
ORIGINAL PAPER

Assessing agricultural drought vulnerability
in the Sanjiang Plain based on an improved projection
pursuit model

Wei Pei1 • Qiang Fu1,2,3 • Dong Liu1 • Tian-xiao Li1 •

Kun Cheng1

Received: 13 September 2015 / Accepted: 30 January 2016 / Published online: 12 February 2016
� Springer Science+Business Media Dordrecht 2016

Abstract Drought is one of the main natural disasters affecting regional agriculture, and

regional agricultural drought vulnerability assessment is necessary to establish regional

drought forecast, monitoring, and early warning mechanisms. The results can provide a

theoretical basis for the identification of drought hazard and disaster prevention. In this

study, the concept of the overall dispersion and local aggregation of projection points was

proposed by Friedman and Tukey (IEEE Trans Comput 23:881–890, 1974), and

improvements to the projection pursuit model are proposed here by measuring discrete

projection points according to the information entropy. This improved model was applied

to assess the agricultural drought vulnerability of 18 counties located in the Sanjiang Plain

for 4 years (2004, 2007, 2010, and 2013). Information entropy was shown to provide

improved measurements in the data discreteness relative to standard deviations, and the

cutoff radius was defined between 0 and ln 2, thus allowing the use of the exhaustion

method to determine the cutoff radius. The overall agricultural drought vulnerability in the

Sanjiang Plain area shows a downward trend over time. The main reason for this result is

the reduced regional sensitivity and the increased drought resistance ability each year.

Economic development speeds up the urbanization process, decreasing the proportion of

agricultural population and the proportion of agricultural GDP each year and increasing the

irrigation index, per capita GDP, rural per capita net income and other indicators each year.

These developments decrease the sensitivity of the agricultural system, improve the

adaptive capacity, and reduce the vulnerability. Spatially, the vulnerability of various

regions shows some differences. The vulnerabilities of Hulin, Luobei, Youyi, and Fuyuan
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are the lowest and showed a downward trend over time. The sensitivities of these regions

were also low; the population density, the proportion of agricultural population and other

sensitive indicators were significantly smaller than those for other regions. Furthermore,

the drought threat is small, the region has many state-owned farms, the economic situation

is good, and the drought resistance ability is strong. The vulnerabilities of Baoqing,

Muling, Raohe, and Tongjiang are moderate, with high sensitivities but strong adaptive

capacity. The vulnerabilities of Yilan, Jidong, Mishan, Fujin, and Boli have changed

greatly, mainly due to the rapid economic development in recent years, increasing the

agricultural drought resistance. The vulnerabilities of Tangyuan, Suibin, Jixian, Huachuan,

and Huanan are the highest, and with little change, these regions are highly sensitive and

prone to drought. In addition, the regional economic development level is relatively low,

and the agricultural drought resistance is not high.

Keywords Projection pursuit � Information entropy � Agricultural drought � Vulnerability
assessment � Sanjiang Plain

1 Introduction

Agriculture relies on natural resources such as land resources, water resources, and climate

resources. Therefore, agriculture can be seriously affected by drought, floods, hail, and

other natural disasters. Among such disasters, drought is one of the most serious and has

the potential to cause enormous economic losses. Many factors, including climate change,

natural and geographical factors, and human activities, can affect drought. Agricultural

drought vulnerability refers to the nature and state of agricultural production systems that

contribute to their likelihood of experiencing drought and loss, especially potential losses

that may occur (Chen and Chen 2011; Fontaine and Steinemann 2009). Vulnerability

assessment involves many uncertain factors, including regional resources and environ-

mental conditions, economic levels, water conservancy facilities, agricultural technologies

and management levels, and population quality (Wu et al. 2013). In recent years, global

warming has accelerated, and the frequency and destructive degree of droughts have also

shown increasing trends. Droughts may even occur in water-rich areas due to occasional

climate anomalies. Drought is the result of the combined effects of disaster factors and

vulnerability. Disaster factors are the factors that contribute directly to drought, and vul-

nerability is the root cause of a drought. China is a drought-prone country, and in 2014

alone, 0.34 billion acres were considered national disaster areas; the direct economic losses

reached 91 billion RMB yuan. The lack of drought predictions, early warning and other

related management tools led to serious economic losses in certain areas. Assessing

agricultural drought vulnerability facilitates in-depth analyses of the factors that affect the

drought, including climate, geography, and social economy, according to the likelihood of

disaster. Such assessments allow drought vulnerability to be considered in natural resource

planning. The evaluation results can be used as the basis for forecasting, monitoring, and

early warning mechanisms; thus, they can provide a theoretical basis for evaluating

drought risk and disaster prevention.

In recent years, a number of scholars have studied agricultural drought vulnerability and

risk assessments from different perspectives. The fuzzy set theory, fuzzy comprehensive

evaluation method, and fuzzy clustering iterative algorithm have been introduced to
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evaluate agricultural drought vulnerability (Qiu et al. 2011; Wu et al. 2013; Zhang et al.

2011). A regional agricultural drought risk calculation method based on analytic hierarchy

processing and fuzzy evaluations has also been presented (Qin et al. 2013). Based on

probabilities and statistics, drought loss probability distributions and regression curves

between drought loss and drought probability have been plotted (Xu et al. 2013). Empirical

orthogonal function (EOF) and multivariate time series model have been proposed to

analyze drought in both time and space (Kim et al. 2011). Based on the soil moisture

probability density function (PDF), the statistics of the soil moisture condition and its

monthly variation were used to assess drought vulnerability (Yoo et al. 2006). Addition-

ally, the spatial characteristics of China’s drought risk have been studied by applying

natural disaster analysis theory to specific areas (He et al. 2012). This work revealed

obvious differences in the agricultural drought risk in China. A spatial assessment model of

the agricultural drought risk in the Jinghe River Basin was established with a precision of

1 km (Long et al. 2012). Indicators were selected from the exposure, sensitivity, and

adaptability to the evaluation of regional drought vulnerability (Fontaine and Steinemann

2009; Liu et al. 2013; Murthy et al. 2015), and seasonal crop water deficiency, available

soil water-holding capacity, and irrigation were identified as the main indicators of agri-

cultural drought vulnerability (Wu et al. 2011). Furthermore, measures based on the

quantitative drought hazard index (DHI) and drought vulnerability index (DVI) using

hydro-meteorological and socioeconomic data have been proposed (Kim et al. 2015). The

integrated drought vulnerability index (IDVI) has been devised as an indicator of vul-

nerability to drought (Jain et al. 2014). Based on the standardized precipitation index,

drought hazard index, and composite drought vulnerability indices, the drought vulnera-

bility of the Tarim River Basin has been studied (Zhang et al. 2014). The agricultural

drought in Rajasthan (India) has been assessed using vegetation condition index (VCI) and

standardized precipitation index (SPI) (Dutta et al. 2015). Spatially and temporally, the

drought vulnerability of Turkey has been evaluated using the standardized precipitation

index (Sonmez et al. 2005). Based on the principal component analysis, a new multivariate

drought index (MDI) was formulated (Li et al. 2014). According to farmers in Iran,

vulnerability is influenced by economic, sociocultural, psychological, technological and

infrastructural factors, and the microscopic vulnerability of farmers is influenced by water

conservation facilities and income levels (Yan et al. 2012; Zarafshani et al. 2012). This

study used the Sanjiang Plain of China as an example and applied the improved projection

pursuit model to evaluate regional agricultural drought vulnerability.

Projection pursuit is an effective statistical method that can manage high-dimensional

nonlinear and non-normal data. In this method, a projection index that reflects the degree of

data clustering projects high-dimensional data to a low-dimensional space, and the index is

maximized or minimized to identify the structural features of the high-dimensional data

(Kruskal 1969). The choice of projection index is a key step in the projection pursuit

method. The difference between the data distribution and the Gaussian distribution is

commonly used to define the projection index. For example, the product of total dispersion

and local density can be used (Friedman and Tukey 1974), and the influence of outliers on

the projection index has been analyzed (Friedman and Jerome 1987). Based on the

polynomial asymptotic theory of the projection index, the distance between the density

function and the standard normal can be used to measure the projection index (Hall 1989).

Based on the work of Friedman, a projection index family has been proposed (Cook and

Cabrera 1993). Within this family, the projection index proposed by Friedman and Tukey

(1974) is commonly used (Jiang et al. 2006; Wang et al. 2003, 2006; Zhao et al. 2006). In

recent years, a number of scholars have studied the projection pursuit proposed by
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Friedman and Tukey (1974) from different perspectives. In solving the projection direc-

tion, numerous methods are introduced, such as genetic algorithm (GA), real-coded

acceleration genetic algorithm (RAGA), chaos accelerating genetic algorithm (CAGA),

colony algorithm, firefly algorithm, and simulated annealing algorithm (Feng et al. 2013;

Li et al. 2012, 2013; Ma et al. 2015; Wang et al. 2006; Xiao and Chen 2012). Applications

of the projection pursuit model include identification of river water pollution character-

istics, dynamic risk assessment of flood disaster, optimal utilization of land resources,

water quality assessment, and watershed non-point source pollution (Huang and Lu 2014;

Jin et al. 2007; Wang et al. 2012; Zhao et al. 2012, 2014). However, the project pursuit of

Friedman has certain disadvantages. First, standard deviations are not appropriate for

measuring data on different scales. Second, the cutoff radius cannot easily be determined

because a universally valid method has not been devised.

Based on the projection index proposed by Friedman and Tukey (1974) and according

to the overall dispersion and local aggregation of projection points, this study uses

information entropy to measure the data dispersion and determine the cutoff radiuses using

the exhaustion method to propose a new projection index and improve the projection

pursuit model. This model is then applied to assess the agricultural drought vulnerability of

18 counties located in the Sanjiang Plain. The spatial scale is 18 agricultural counties, and

the temporal scale is 4 years (2004, 2007, 2010, and 2013). The relative vulnerability

Fig. 1 Schematic diagram of the manuscript structure

686 Nat Hazards (2016) 82:683–701

123



values are given, and the reasons for the temporal and spatial differences are analyzed.

Finally, policy recommendations are given, which serve as a guide to reduce losses

resulting from regional agricultural drought and to improve early warning. The structure of

this paper is shown in Fig. 1.

2 Modeling and analysis

2.1 Model concepts

The concept of information entropy was proposed by Shannon in his widely read article ‘‘A

Mathematical Theory of Communication’’ in 1948 (Shannon 1948). This method of

measuring the uncertainty and discreteness of data has been increasingly applied and has

been shown to be useful.

In this study, we refer to the projection index developed by Friedman and Tukey (1974).

Based on previous work, we measure the discreteness of data according to the information

entropy and thereby propose an improved projection index (Fontaine and Steinemann

2009; Murthy et al. 2015; Wang et al. 2003, 2006).

2.2 Model steps

Step 1 Data normalization.

The data are normalized as follows: {x*(i, j)|i = 1, 2, …, n; j = 1, 2, …, p}, where x*(i, j)

is jth index of the ith sample and n and p represent the number of samples and indexes,

respectively.

A high index value represents high vulnerability; namely, a large value of x*(i, j)

represents high vulnerability:

xði; jÞ ¼ x�ði; jÞ � xminð jÞ
xmaxð jÞ � xminð jÞ

ð1Þ

A low index value represents high vulnerability; namely, a small value of x*(i, j) represents

high vulnerability:

xði; jÞ ¼ xmaxð jÞ � x�ði; jÞ
xmaxð jÞ � xminð jÞ

ð2Þ

where xmax( j) and xmin( j) are the maximum and minimum values of the jth index,

respectively, and x(i, j) is the index after normalization, and larger normalized values mean

more vulnerability.

Step 2 Projection index H(a).

Suppose a = {a(1), a(2), …, a(p)} is a p-dimensional unit vector and z(i) is the pro-

jected characteristic value of x(i, j), the linear projection is then described as follows:
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zðiÞ ¼
Xp

j¼1

aðjÞxði; jÞ ði ¼ 1; 2; . . .; nÞ ð3Þ

The distribution characteristics of z(i) are that the local projection points are as dense as

possible and condense into a number of clusters, which are dispersed as much as possible.

The projection index is defined as follows:

HðaÞ ¼ HS

HD

ð4Þ

where HS ¼ �
Pn

i¼1

p ið Þ ln p ið Þ and pðiÞ ¼ zðiÞPn

j¼1
zðjÞ

. To ensure the maximum dispersion of

clusters, Hs should be as small as possible, where HD ¼
Pn

i¼1

Pn

j¼1

H i; jð Þ � Rð Þ� u H i; jð Þ � Rð Þ,

H(i, j) = -q(i) ln q(i) - q(j) ln q(j), qðiÞ ¼ zðiÞ
zðiÞþzðjÞ and qðjÞ ¼ zðjÞ

zðiÞþzðjÞ. To ensure local

aggregation, HD should be as large as possible.

u(H(i, j) - R) is a unit step function:

u Hði; jÞ � Rð Þ ¼ 1; Hði; jÞ�R

0; Hði; jÞ\R

�
ð5Þ

and R is the cutoff radius. If R is too large, H(i, j) - R\ 0 and u(H(i, j) - R) = 0 for too

many projection points; thus, the range will be too narrow, and the projection points in the

cluster will be too few. In addition, if R is too small, H(i, j) - R C 0 and u(H(i,

j) - R) = 1 for too many projection points; thus, the range will be too wide, and too many

projection points will be included in the cluster. According to the nature of information

entropy (Shannon 1948), H(i, j) 2 [0, ln 2]. For projection points within a cluster, H(i,

j) - R C 0, whereas for projection points between clusters, H(i, j) - R\ 0. Therefore,

R cannot be less than the minimum value of H(i, j). And R is no greater than the maximum

value of H(i, j). Therefore, R 2 (0, ln 2), and R can be determined by the exhaustion

method.

Step 3 Projection index H(a) optimization.

Based on the overall dispersion and local aggregation of projection points, the value of

H(a) should be as small as possible.

min HðaÞ ¼ HS

HD

; s:t:
Xp

j¼1

a2ðjÞ ¼ 1 ð6Þ

The above expression is a nonlinear constrained optimization problem and can be

solved by a real-coded genetic algorithm (RGA).

Step 4 Classification evaluation.

If the classification standard is {y(l, j)|l = 1, 2, …, m - 1; j = 1,2, …, p}, where y(l, j)

is the normalized lth boundary value of the jth index, and y(1, j)\ y(2, j)\ ���\ y(m - 1,

j), and this standard is combined with the optimal projection direction a* = {a*(1), a*(2),

…, a*(p)}, then the final classification boundary can be obtained:
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s� lð Þ ¼
Xp

j¼1

a� jð Þy l; jð Þ ðl ¼ 1; 2; . . .;m� 1Þ ð7Þ

The projection values for each sample are z�ðiÞ ¼
Pp

j¼1 a
�ðjÞxði; jÞ ði ¼ 1; 2; . . .; nÞ. If

z*(i)\ s*(1), the grade is 1; if s*(l - 1) B z*(i)\ s*(l), the grade is l (l = 2, 3, …,

m - 1); and if z*(i) C s*(m - 1), the grade is m.

2.3 Theoretical analysis

In this study, the improved method was compared to the Friedman–Tukey projection

index, and the most substantial difference was in the method of measuring the data dis-

persion. The Friedman–Tukey projection index uses standard deviations to measure the

degree of dispersion, whereas the improved method uses information entropy. Both

information entropy and standard deviations are capable of describing discrete degrees.

However, because the standard deviation reflects the average distance between a set of data

and its mean, when the mean or order of two groups is not equivalent, it cannot be used to

compare the two data sets. Conversely, information entropy has no fixed reference point

and instead represents the average distance between the data and a uniform distribution;

thus, it is not affected by the mean and data order (Ebrahimi et al. 1999). Standard

deviations only reflect the characteristics of the second-order central moment, whereas

information entropy can reflect multi-order data. Thus, the latter can better describe the

discreteness of data (Ebrahimiet et al. 1999). In addition, when the probability distribution

of the raw data is not known, information entropy is more suitable than standard deviations

to measure the uncertainty (Maasoumi and Racine 2002). Furthermore, from a local per-

spective, the Friedman–Tukey projection index uses r(i, j) to describe the local degree of

aggregation, whereas H(i, j) is used in the improved method. The disadvantage of r(i, j) is

its large range: r(i, j) 2 [0, ??). However, because H(i, j) 2 [0, ln 2], R 2 (0, ln 2) can be

obtained. Thus, information entropy is better able to overcome the range disadvantage and

allows for the exhaustion method to be used to determine the cutoff radius.

3 Assessing agricultural drought vulnerability in the Sanjiang Plain

3.1 Study area and data sources

The Sanjiang Plain is situated in northeast Heilongjiang Province in China and is formed

by the confluence and alluvial plains of the Heilongjiang, Wusuli, and Songhua rivers,

encompassing a total area of 108,900 km2. The administrative region consists of 5 pre-

fecture-level cities and 18 counties. The Sanjiang Plain is rich in cultivated land resources,

wetland resources, and forest resources; this area is an important food-producing region in

China with a regional economy that is strongly dependent on agriculture. Since the 1950s,

the wetland and forest areas of the Sanjiang Plain have gradually decreased because of

overexploitation, and the cultivated land area has increased rapidly. Since 1960, the forest

area has decreased from approximately 48,000 km2 to approximately 38,000 km2, the

wetland area has decreased from approximately 50,000 km2 to approximately 15,000 km2,

and the cultivated land area has increased from approximately 7000 km2 to approximately

50,000 km2. The reductions in forest and wetland resources have resulted in decreased

water and soil conservation, serious water losses, and soil erosion. However, the increased
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cultivated land area requires large amounts of water resources. Because of climate change,

the temperature increases annually, and the distribution of rainfall is spatially and tem-

porally uneven. Comprehensive factors suggest that the possibility of agricultural drought

is elevated in this region. Traditional wetting areas are under a potential threat of drought,

and the ecological security and sustainable social and economic development are seriously

threatened.

Therefore, the study area was designed to include 18 counties that mainly include

agricultural areas, and the 5 prefecture-level cities, which include less cultivated land and a

low agricultural population, were excluded. Specifically, the research area included the

following counties, as shown in Fig. 2: Yilan, Jidong, Hulin, Mishan, Luobei, Suibin,

Jixian, Youyi, Baoqing, Raohe, Huanan, Huachuan, Tangyuan, Fuyuan, Tongjiang, Fujin,

Boli, and Muling. The data were primarily collected from the statistical yearbook of

Heilongjiang Province (2004, 2007, 2010, and 2014), the water conservancy yearbook of

Heilongjiang (2004, 2007, 2010, and 2014), and the official Web sites of relevant

departments.

3.2 Index system and evaluation standards

Selecting the indexes used to evaluate agricultural drought vulnerability is a primary step

in evaluating regional agricultural drought vulnerability because the selected indexes must

be appropriate and directly related to the evaluation results. Agricultural drought vulner-

ability is related to three aspects: exposure, sensitivity, and adaptive capacity. Exposure is

based on frequency and severity of drought; sensitivity is the degree that is susceptible to

drought stress, which emphasizes the potential for damage; and adaptive ability is the

behavior of reducing the impact of drought. Exposure and sensitivity determine the

potential impact. Adaptive capacity determines the portion of the potential impact that

becomes an actual (net) impact (Fontaine and Steinemann 2009; Liu et al. 2013; Murthy

et al. 2015), and based on the operability principle and system and regional characteristics,

Fig. 2 Regional map of the Sanjiang Plain
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12 indicators of the three aspects were selected (Table 1). Exposure is mainly related to the

degree of drought; annual precipitation and forest coverage were selected. Sensitivity is

concerned with the sensitive degree of the agricultural system structure and population

structure. Population density, proportion of agricultural population, proportion of agri-

cultural GDP, food yield per unit area and per capita arable land were selected. Adaptive

capacity focuses on reducing the drought effect. The irrigation index, rural per capita net

income, fertilizer scalar unit area, per capita GDP and agricultural machinery power per

unit area were selected. Together, these factors reflect the disaster status and anti-disaster

capability of the agricultural system. According to the classification method reported in

relevant literature (Jiang et al. 2006; Liu et al. 2013) and the regional characteristics of the

Sanjiang Plain, the indexes were divided into four relative grades. In this system, higher

grades indicate increased vulnerability to agricultural drought, as shown in Table 1.

Annual precipitation (X1) is one of the most important factors affecting the drought, and

it is the main factor affecting the growth of crops. If precipitation is greater, the region will

be less vulnerable to drought. The forest coverage (X2) was calculated as the forest area/

area, because forests contribute to water and soil conservation, and when the forest cov-

erage is greater, the region will be less vulnerable. The population density (X3) was

calculated as the population/area, and thus, when the population density is higher, more

people will be affected and the region will be more vulnerable. The proportion of the

agricultural population (X4) was calculated as the agricultural population/total population,

because the agricultural population is more sensitive to drought than the urban population,

and it is more susceptible to drought. When the proportion of agricultural population is

higher, the region will be more vulnerable. The proportion of agricultural GDP (X5) was

calculated as the agricultural GDP/GDP, reflecting the degree of dependence on agricul-

ture, because agriculture is the most vulnerable to drought; the higher the proportion is, the

Table 1 Evaluation indexes and relative grades of agricultural drought vulnerability in the Sanjiang Plain

Evaluation indexes (Xi) I II III IV

Exposure

Annual precipitation (X1) (ml) [600 550–600 500–550 \500

Forest coverage (X2) (%) [45 30–45 15–30 \15

Sensitivity

Population density (X3) (person km-2) \40 40–60 60–80 [80

Proportion of agricultural population (X4) (%) \45 45–55 55–65 [65

Proportion of agricultural GDP (X5) (%) \25 25–40 40–55 [55

Food yield per unit area (X6) (ton ha-1) \3 3–4 4–5 [5

Per capita arable land (X7) (ha person-1) [0.6 0.45–0.6 0.3–0.45 \0.3

Adaptive capacity

Irrigation index (X8) (%) [45 45–30 30–15 \15

Per capita GDP (X9) (RMB yuan) [26,000 18,000–26,000 10,000–18,000 \10,000

Rural per capita net income (X10) (RMB yuan) [8000 6000–8000 4000–6000 \2000

Fertilizer scalar unit area (X11) (ton ha-1) [0.15 0.1–0.15 0.05–0.1 \0.05

Agricultural machinery power per unit area (X12)
(kWh ha-1)

[3.5 2.5–3.5 1.5–2.5 \1.5
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greater the potential loss is. Thus, when this proportion is higher, the region will be more

dependent on agriculture, and the region will be more vulnerable. The food yield per unit

area (X6) was calculated as the food yield/area, and when the yield is higher, the potential

losses will be greater. The per capita arable land (X7) was calculated as the cultivated land

area/population, and when the per capita arable land area is higher, the land pressure will

be lower, and the region’s vulnerability will be reduced. The irrigation index (X8) was

calculated as the irrigation area/cultivated area, water conservancy construction has a

positive effect on drought resistance, and the degree of agricultural drought is closely

related to the degree of water conservancy. This index reflects the drought resistance, and

high values indicate low vulnerability. Per capita GDP (X9) was calculated as GDP/total

population, and this factor mainly reflects the level of social and economic development. A

higher level of economic development means that there is more capacity to put into the

drought, reducing the drought vulnerability. The rural per capita net income (X10) reflects

the capability of the region to reduce and recover from disasters, and when the income is

higher, the vulnerability is lower. The fertilizer scalar unit area (X11) was calculated as the

total amount of fertilizer/cultivated area, because fertilization enhances soil fertility, and it

also increases the grain yield and decreases the vulnerability. Agricultural machinery

power per unit area (X12) was calculated as agricultural machinery total power/cultivated

area, mainly reflecting the level of mechanization in the region. A higher level of mech-

anization means that the water resources adjustment ability and the development and

utilization efficiency are higher, and therefore, the vulnerability is lower.

To analyze the temporal and spatial differences of agricultural drought vulnerability in

the Sanjiang Plain, we determined the causes of regional differences and the causes of the

changes in vulnerability. Four years of data (2004, 2007, 2010, and 2013) were selected in

this study. For each year, the data of 18 counties located in the Sanjiang Plain were

selected for a total of 72 samples.

3.3 Model evaluation results and analysis

The data were normalized by substituting X3, X4, X5, and X6 into Eq. (1) and X1, X1, X8, X9,

X10, X11, and X12 into Eq. (2). After normalization, a higher value of a single index

indicated greater vulnerability in the region.

3.3.1 Evaluation results

The following parameters were used to construct the model in this study using MATLAB

software (Math Works, Natick, MA, USA) and the RGA of the genetic algorithm toolbox

(Sheffield University, UK): The initial population is 20, the generation gap is 0.9, the

crossover probability is 0.7, the variation probability is 0.1, and the iteration number is

200. The minimum values of the projection index were H*(a) = 5.3027 and R = 0.6925.

The optimal projection directions were a* = (0.0454, 0.1844, 0.3734, 0.2521, 0.1380,

0.2508, 0.2419, 0.0148, 0.4576, 0.5970, 0.0699, 0.2226). The final evaluation values are

given in Table 2.

According to the classification standards listed in Table 1, taking the boundary values as

samples, the samples were normalized using the primary data. Combined with the optimal

projection directions a* and by applying Eq. (7), three boundary points (2.0135, 1.8392,

1.7384) were obtained, and the counties were then divided into four grades (Table 2).
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3.3.2 Comparative analysis of the evaluation results

In this study, the Friedman–Tukey projection index was used as a reference to illustrate the

superiority of the improved model. Substituting all of the samples into the original model

and taking 2013 as an example, the evaluation results of 2013 obtained using the Fried-

man–Tukey projection index are given in Table 3.

The evaluation results of the two models are similar, indicating the validity of the model

proposed in this work. To quantitatively analyze the differences between the two models,

we calculated the differences between the evaluation results and the uniform distribution.

Here, the data sequence was as follows: x = [x1, x2, …, xn], p = [p1, p2, …, pn], where

pi = xi/
P

xi, the sequence of the uniform distribution is y = [1/n, 1/n, …, 1/n,], and the

Euclidean distance is T =
P

(xi - 1/n)2. When the T value is larger, the difference

between the data distribution and the uniform distribution is also larger, and the classifi-

cation results are better. The T value of the Friedman–Tukey method was 0.0009, whereas

the value obtained using the improved method was 0.0012. Thus, the results obtained using

the proposed method were slightly better.

However, when p = [p1, p2, …, pn], H ¼ �
Pn

i¼1 pi ln pi can also be used to determine

the data dispersion. In this case, when the H value is larger, the data are more uniform, and

the classification results are worse. The H value of the Friedman–Tukey projection index

was 2.8822, whereas that of the proposed method was 2.8796. Thus, the results obtained by

the improved method were slightly better.

3.3.3 Spatial difference analysis of agricultural drought vulnerability

To directly determine the spatial differences of the agricultural drought vulnerability in the

Sanjiang Plain, the visualization function of ArcGIS (Esri, Redlands, CA, USA) was used

to map the spatial distribution of the vulnerability level (Fig. 3).

Table 3 Evaluation results of the Friedman–Tukey projection index (2013)

Region Hulin Luobei Youyi Fuyuan Baoqing Muling Raohe Tongjiang Yilan

Evaluation value 1.4875 1.3214 1.4015 1.4178 1.5047 1.5047 1.8475 1.8470 1.7485

Region Jidong Mishan Fujin Boli Tangyuan Suibin Jixian Huanan Huachuan

Evaluation value 1.6475 1.7548 1.6245 1.6574 1.8045 1.8907 1.8475 2.1245 2.0147

Fig. 3 Spatial distribution of the agricultural drought vulnerability in the Sanjiang Plain a 2004, b 2007,
c 2010, and d 2013
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Figure 3 shows that the vulnerability of agricultural drought in the Sanjiang Plain has

gradually decreased overall from 2004 to 2013. The regions that belong to grade IV

decreased from 7 to 2, and the regions that belong to grade I increased from 3 to 12.

Table 3 shows that mean value of all of the regions was 1.9575 in 2004 and 1.6741 in

2013, so the mean of the grade decreased from 2.94 to 1.78. The agricultural drought

vulnerability in the Sanjiang Plain has a downward trend overtime. In exposure, forest

cover showed an increasing trend, mainly due to the increasing emphasis on the role of

ecological environment at all levels of government. Planting trees, returning farmland to

forests and other measures to build forest cover in the Sanjiang Plain increased from 28.35

to 30.1 % in 10 years. In sensitivity, with rapid socioeconomic development and an

accelerating urbanization process, the proportion of agricultural population decreased from

54.6 to 51.12 % in 10 years. In adaptive capacity, the reduction in regional drought vul-

nerability is mainly due to the improvements in drought resistance ability. Irrigation and

water conservancy facilities gradually improved, and the irrigation area increased each

year. The irrigation index increased from 22 to 46 % in 10 years, and the drought resis-

tance increased significantly. In addition, similar to the Chinese economy, the regional

economy developed quickly; the per capita GDP increased from 8303 RMB yuan to 34,616

RMB yuan over 10 years, and the rural per capita net income increased from 2385 RMB

yuan to 8367 RMB yuan. Economic development determines the increase in anti-disaster

investment. Finally, the efficiency of regional land use also improved. The fertilizer scalar

unit area increased from 0.16 to 0.92 tons. The increase in soil fertility was within a

reasonable range, and the grain yield was increased, decreasing the vulnerability.

From the local perspective, although the vulnerability of various regions showed a

downward trend overtime, obvious differences were shown between regions. Hulin,

Luobei, Youyi, and Fuyuan are the least vulnerable areas and are classified as grade I (in

addition to Fuyuan, grade II in 2004). The evaluation of the four regions is shown in Fig. 4.

Figure 4 shows that the vulnerability of four regions generally has a downward trend.

Among them, the vulnerability of Luobei is lower than that of the other regions. Taking

2013 as an example, the population density of Luobei is 32.87 person km-2, the mean

proportion of agricultural population is 21.5 %, and the mean values of these two factors

for all 18 counties are 61.7 person km-2 and 51.6 %, so the sensitivity is lower. In

addition, the forest coverage in Luobei reached 67.9 %, which was the highest in the whole

Sanjiang Plain. In adaptive capacity, the irrigation index in the Luobei area was 78.8 %,

higher than the mean value of 46.16 %. The regional economy is more developed, and the

rural per capita net income reached 12,710 RMB yuan, higher than the regional average of

8637 RMB yuan. From the perspective of time, the vulnerability of Luobei also showed a

trend of slow decline, mainly because the regional disaster mitigation ability was

enhanced. In 10 years, the irrigation index increased from 32.4 to 78.8 %, the per capita

Fig. 4 Vulnerability changes over time (Luobei, Youyi, Hulin, and Fuyuan)
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income of farmers increased from 4041 RMB yuan to 12,710 RMB yuan, and the per

capita GDP increased from 12,717 RMB yuan to 36,310 RMB yuan. The vulnerability of

Youyi is also at a low level. Youyi is less dependent on agriculture. The mean value of the

proportion of agricultural GDP for 4 years is 36.18 % with a downward trend each year.

The mean value of the proportion of agricultural population for 4 years is 13.23 %, far

lower than the regional average. The vulnerability of Youyi also showed a downward trend

over time because the adaptive capacity increased. The irrigation index and rural per capita

net income also increased. Hulin’s vulnerability is slightly higher than that of Luobei and

Youyi but is also located in the lower level. In 2013, for example, the region had a low

sensitivity. The population density was 30.75 person km-2, and the proportion of agri-

cultural population was 33.1 %, located in the lower level. Simultaneously, the regional

resilience is strong. The irrigation index increased from 25.7 to 56.2 %, and the net income

of farmers increased from 2140 RMB yuan to 10,323 RMB yuan. Fuyuan is a county with a

large change invulnerability in four regions. The vulnerability evaluation value decreased

from 1.7814 to 1.3274 in 10 years. The proportion of agricultural population decreased

from 59.77 to 39.5 %, and the sensitivity was lower. The forest cover was high and the

mean value was 60 %. The regional irrigation index increased from 31.4 to 71.3 %. These

are the main factors that reduce the vulnerability of the region.

Compared to other regions, the vulnerability of Hulin, Luobei, Youyi, and Fuyuan was

lower, mainly because those regions have larger areas with less population, so the sensi-

tivity to drought is lower. The regional economic level is relatively good, with 17 state-

owned farms in the region, and the drought resistance of the state-owned farms is sig-

nificantly higher than the general area.

The vulnerability of Baoqing, Muling, Raohe, and Tongjiang is moderate, showing a

downward trend with time, as shown in Fig. 5.

The vulnerabilities of Baoqing and Muling are low and vary with time. The two regions

fell from grade III to grade I, significantly reducing the vulnerability. In sensitivity, the

average proportion of agricultural population in the two regions in 2004 was 60.11 %, and

the value was 49.8 % in 2013. In adaptive capacity, the average irrigation index of the two

regions rose from 12.75 to 28.8 %, and the mean values of the rural per capita net income

and per capita GDP increased from 3325 RMB yuan and 9422 RMB yuan to 12,616 RMB

yuan and 52,301 RMB yuan, respectively. The adaptive capacity was enhanced signifi-

cantly. Raohe and Tongjiang are moderate vulnerabilities and show a more relaxed

downward trend with time. The two regions are more dependent on agriculture. The

proportions of agricultural GDP of the two regions are 74.3 and 68.9 %, respectively, but

the population density of the region is relatively low at 21.4 and 27.97 person km-2,

respectively. The sensitivity is moderate. The adaptability of the two regions has increased

Fig. 5 Vulnerability changes over time (Baoqing, Muling, Raohe, and Tongjiang)
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over time, in 10 years, the average irrigation index rose from 33.55 to 64.8 %, and the

average per capita GDP increased from 6841 RMB yuan to 43,574 RMB yuan.

The vulnerability of Yilan, Jidong, Mishan, Fujin, and Boli has changed with the time,

as shown in Fig. 6.

The vulnerability obviously changed in Yilan and Jidong; this decline is mainly

reflected in the resilience of the region. The irrigation index of Yilan was 9.8, 13.15, 17.14,

and 16.07 % in 2004, 2007, 2010, and 2013, respectively. The irrigation index of Jidong

was 11.2, 17.5, 19.5, and 26.5 % in 2004, 2007, 2010, and 2013, respectively. The two

regions significantly improved. The mean value of rural per capita net income in the two

regions was 3486 RMB yuan, 4922 RMB yuan, 8249 RMB yuan and 11,869 RMB yuan for

4 years and indicates that the disaster investment capacity was significantly enhanced.

Mishan, Fujin, and Boli’s vulnerability also obviously changed, dropping from grade III to

grade I because rapid economic development continuously improved adaptability. The

mean value of the irrigation index increased from 18.83 to 31.8 % in those regions. The

rural per capita net income increased from 3172 RMB yuan to 11,346 RMB yuan, and the

per capita GDP increased from 8280 RMB yuan to 30,014 RMB yuan. The anti-disaster

investment ability was obviously enhanced.

The vulnerability grades of Tangyuan, Suibin, Jixian, Huanan, and Huachuan were

higher and less variable, indicating that these regions are vulnerable to drought threat, as

shown in Fig. 7.

The vulnerability of Suibin and Tangyuan has small changes with time, showing a slight

downward trend. The rural per capita net income and per capita GDP increased, easing the

vulnerability area to a certain extent, but proportion of agricultural GDP is relatively high.

Jixian’s vulnerability level is also higher, showing a clear downward trend overtime,

mostly because the economy has been greatly developed, enhancing the adaptability. The

vulnerability of Huanan and Huachuan changes significantly over time, but the grades of

the two regions are still the highest. Taking 2013 as an example, the mean population

density in the two regions is 95.72 person km-2, and the mean proportion of agricultural

population is 71.7 %. A comparison showed that the mean values of these three factors for

Fig. 6 Vulnerability changes over time (Yilan, Jidong, Mishan, Fujin, and Boli)

Fig. 7 Vulnerability changes over time (Tangyuan, Suibin, Jixian, Huanan, and Huachuan)
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all 18 counties are 61.7 person km-2 and 51.16 %. Regarding adaptive capacity, the forest

coverage value of Huachuan and Huannan is 6.6 and 17.3 %, respectively. Because the

forestry coverage is low, the water conservation in these counties is poor and their ability

to resist drought is poor. Fewer state-owned farms are in these regions, the drought

resistance is less, the irrigation area is insufficient, and the mean irrigation index is 30.2 %.

The rural per capita net income is low, with an average of 3659 RMB yuan, much lower

than the overall average of 8637 RMB yuan. Thus, the area is vulnerable to drought, and if

a drought were to occur, the recovery ability would be poor.

4 Discussion

The above analysis revealed the sensitivity factors and adaptive capacity factors that

determine the differences in the regional drought vulnerability. The main sensitivity factors

are the proportion of agricultural population and the proportion of agricultural GDP. The

Sanjiang Plain is the main grain-producing region in China, and the regional economy is

strongly dependent on agriculture. As a result, when drought occurs, the potential losses in

this region are relatively serious. The main adaptive capacity factors that contribute to

reducing the drought vulnerability include the irrigation index and the rural per capita net

income. The irrigation index reflects a region’s ability to resist drought, whereas the rural

per capita net income is an important indicator of regional agricultural economic devel-

opment. The agricultural economic level is strongly related to the degree of regional

drought vulnerability, and the capacity and potential for disaster reduction are substantially

influenced by the agricultural economy.

According to the regional characteristics of the Sanjiang Plain, for the regions with high

vulnerability, some suggestions are as follows:

(1) Reduce the proportion of agricultural population and speed up the process of

urbanization. The Sanjiang Plain is mainly based on agriculture, and the proportion

of agricultural population is high. A high proportion of agricultural population is one

of the reasons for the high vulnerability.

(2) Develop economic diversification and reduce the proportion of agricultural GDP.

The economic dependence on agriculture in Sanjiang Plain is more serious, and

agriculture is susceptible to drought. The region should focus on the development of

other industries, developing diversified regional economic structure. Diversification

of the economy can reduce the risk of drought to a certain extent.

(3) Take measures adapted to local conditions to cultivate more high economic crop

benefits. At present, the main crop in Sanjiang Plain is corn with a single planting

structure, and the economic benefit is not high. The region can be based on their own

land characteristics, planting more economic crops, such as soybeans, rapeseed, and

high-quality rice.

(4) Promote deep processing of agricultural products and increase the added value of

agricultural products. The added value of the finished product or semi-finished

product after processing is often higher. Sanjiang Plain should take advantage of its

raw materials and actively promote the development of agricultural products

processing industry, establishing regional brands, which will also change the

regional economic structure and improve the ability to resist drought in the region.

(5) Increase investment in irrigation and water conservancy facilities, increase the

irrigation index, change the traditional irrigation methods, and improve the water
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use efficiency. For example, modern irrigation (sprinkling irrigation, drip irrigation,

and infiltration irrigation) should replace the traditional irrigation methods (canal

irrigation, furrow irrigation, and flood irrigation).

5 Conclusions

This study refers to the projection index developed by Friedman and Tukey (1974). Here,

an improved projection pursuit model based on information entropy is proposed and

applied to assess the agricultural drought vulnerability of 18 counties for 4 years (2004,

2007, 2010, and 2013) in the Sanjiang Plain. The conclusions are as follows:

(1) Theoretical analyses revealed that information entropy is more appropriate for

measuring the dispersion of data relative to the standard deviation. From a local

perspective, the cutoff radius is compressed between 0 and ln 2 by information

entropy, which allows for the use of the exhaustion method to determine the cutoff

radius.

(2) Case analyses showed that the results of the improved model and the Friedman–

Tukey model are similar, thus confirming the validity of the proposed model. In

terms of the classification, the quantitative analysis confirmed the superiority of the

proposed model over the original model.

(3) The overall vulnerability of the Sanjiang Plain shows a decreasing trend over time

because the adaptive capacity constantly improved and the drought resistance

gradually increased. Specific performance in irrigation index, per capita GDP, and

rural per capita net income increased each year. Spatially, obvious differences can

be seen in the region. The vulnerabilities of Hulin, Luobei, Youyi, and Fuyuan are

the lowest; these regions are less sensitive and more adaptive. The main

performance in the population density and the proportion of agricultural population

are relatively low, so the potential loss due to drought is smaller. The per capita

GDP and rural per capita net income are higher, the regional economy is good, and

the ability to invest in the drought is strong. The vulnerabilities of Baoqing, Muling,

Raohe, and Tongjiang are moderate. Among them, the vulnerabilities of Baoqing

and Muling varied with time. From 2004 to 2013, the proportion of agricultural GDP

decreased, and the irrigation index and rural per capita net income significantly

increased. The vulnerabilities of Yilan, Jidong, Mishan, Fujin, and Boli are

moderate and the change is obvious. Yilan and Jidong rose from IV to I. The change

in the vulnerability is obvious, which is mainly reflected in the irrigation index and

the rural per capita net income. Mishan, Fujin, and Boli rose from III to I due to the

economic development. The gradually increasing per capita GDP and rural per

capita net income increased the drought resistance ability. The vulnerability levels

of Tangyuan, Suibin, Jixian, Huanan, and Huachuan are the highest and least

variable, showing that these areas are vulnerable to drought. These regions are more

sensitive to drought, and the potential loss of drought is higher. The regional

economic development level is relatively low, so the agricultural drought resistance

is not high.
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