and urban areas are covered by

12.98, 4.35, and 0.79 % of the study area, respectively.

3.2.3 Distance from rivers

In most cases, gullies are linked to the drainage/stream network, facilitating the evacuation

of the material eroded from upland areas (Conoscenti et al. 2014). In order to explore the

influence of drainage network, the factor of distance from rivers was considered (Choi

et al. 2008; Conoscenti et al. 2014; Dube et al. 2014; Zakerinejad and Maerker 2015).

Hence, the distance calculation operation in ArcGIS 10.2 was exercised to derive the

distance from rivers and classify it into four categories based on quantile classification

scheme (Fig. 4c).

3.2.4 Soil texture

The physical properties of the surface soil play an important role in soil infiltration, runoff

rate, soil resistance to erosion, and gully occurrence (Bryan and Jones 2000; Bou Kheir

et al. 2007, 2008; Geissen et al. 2007; Magliulo 2012; Torri et al. 2012; Deng et al. 2015).

Above all, soil texture influences hypodermic/subsurface flow and piping occurrence

(tunnel erosion), which can lead to forming gullies when the roofs of pipes collapse (Bull

and Kirkby 1997; Bryan and Jones 2000; Valentin et al. 2005; Pulice et al. 2012).

Therefore, soil texture was selected to evaluate gully erosion susceptibility (Wells et al.

2009; Agnesi et al. 2011; Conoscenti et al. 2013). A soil texture map was digitized from

soil characteristics map obtained from Iranian Department of Agriculture. Six soil texture

types were in the study areas, namely loam, clay, clay loam, sandy, sandy clay, and sandy

clay loam (Fig. 4d).

3.2.5 Slope degree

The gentle slope areas are highly potential areas for surface flow accumulation and con-

sequent exposure to gully initiation (Dramis and Gentili 1977; Valentin et al. 2005; Agnesi

et al. 2011; Rahmati et al. 2015b; Ghorbani Nejad et al. 2016). In the case of gully erosion,

gullies in the catchment are mainly located on gentle slopes as confirmed by other

researches (Flügel et al. 2003; Chaplot et al. 2005a; Kakembo et al. 2009; Le Roux and
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Sumner 2012). In the current study, the slope degree was derived from the DEM and was

divided into five classes (Fig. 4e).

3.2.6 Slope aspect

Slope aspect is also considered a crucial factor in natural hazard analysis and susceptibility

mapping (Maharaj 1993; Baeza and Corominas 2001; Pourghasemi et al. 2013b; Umar

et al. 2014). The slope aspect can indirectly influence erosion processes because it controls

duration of sunlight exposition, evapotranspiration, moisture retention, vegetation cover

type, and vegetation distribution on slopes (Dai et al. 2001; Sidle and Ochiai 2006; Agnesi

et al. 2011; Wang et al. 2011; Jaafari et al. 2014). Moreover, it can indirectly express

(proxy role) the influence of the structural setting (Conoscenti et al. 2013). The slope

aspect map was constructed automatically in ArcGIS 10.2 software, using the DEM with a

grid cell size of 20 9 20 m, and is classified into nine categories (Fig. 4f).

3.2.7 Plan curvature

The useful geomorphological information and terrain morphology description can be

determined through the analysis of plan curvature (Davoodi Moghaddam et al. 2013;

Chaplot 2013; Tehrany et al. 2014b). Generally, the impact of plan curvature on gully

erosion occurrence is the divergence or convergence of water during downslope flow

(Agnesi et al. 2011; Conforti et al. 2010; Conoscenti et al. 2013; Gómez-Gutiérrez et al.

2015). Therefore, plan curvature layer has been selected with respect to its effect on gullies

triggering and development. By means of ArcGIS 10.2 software, the plan curvature map

was prepared. This layer was classified into three classes of convex (positive curvature),

flat (zero curvature), and concave (negative curvature) (Fig. 4g).

3.2.8 Topographic wetness index

The topographic wetness index (TWI) is a water-related and secondary topographic factor

within the runoff model which is commonly applied to quantify topographic control in

hydrological processes (Rahmati et al. 2016). It is clarified by the following equation

(Moore et al. 1991):

TWI ¼ ln
S

tan a

� �
ð1Þ

where S is the cumulative upslope area draining through a point (per unit contour length)

and a is the slope gradient (in degrees) (Moore et al. 1991). The tendency of gravitational

forces to move toward water down slope (in terms of tana) and the tendency of water to

accumulate at any point in the catchment (in terms of S) are considered by the TWI factor.

As stated by Gómez-Gutiérrez et al. (2015), TWI is recognized as an important factor in

evaluating gully erosion proneness. Gullying occurs as the flow velocity exceeds the soil

shear stress, which is mostly a function of S parameter and is related to energy level of

surface runoff (Vandaele et al. 1996; Chaplot 2013). The erosive power of runoff in terms

of flow velocity, potential discharge, and transport capacity was modeled by means of TWI

(Agnesi et al. 2011; Chaplot 2013; Conoscenti et al. 2014; Tehrany et al. 2015; Tah-

massebipoor et al. 2016), which was derived from the DEM. A morpho-dynamic inter-

pretation of topographic attributes (e.g., TWI, altitude, and slope angle) is given in detail
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by Wilson and Gallant (2000). In the present study, TWI map is divided into four groups,

using quantile classification method (Tehrany et al. 2014a) (Fig. 4h).

3.2.9 Drainage density

According to Tehrany et al. (2014b), a high drainage density causes larger surface runoff

ratio. The drainage pattern of an area is affected by several factors such as the nature and

structure of the geological formation, soil characteristics, vegetation cover condition,

infiltration rate, and slope degree (Manap et al. 2014; Pourtaghi and Pourghasemi 2014). In

order to produce drainage density map of study area, Line Density tool in ArcGIS 10.2 was

applied and its values have been organized in four classes (Fig. 4i).

3.2.10 Altitude

The topographic attributes (such as altitude and slope angle) mainly control gully erosion

process and, thus, determine the spatial distribution of gullies (Conoscenti et al. 2014;

Hongchun et al. 2014; Gómez-Gutiérrez et al. 2015). In addition, altitude plays important

roles in vegetation cover type and precipitation properties. Hence, altitude map of the study

area was obtained from the DEM, and five classes (\925, 925–1,138, 1,138–1,359,

1,359–1,613, and[1,613 m) were constructed (Fig. 4j).

3.3 Importance analysis of gully conditioning factors

The learning vector quantization (LVQ) algorithm is one of the supervised neural network

methods first presented by Kohonen (1995). It applies a ‘‘winner-take-all’’ learning

approach (Pham and Oztemel 1994). Indeed, the Euclidean distance has been considered as

a basic rule of competition. The distance (Di) between the training vector X and the

reference vector Zi of neuron i is given by:

Di ¼ Zi � X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Zij � Xj

� �2q
ð2Þ

where Xi and Zi are jth elements of X and Zi, respectively. The learning equation for

updating the Zi and consequently importance analysis of variables is given as follows. If

the neuron is in the wrong category (WC):

Zi t þ 1ð Þ ¼ Zi tð Þ � k tð Þhi tð Þ X tð Þ � Zi tð Þð Þ ð3Þ

and if the neuron is in the wrong category, then

Zi t þ 1ð Þ ¼ Zi tð Þ þ k tð Þhi tð Þ X tð Þ � Zi tð Þð Þ ð4Þ

where

hi tð Þ ¼
1; if the ith neuron is a winner;
0; otherwise;

�
ð5Þ

denotes the degree of excitation of the neurons. k(t) is the learning rate at the time t. The

details of the LVQ algorithm can be found in Ahalt et al. (1990) and Kohonen et al. (1996).

This algorithm has been successfully applied in many different fields such as landslide

susceptibility zonation (Pavel et al. 2008; Borgogno Mondino et al. 2009; Pavel et al. 2011),

mineral potential mapping (Tayebi and Tangestani 2015), rock type classification of
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limestone (Patel and Chatterjee 2016), vegetation classification (Filippi and Jensen 2006),

and environmental sciences (Erbek et al. 2004; Zhang and Xie 2012; Williams et al. 2014).

Recently, Naghibi et al. (2016) have utilized the LVQ algorithm to quantify variables

importance (VI) and uncertainty analysis of groundwater modeling. In the current research,

the relative contribution of the independent variables to gully occurrence (i.e., dependent

variable) was evaluated via LVQ algorithm—which can be performed in R statistical

package.

3.4 Application of bivariate models

3.4.1 Frequency ratio model

Among several bivariate statistical approaches for gully susceptibility mapping, the fre-

quency ratio (FR) model has been employed in the current study (Poudyal et al. 2010;

Pradhan 2010). A simple geospatial assessment tool for identifying the probabilistic

relationship between dependent and independent factors can be explained, using the FR

model (Bonham-Carter 1994; Tehrany et al. 2013). In this study, the selected conditioning

factors (e.g., lithology, land use, distance from river, soil texture, slope degree, slope

aspect, plan curvature, topographic wetness index (TWI), drainage density, and altitude)

and gullies location are independent and dependent variables, respectively.

The FR can be described as the ratio of the area where gullies occurred in the total study

area (Conforti et al. 2010). In this model, for each conditioning factor, the density of the

gullies of the training set in each class was calculated, using the following equation

(Bonham-Carter 1994):

FR ¼ A=B

C=D
; ð6Þ

where A is the number of pixels with gully erosion for each conditioning factor, B is the

number of total gully occurrences in study area, C is the number of pixels in the class area

of the factor and D is the number of total pixels in the study area. By operating the FR

model, the spatial relationships between gully locations and each factor’s contributing

gully erosion occurrence were derived. Then, the frequency ratio magnitude of each class

is computed through analysis of the relationship between gully location and the attributing

factors. In a given pixel, the gully erosion susceptibility index (GESI) can be obtained by

summation of pixel values according to Eq. (7):

GESI ¼
XR¼n

R¼1

FR; ð7Þ

where GESI and FR are gully susceptibility index and the final weight for the FR model,

respectively.

3.4.2 Weights-of-evidence model

The weights-of-evidence (WofE) model is based on a statistical Bayesian bivariate

approach and has been used for landslide susceptibility mapping (Mohammady et al. 2012;

Pourghasemi et al. 2013b, c) and flood susceptibility mapping (Tehrany et al. 2014b). A
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detailed description of the mathematical equation of WofE model is explained by Bonham-

Carter (1991, 1994).

The WofE is one of the bivariate approaches which uses the log-linear form of the

Bayesian probability method to determine the relative importance of effective factors by

statistical means (Lee et al. 2012; Ozdemir and Altural 2013; Rahmati et al. 2015a). By

overlaying gully locations with each factor, the statistical relationship between them can be

identified and assessed as to whether and how significant the effective variable is

responsible for the occurrence of past gullies erosion. The WofE model is based on the

calculation of positive (W?) and negative (W-) weights. This model computes the weight

for each gully conditioning factor (A) on the basis of the presence or absence of the gully

locations (B) within the study area (Bonham-Carter 1994) as follows:

Wþ
i ¼ ln

P BjAf g
P Bj�Af g ð8Þ

W�
i ¼ ln

P �BjAf g
P �Bj�Af g ; ð9Þ

where P is the probability and ln is the natural log function. B and �B indicate the presence

and absence of the gully conditioning factors, respectively. A is the presence of gully, and
�A is the absence of a gully. A positive weight (W?) explains the fact that the conditioning

factor is present at the gully locations and its value is an indication of the positive cor-

relation between the presence of the gully conditioning factor and the gullies (Bonham-

Carter 1991; Mohammady et al. 2012). Similarly, a negative weight (W-) designates the

absence of the gully conditioning factor and reflects the level of negative correlation

(Regmi et al. 2013). In gully susceptibility mapping, the weight contrast (C) measures and

specifies the spatial association between the effective factors and gully erosion occur-

rences. C is negative for a negative spatial relationship and positive for a positive rela-

tionship (Pourghasemi et al. 2013b). The standard deviation S(C) of W is determined by

Eq. 10:

S Cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 Wþð Þ þ S2 W�ð Þ

p
; ð10Þ

where S2(W?) is the variance of the W? and S2(W-) is the variance of the W-. The

variances of the weights can be determined as follows (Bonham-Carter 1994):

S2 Wþð Þ ¼ 1

N B \ Af g þ
1

B \ �A
ð11Þ

S2 W�ð Þ ¼ 1
�B \ Af g þ

1

�B \ �Af g ð12Þ

The studentized contrast (GFinal) is a measure of confidence and is calculated, using the

following equation:

GFinal ¼
C

S Cð Þ

� �
; ð13Þ

where C shows the overall spatial association between a conditioning factor and gully

erosion occurrence (Bonham-Carter 1994). After applying the WofE model, the weights of

1244 Nat Hazards (2016) 82:1231–1258

123



the factors (GFinal) were summed to give and map a gully erosion susceptibility map

(GESM) based on the following equation:

GESI ¼
XR¼n

R¼1

GFinal; ð14Þ

where GESI represents gully erosion susceptibility index.

4 Results and discussion

4.1 Relative importance analysis of gully conditioning factors

The results from LVQ technique are shown in Fig. 5. They indicated that distance from

river (VI = 66.4 %), drainage density (VI = 65.9 %), and land use (VI = 63.4 %) are the

most important conditioning factors, followed by slope degree (VI = 58.2 %), altitude

(VI = 57.2 %), soil (VI = approximately 56 %), plan curvature (VI = 55.4 %), TWI

(VI = 53.64 %), and lithology (VI = almost 49.5 %). Thus, all these layers were chosen

as input variables to generate the GESMs, because they make an important contribution to

gully erosion occurrence—based on the LVQ analysis—in the study area.

4.2 Application of frequency ratio model

To prepare gully susceptibility map and estimate the level of spatial correlation between

gully locations and conditioning factors, the FR model was applied. Figure 5 shows the

frequency ratio (FR) value that was computed for each class of the conditioning factors.

There is a low correlation, provided that the FR value is less than 1; and a higher corre-

lation exists if the FR value is larger than 1 (Oh and Lee 2010). In general, a comparatively

high value of FR reveals a higher probability of gully occurrence, while a low value of FR

indicates a lower probability of gully susceptibility. Lithology had an important impact on

the erodibility of the study area. As shown in Fig. 5a, shale class of the Asmari formation

(OMas) has the highest value of FR (1.89) followed by limestone, shale class of the

Fig. 5 Variables importance
analysis using LVQ method
(distance f. r.: distance from
river; drainage d.: drainage
density; plan c.: plan curvature)
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Kazhdomi formation (Kbgp) (1.28), and gray marl class (Mgs) (1.26); thus, these classes

are the most influential ones in gully erosion occurrence. In the case of land-use type, it can

be seen that the agriculture class has FR value of 1.10, reflecting that the gully suscepti-

bility in this land-use type is high (Fig. 5b). In the case of distance from rivers, the results

denoted that as the distance from rivers increases, the gully erosion occurrence generally

decreases. In this case, the highest FR value (1.44) was obtained for\313 m (Fig. 5c).

However, analysis of the frequency ratio results reveals that the FR is\1 for distance from

rivers more than 1,237 m, representing a low probability of gully occurrence within this

class. In the soil texture factor, the highest values were recognized for sandy clay loam

(3.96), clay (2.88), and sandy clay (1.15) classes, while the remaining categories of soil

texture type have FR values less than 1 (Fig. 5d). The analysis of FR for the relationship

between gully occurrence and slope degree points out that slope degree class 0�–2� has the
highest value of FR (2.11) followed by 2�–5� class (1.32) (Fig. 5e). The FR value is less

than 1 for slope degree classes of 5�–15�, 15�–20�, and[20�, indicating a low probability

of gully occurrence within these slope ranges. These findings are similar to those of

Conoscenti et al. (2014), stating that slope degree is a major factor which controls the

overland flow concentration and the location and development of gullies. In the case of

slope aspect, the FR value is more than 1 for western, northwest, southeast, and flat faces,

showing a higher probability of gully occurrence compared to other slope aspect classes

(Fig. 5f). Assessment of plan curvature confirmed that the concave (FR value of 1.27) class

is most susceptible to gullies, followed by flat areas (FR value of 1.05) (Fig. 5g). Referring

to Fig. 5h, ratios greater than 1 were recognized in the TWI range of 4.41–5.31, 5.31–6.48,

and [6.48. This result points to significant relationships between gully occurrence and

TWI (in relation to runoff volume) that is in line with the findings of Dube et al. (2014).

Investigation of drainage density disclosed that 0.17–0.38 and[0.63 km/km2 classes have

FR value[1 (Fig. 5i). This can be explained by the fact that at high drainage density, there

is higher runoff water, and thus, the highest chances are present for gully occurrence.

Similarly, drainage density of less than 0.17 km/km2 has a lower value of FR (0.45). The

analysis of FR for the relationship between gully density and altitude showed that the

altitudes between 925 and 1138 m (FR value of 1.36) and 1138–1359 m (FR value of 1.02)

had a high correlation with gully occurrence (Fig. 5j). Finally, based on Eq. 3, the GESM

produced by the FR model is demonstrated in Fig. 6a. The GESM was classified for each

model according to the four classification methods, namely quantile, natural breaks, equal

interval, and geometrical interval (Fig. 7), into four different gully susceptibility zones,

including low, medium, high, and very high. By comparing the results of each classifi-

cation method and the distribution of training and validation gullies on the high and very

high gully susceptibility zones, it was found that the quantile classification method gave

the most accurate distribution. This agrees with the findings by Youssef et al. (2015) in that

quantile method is a good classifier in susceptibility mapping.

cFig. 6 The weights calculated of gully conditioning factors by FR and WofE models: a lithology, b land
use, c distance from river, d soil texture, e slope degree, f slope aspect, g plan curvature, h TWI, i drainage
density, and j altitude. In the case of FR model, the value of 1 (red horizontal line) shows an average
correlation between gullies and conditioning factors. The FR values are zero, negative, and positive, of
which FR\ 1 reflects a lower correlation and FR[ 1 reflects a high correlation. In the case of WofE model,
the GFinal value reflects the overall spatial association between the gully conditioning factors and the gullies.
A positive GFinal shows a positive spatial correlation and vice versa for a negative GFinal value
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4.3 Application of weights-of-evidence model

As it has been explained in the previous section, all parameters of WofE model are

computed for each gully conditioning factor. Figure 5 represents weights (GFinal values)

and the relationship between the gully occurrence and classes of each conditioning factor.

The GFinal is negative for a negative spatial association and positive for a positive spatial

association. A GFinal equal to zero illustrates that the considered class of conditioning

factors is not significant for the analysis (Corsini et al. 2009; Regmi et al. 2010). In the case

of the correlation between gully occurrence and lithology, the highest GFinal values were

?2.48 and ?1.02 for OMas and Kbgp classes, respectively (Fig. 5a). These lithology units

displayed the highest susceptibility to gully. Among the different land-use types, the

agriculture category had the highest GFinal value (?1.50), indicating maximum gully

susceptibility (Fig. 5b). Additionally, rangeland class acquired the weight of -0.76,

showing the negative influence on gully occurrence as the vegetated areas can decrease the

surface runoff and, therefore, reduce the gully erosion. This result is in accord with the

study by Zheng (2006), confirming that forested areas experience less erosion in the form

of gullies in comparison with bare and agriculture areas. In the case of distance from the

rivers, the class less than 313 m had the highest weight (GFinal = ?1.69), demonstrating

high gully erosion susceptibility in this range of distance from the rivers (Fig. 5c). The

findings are in agreement with those of Dube et al. (2014) and Conoscenti et al. (2014),

stating that low distances have a positive association (GFinal[ 0) and that it is easier for a

gully to develop on the bank of a river than on areas far from the river. The analysis of

WofE model for the relationship between gully locations and soil texture indicated that

both sandy clay loam (GFinal = ?1.95) and clay (GFinal = ?1.50) categories had positive

influences on gully erosion occurrence (Fig. 5d). In the case of slope degree, the 0�–2� and
2�–5� classes have GFinal of ?1.71 and ?0.91, respectively (Fig. 5e). This means that the

gully erosion probability is higher in these classes. In contrast, slope degrees larger than

20� have the minimum value of GFinal (-0.05). The relationship between the gully loca-

tions and the slope aspect can be described as follows: It is significant that high GFinal

values were observed for southeast and flat areas (Fig. 5f), indicating a high probability of

gully erosion occurrence. This was mainly due to greater vegetation cover density in the

north-facing area compared with the south-facing area (Wang et al. 2011). Morphology of

the topography can be described, using the curvature values. In the case of curvature, the

Fig. 6 continued
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Fig. 7 Gully susceptibility maps produced based on a FR and b WofE models
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analysis of WofE model indicates that concave class has the highest value of GFinal

(?1.62), followed by flat curvature class (?0.20) (Fig. 5g). This result agrees with the

findings by Conforti et al. (2010) in the Turbolo stream catchment, Italy. Their results

proved that gully erosion processes commonly occur on concave slopes. Referring to

Fig. 5h, TWI larger than 6.48 (GFinal = ?0.7) has a high correlation with gully occurrence.

Moreover, GFinal values generally increase by increasing TWI classes. The drainage

density of 0.63–1.37 km/km2 has the largest GFinal value (?2.13), pointing to the fact that

the attributes of this class has the strongest relationship with gully susceptibility (Fig. 5i).

In the case of altitude, the highest weight (GFinal = ?1.18) was for the class of

925–1138 m, which has a positive effect on gully erosion occurrence (Fig. 5j). These

results are in line with those of De Oliveira (1990) and Meyer and Martı́nez-Casasnovas

(1999) in that gully distribution is mainly controlled by topographic factors (such as

altitude and slope angle). Finally, based on Eq. 10, the GESM produced by using the WofE

model is shown in Fig. 6b. According to the quantile classification scheme, the GESM

Fig. 8 Relationship between susceptibility classes (high ? very high) and the percent frequency of gullies
(a) training and (b) validating gully numbers of different classification methods for FR and WofE models
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values were divided into four gully susceptible zones: low, medium, high, and very high

classes (Youssef et al. 2015).

4.4 Map validation and comparison

To determine the accuracy of the different gully erosion susceptibility models applied in

this study, the receiver operating characteristics (ROC) curve was employed (Mohammady

et al. 2012; Pourghasemi et al. 2013c; Devkota et al. 2013; Rahmati et al. 2014). ROC

curve analysis is a common technique for evaluating the accuracy of a diagnostic test

(Williams et al. 1999; Zare et al. 2013; Razandi et al. 2015). The area under the curve

(AUC) of the produced ROC describes the quality of a predicting system by showing the

ability of the system to model the occurrence or non-occurrence of predefined ‘‘events’’

(Tien Bui et al. 2012; Naghibi et al. 2014). In the ROC curve analysis, the ideal model

represents an AUC = 1.0, while an AUC value close to 0.5 shows inaccuracy in the

prediction model (Fawcett 2006). According to Yesilnacar (2005), the quantitative–qual-

itative relationship between AUC value and prediction accuracy can be classified as fol-

lows: 0.5–0.6, poor; 0.6–0.7, average; 0.7–0.8, good; 0.8–0.9, very good; and 0.9–1,

excellent. ROC curve assessment results (Fig. 8a, b) indicated that in the gully erosion

susceptibility maps produced via FR and WofE, the AUCs were 0.7811 and 0.7007.

Therefore, it is observed that the gully susceptibility map produced by FR model exhibited

better performance than the WofE model in the study area (Fig. 9).

5 Conclusion

Due to hazardous characteristics of gullies erosion, several researchers and natural

resources managers throughout the world have focused on assessing gully erosion sus-

ceptibility hazards and determining their spatial pattern for a given area. In the current

study, two statistical models, frequency ratio and weights-of-evidence models, were

employed for gully susceptibility mapping, and their performances were compared. At

first, a gully erosion inventory map was constructed through multiple field investigations.

Fig. 9 ROC curve for the gully susceptibility maps produced by (a) FR and (b) WofE models
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Of the sum total of 63 gully locations identified in the study area, 44 cases were utilized for

models training and the remaining 19 for validation purposes. In the next stage, the gully

conditioning factors such as lithology, land use, distance from rivers, soil texture, slope

degree, slope aspect, plan curvature, topographic witness index, drainage density, and

altitude were prepared. After a relative contribution assessment of each predictor variable

to the models (i.e., using LVQ algorithm), the gully erosion susceptibility modeling was

applied to Chavar region, Iran, via the FR and WofE techniques. Finally, for testing the

accuracy of the mentioned models, the ROC curve was organized. The analysis confirms

that the FR model (AUC = 78.11 %) shows a better accuracy than the WofE

(AUC = 70.07 %) model. Consequently, the performance of the gully erosion suscepti-

bility map constructed by FR model is obviously greater than that of the map produced by

WofE model. According to LVQ results, the most effective factors in the prediction of

gully erosion susceptibility were discovered to be distance from river, drainage density,

and land-use factors, although other selected factors had reasonably acceptable importance.

In summary, the findings of the present research proved that GIS-based FR and WofE

models could be successfully applied to the gully susceptibility mapping, particularly in

developing and low-income countries. In fact, the above-mentioned models require data

usually available for large areas (such as regional-scale resolution) or achievable without

high cost- and time-consuming methods; accordingly, these models are capable of being

easily reproduced and employed in other regions with the aim of gully erosion suscepti-

bility mapping. Hence, the information provided by these gully susceptibility maps can

help planners and natural resources managers reduce losses caused by focusing on ‘‘hot

spot’’ areas of gully erosion.
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Çevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the
natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962

Chaplot V (2013) Impact of terrain attributes, parent material and soil types on gully erosion. Geomor-
phology 186:1–11

Chaplot V, Coadou le Brozec E, Silvera N, Valentin C (2005a) Spatial and temporal assessment of linear
erosion in catchments under sloping lands of northern Laos. Catena 63:167–184

Chaplot V, Giboire G, Marchand P, Valentin C (2005b) Dynamic modelling for linear erosion initiation and
development under climate and land-use changes in Northern Laos. Catena 63:318–328

Choi Y, Park H, Sunwoo C (2008) Flood and gully erosion problems at the Pasir open pit coal mine,
Indonesia: a case study of the hydrology using GIS. Bull Eng Geol Environ 67:251–258

Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat
Hazards 30:451–472

Conforti M, Aucelli PPC, Robustelli G, Scarciglia F (2010) Geomorphology and GIS analysis for mapping
gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat Hazards
56:881–898

Conoscenti C, Di Maggio C, Rotigliano E (2008) Soil erosion susceptibility assessment and validation using
a geostatistical multivariate approach: a test in Southern Sicily. Nat Hazard 46:287–305

Conoscenti C, Agnesi V, Angileri S, Cappadonia C, Rotigliano E, Märker M (2013) A GIS-based approach
for gully erosion susceptibility modelling: a test in Sicily, Italy. Environ Earth Sci 70(3):1179–1195

Conoscenti C, Angileri S, Cappadonia C, Rotigliano E, Agnesi V, Märker M (2014) Gully erosion sus-
ceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomor-
phology 204(1):399–411

Corsini A, Cervi F, Ronchetti F (2009) Weight of evidence and artificial neural networks for potential
groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy).
Geomorphology 111:79–87

Cui P, Lin Y, Chen C (2012) Destruction of vegetation due to geo-hazards and its environmental impacts in
the Wenchuan earthquake areas. Ecol Eng 44:61–69

Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau
Island, Hong Kong. Environ Geol 40:381–391

De Oliveira MAT (1990) Slope geometry and gully erosion development: Bananal, São Paulo, Brazil.
Z Geomorphol 34(4):423–434

De Vente J, Poesen J, Govers G, Boix-Fayos C (2009) The implications of data selection for regional
erosion and sediment yield modelling. Earth Surf Process Landf 34:1994–2007

Deng Q, Qin F, Zhang B, Wang H, Luo M, Shu C, Liu H, Liu G (2015) Characterizing the morphology of
gully cross-sections based on PCA: a case of Yuanmou Dry-Hot Valley. Geomorphology 228:703–713

Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF
(2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression
models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat
Hazards 65:135–165

Dondofema F (2007) Relationship between gully characteristics and environmental factors in the Zhulume
meso-catchment: implications for water resources management. MSc Thesis, Civil Engineering
Department, University of Zimbabwe, Harare, Zimbabwe

Dramis F, Gentili B (1977) Contributo allo studio delle acclivitá dei versanti nell’Appennino Umbro,
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ranean soil erosion in Tabasco, tropical Mexico: development of a decision tree modeling approach.
Geoderma 139:277–287

Geological Survey Department of Iran (GSDI) (1997) http://www.gsi.ir/Main/Lang_en/index.html
Golestani G, Issazadeh L, Serajamani R (2014) Lithology effects on gully erosion in Ghoori chay Watershed

using RS & GIS. Int J Biosci 4(2):71–76
Ghorbani Nejad S, Falah F, Daneshfar M, Haghizadeh A, Rahmati O (2016) Delineation of groundwater

potential zones using remote sensing and GIS-based data-driven models. Geocarto Int. doi:10.1080/
10106049.2015.1132481
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