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Abstract This paper investigates the relationship between green technology innovation and

energy intensity for 29 provinces in Mainland China from 1999 to 2010. Based on changes in

energy intensity in the data, the provinces are divided into four groups: the conventional group,

the gradational group, the contemporarygroup, and the low-carbongroup. Industrial structure is

included in the study because of its impact on energy intensity, thus avoiding the problem of

omitted variable bias. The empirical results indicate that there is a negative, long-run, cointe-

grated relationship between energy intensity and green technology innovation. We also dis-

cover unidirectional causality from green technology innovation to energy intensity in the

conventional and low-carbon groups, whereas green technology innovation directly affects

energy intensity through a feedback system for the gradational and contemporary groups. To

achieve the goal of energy intensity, policymakers should encourage green technology diffu-

sion from the low-carbon group to the conventional group and improve the share of green

technology innovation in the gradational and contemporary groups.

Keywords Green technology � Energy intensity � Industrial structure

1 Introduction

It is now widely recognized that green technology innovation and diffusion are required to

address the global climate change and energy crises (Acemoglu et al. 2012). However,

there has yet to be a study exploring how green technology innovation influences energy
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intensity in China. There are several reasons for this, but perhaps the most significant is the

lack of classification and measurement for green technology innovation. It is well known

that quantitative research on green technological innovation cannot take place before the

problem of green technology classification and measurement is solved. In 2006, Popp

(2006) identified the technical characteristics of energy technology in the USA and con-

firmed that identifying these characteristics has two benefits: It can (1) help policymakers

design appropriate policies to stimulate innovation and reduce costs and (2) facilitate

analysis of reaction to those policies. At the end of 2011, the Organization for Economic

Co-operation and Development (OECD) released patent search strategies for the identifi-

cation of selected environment-related technologies (OECD 2011a). Based on previous

studies, the technologies were divided into green technologies and dirty technologies

according to their environmental effects (Hart 2004). Green technologies are mainly

technologies relevant to climate change, whereas dirty technologies are mainly fossil fuel-

based technologies. We explore the effects of green technology innovation on energy

intensity using provincial-level data.

The contribution of this paper is to investigate the relationship between energy intensity

and green technology using patent statistics. Technology innovation can be measured using

R&D investment or patent statistics. Patents are strongly correlated with R&D expendi-

tures and consequently can be considered a good proxy for knowledge capital (Aghion

et al. 2014). Xu and Chiang (2005) argued that low- and middle-income countries acquire

more technology spillover effects from patents than do high-income countries. As a

developing country, China has made substantial investments to imitate technology from

developed country. Furthermore, Vanessa and Maider (2005) argued that patents are an

appropriate proxy measure of innovative activity at the regional level and can be used to

measure ecological technology innovation (a kind of green technology innovation). China

has three types of patents: inventions, utility models, and design applications. Invention

patents have high-level originality and high-technology features, so this paper focuses on

invention patents.

Another highlight of our study is that we consider regional differences in energy

intensity and thus avoid the omitted variable bias problem. An early approach to under-

standing the relationship between technology innovation and energy intensity was to use a

regional integrated assessment model. A second, related stream of the literature uses time

series country-level data to test the impact of technology innovation on energy con-

sumption. We find that the role of green technology in reducing emissions remains con-

troversial when the literature is scrutinized. Some studies claim that green technology does

not play a role in reducing CO2 emissions, and some have even found some specific green

technology to have a negative effect (Hang and Tu 2007). We suggest there are two

reasons for this. The first is a version of the omitted variable bias problem, involving

industrial structure, as we discuss in detail later. Industrial structure, which has a direct

impact on the amount of CO2 emissions, differs among China’s provinces and munici-

palities. Thus, when analyzing the relationship between green technology patents and CO2

emissions in China in this paper, we include industrial structure as a control variable.

Second, even ignoring the omitted variable bias problem, there is an interregional dif-

ference problem (Zeng and Chen 2009). China displays striking differentiation in energy

consumption between regions. We use these differences to divide China into four groups

based on energy intensity. Since cluster analysis is superior to simple regional division in

describing this differentiation, it is used in this paper to divide the 29 provinces in

Mainland China into the conventional, gradational, low-carbon, and contemporary groups

according to differences in energy intensity (Jin et al. 2011). This allows us to describe
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regional features of energy consumption, providing strong evidence of the relationship

between energy intensity and green technology.

The rest of this paper is organized as follows: Sect. 2 introduces the related literature,

and Sect. 3 explains the data for China’s four energy intensity groups. Section 4 analyzes

and discusses the empirical results. Section 5 describes the policy implications derived

from this study.

2 Theoretical background

Energy intensity has long been of interest to energy researchers. Scholars both within and

outside of China have analyzed the relationship between technological progress and the

environment by capturing the impact of new technology on energy use. The Chinese

government has struggled to reduce energy intensity in order to alleviate the dual pressures

of energy and the environment through green technology innovation. Green technologies

comprise a vast range of radically different technologies that support wealth creation and

energy efficiency through several means: pollution reduction and greater resource effi-

ciency, climate change mitigation based on a cleaner energy supply, end-use and carbon

capture and storage, the creation of products and processes appropriate for changing

environments, and more sustainable production. Green technology includes both energy-

saving and emission-reduction technologies. Therefore, green technology should reduce

energy intensity in the following ways.

First, the use of green technologies can increase energy efficiency. The literature in

these areas makes use of the well-known environmental Kuznets curve (EKC), which

decomposes the effects of economic activity into scale, composition, and technique

effects (Ma and Stern 2008). The scale effect is not central because energy intensity is

defined as energy consumption per unit of output. The composition effect, which cap-

tures changes in the industrial structure, can be measured based on our data. The

technique effect captures the impact of new management practices and technology on

energy use. Smulders et al. (2011) give an explanation for the EKC inverted U rela-

tionship by policy-induced technology shifts and intrasectoral changes. Studies on the

relationship between green technology and energy intensity in China are scarce, but there

are some studies on the effect of technology changes on energy intensity in China. Fan

et al. (2007) provide empirical evidence that the improvement in energy efficiency

improved energy intensity in China from 1980 to 2003. Garbccio et al. (1999) employed

the input–output method to explore the causes of the decrease in energy intensity in

China based on data from 1978 to 1995 and concluded that technological progress was

the main influence factor. Feng et al. (2008) used hierarchical regression and time series

data to examine how industrial structure, technological progress, and energy prices

influence energy intensity and found that technological progress significantly reduces

energy intensity. However, one explanation for the relatively slow reduction in China’s

energy intensity is that there are relatively fewer green technology innovations in China

than in other countries. Yang (1993) found the slow pace (compared with Japan) of

green technology innovation was the primary factor explaining why energy intensity had

stayed at a high level in China. As a result, low-carbon urban planning and development

guidelines were presented for the first time in 2007. It is exciting that China’s green

technology patent growth rate is now at about 33 %, while its dirty technology patent

growth rate has been at about 22 % since 1998.
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Second, technological diffusion and spillover from other countries to China is a

channel to reduce energy intensity; technological transfer plays a key role in helping

developing countries to achieve reductions in greenhouse gas (GHG) emissions. The

definition of technological spillovers includes product and process innovations,

improvements in distribution channels, and better marketing and management. Wang

(2010) examined the role of a clean development mechanism (CDM) in GHG emissions

and found that international carbon trading plays a larger role than other channels.

However, few studies on the economics of GHG stabilization have addressed the role of

international knowledge flows in the process of technological improvement (Fisher-

Vanden and Jefferson 2008).

Finally, green technology spillovers can influence energy use. Green technology spil-

lovers can be both horizontal and vertical. First, domestic firms can benefit from the

presence of cleaner technology in the same industry through demonstration effects. We

should note that the diffusion and evolution of green technology are slow and uncertain,

and there are many obstacles to widespread diffusion. Second, there may be spillovers

from foreign firms operating in other industries, known as vertical spillovers. Elena and

Marzio (2011) employed a sample of 38 innovating countries to study how green tech-

nologies flow across geographical and technological space and showed that spillovers

between countries have a significant positive impact on further innovation. Lun (2010)

explained the decrease in energy intensity in China based on inter-industry spillovers of

energy-saving techniques. The results showed that backward and forward linkage spil-

lovers were all distinct, which benefited industrial policy on structure adjustment aimed at

high-energy-consumption industries.

In summary, the research on technological innovation to reduce energy intensity has

many problems, including the lack of rational classification based on the environmental

effects of technology. The relationship between energy intensity and green technological

innovation has not yet been examined. Furthermore, industrial structure has not been

included as an important control variable when measuring this causal relation.

3 Green technology and energy intensity in China’s different groups

The limitation of bivariate tests for determining the relationship between energy intensity

and technological change calls for a multivariable model. The multivariate framework

includes energy intensity (EI), industrial structure (IS), and green technology innovation

(GT). The panel data for 29 provinces and municipalities in Mainland China covering the

period from 1999 to the end of 2010 were obtained or derived from the China Statistical

Yearbook and the China Energy Statistical Yearbook. The energy intensity information for

Tibet is not available for most years, and Shanghai, Chongqing, Liaoning, Jiangxi, Anhui,

Jilin, Guizhou, Gansu, Qinghai, Inner Mongolia, the Xinjiang Uygur Autonomous Region

is derived from the energy consumption for each unit of national output. All the variables

are expressed in natural logarithms such that the elasticity can be interpreted. The data

analysis involves two tasks as follows: First, the long-run relationship between green

technology and energy consumption intensity is explored in a multivariate framework, and

second, the signs and magnitudes of the respective coefficients of the different groups are

determined.
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3.1 Group divisions

China’s National Bureau of Statistics divides 29 Chinese provinces and municipalities

(excluding Hong Kong, Macao, Taiwan, and Tibet) into the eastern, central, and western

regions (Zeng and Chen 2009). There is large variance in the energy intensity within each

region. China’s energy intensity plan has been implemented taking into account the actual

situation of each province, so that each province has its own energy-saving plan. Based on

an analysis of the changes in energy intensity, Jin et al. (2011) summarized four modes of

energy consumption compared to gross domestic product (GDP) in various regions of

China: the conventional mode, gradational mode, contemporary mode, and low-carbon

mode (Jin et al. 2011). Since cluster analysis is superior to simple regional division in

describing this differentiation, we divide the 29 provinces and municipalities in Mainland

China into the conventional, gradational, low-carbon, and contemporary groups according

to the differences in energy intensity. We analyze the energy intensity characteristics of

each group to describe the regional features of energy intensity, providing strong evidence

of the relationship between energy intensity and green technology.

3.2 Energy intensity in China’s different groups

EI represents the energy use per unit of GDP. Data on energy consumption are available in

the China Energy Statistical Yearbook, and related GDP data can be obtained from the

National Bureau of Statistics. Since all the provincial data reported in Chinese Statistical

Yearbooks are calculated at current prices, we adjusted all data for provincial GDP per

capita by considering the official price index. When we calculate energy intensity, the

related GDP is translated to the 1990 price index.

Figure 1 shows that energy intensity has decreased significantly in the past 12 years,

and the low-carbon and gradational groups present dramatic decline curves. Average

energy intensity is taken as the standard, and the energy intensity in 1999 is the initial basis

for comparison. Energy intensity is typically considered high when it is higher than the

average level of 1.70 t of standard coal per 10,000 yuan; otherwise, it is viewed as low.

According to the different rates of energy intensity, as mentioned earlier, the provinces can

be divided into four groups: The low-carbon group begins with lower energy intensity and

ends with a high decrease rate, as in Beijing and Tianjin. The gradational group begins with

higher energy intensity and ends with a high decrease rate by reducing energy intensity as
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Fig. 1 Energy intensity in China’s four energy intensity groups
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much as possible, as in Inner Mongolia and Shanxi, which are classified into the grada-

tional group because they differ from the other western provinces in terms of energy

intensity mode. The conventional group begins with higher energy intensity and ends with

a low decrease rate, as in Ningxia and Heilongjiang. The contemporary group begins with

lower energy intensity and ends with a low decrease rate, as in Hainan and Yunnan.

3.3 Measurement of green technology innovation based on patent statistics

We use patent statistics to measure green technology innovation. Although patent statistics

have many disadvantages for measuring innovation output (Hang and Tu 2007), they are a

rather good proxy for innovation activities because there is a strong relationship between

the number of patents and R&D expenditure. Green technology patents are a subgroup of

patents. The extraction of green technology patents and statistics consists of three steps.

First, we must determine the statistical method and statistical channel of green tech-

nology patents. There are two ways to gather green technology patents. The first is to

gather green patents according to the OECD (2011a) indicator of environmental tech-

nologies. This is especially useful for green technological activities, since the OECD

(2011b) provides a definition of green technologies based on patent classification. The

second way is to gather green patents from the State Intellectual Property Office of the

People’s Republic of China (SIPO). Based on the international patent classification, the

SIPO distinguishes eight environmental areas: (a) biofuels (b) other heat production or use

not generated from burning, (c) railway vehicles, (d) energy supply lines, (e) general

building, (f) mechanical energy recovery, (g) wind energy and (h) fuel cells (SIPO 2013).

Because China is a developing country, its green technology innovation is based on ‘‘catch-

up innovations,’’ which involve adapting existing green products, processes, organizational

processes, and marketing to the local context. Green patents applied for through SIPO

reflect not only the independent research and development in each province but also the

results of green technology diffusion and spillover. Therefore, we collect green technology

data using the second approach.

Second, the green technology patent data from 29 provinces and municipalities from

1999 to 2010 are collected. First, the above approaches are used to acquire the data on

green technology patents and organize them by application year. Next, patents are assigned

to a province. Patents can be assigned to provinces based on either the applicant’s home

province or the inventor’s home province. We collected both the inventor’s information

and the applicant’s information in Hebei Province to examine our assumption that there are

no significant differences between the inventor’s and applicant’s address data. The

examination confirmed this result. Hence, patents are assigned according to the applicant’s

address, which is compulsory for patent applications. From 1999 to 2010, the number of

green technology patents increased significantly: by 20 times in only 11 years. There were

only a few green inventions registered in 1999. Between 1999 and 2001, the number

increased slightly. A sharp increase in the number of green patents occurred in 2002. The

growth in the number of green patents has remained at a higher level since 2003. There are

10 provinces at a level higher than the national average in terms of patent number, and 19

provinces lower than the average. The province with the highest number of patents is

Jiangsu, followed by Zhejiang, Guangdong, Tianjin, and Shanghai. The lowest is Hainan,

followed by Jilin, Liaoning, Yunnan, and Ningxia.

Third, we count the green technology patents for each of the groups. As shown in Fig. 2,

green technology patents in the low-carbon group show a higher growth rate than those in

the conventional and gradational groups, especially since 2008. It is impressive that the
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gradational group has brought about the reduction in energy intensity with few green

inventions. It remains unknown whether green technology patents can help reduce CO2

emissions for the gradational group.

3.4 Industrial structure in China

Looking at industrial structure, the proportion of secondary industry has a large influence

on energy consumption. The industrial structure is defined by the percentage of tertiary

industry value added to the GDP. The energy intensity of tertiary industry is lower than

that of secondary industry (Ma and Stern 2008). Thus, improving the proportion of tertiary

industry value added to the GDP may reduce energy intensity effectively.

Figure 3 illustrates the phasic variation of China’s industrial structure from 1999 to

2010. Although the proportion of tertiary industry increased slowly, the proportion in the

low-carbon group is obviously higher than that in other groups, which could be because

China is in the middle of industrialization: The leading position of secondary industry is

still stable, so the proportion of tertiary industry has not increased as much as expected.

4 Econometric approach and empirical results

4.1 Econometric approach

The panel data model has several advantages that make it suitable for researching

dynamic adjustment processes. First, it can increase estimation effectiveness. Second,

panel data can identify and measure other influential variables that cannot be identified

using time series or cross-sectional data models, and can reduce the omission of

important explanatory variables. Third, panel data provide more information, more

variability, less nonlinearity, and higher efficiency than times series or cross-sectional

models. Data used in this research cover 29 provinces over 12 years: a relatively short

time frame. To avoid the weakness of a short time frame and reduce the impact of

variables not mentioned, a cross section-specific model is employed. Same-order inte-

gration is the premise of cointegration and the Granger causality relationship. We set up

the regression equation as follows:
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LEI
j
it ¼ a j

i þ b j
1LGT

j
it þ b j

2LIS
j
it þ eit ð1Þ

where t ¼ 1; . . .; T refers to the periods; i ¼ 1; . . .;N indicates members of the balanced

panel; j ¼ 1; 2. . .; 4 refers to the groups; a j
i is the province-specific effects belonging to

group j; b j
1 and b j

2 are the parameters to be estimated; eit is the estimated residual; and

LGT, LEI, and LIS are the logarithms of the variables GT, EI, and IS, respectively.

We employ a two-step process to test for Granger causality in the long-run relationship.

The first step involves estimation of the residuals from the long-run model, and the second

step involves fitting the estimated residuals into a dynamic error correction model. The

dynamic error correction model used is specified as follows:

DLGT j
it ¼ a j

10 þ
Xq

k¼1

h11ikDLIS
j
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h12ikDLEI
j
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DLEI jit ¼ a j
20 þ
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h21ikDLIS
j
it�k þ
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h22ikDLEI
j
it�k þ

Xq

k¼1

h23ikDLGT
j
it�k þ k j

2ECMit�1

þ e j2it
ð2bÞ

where ½ai; hi; k� are adjustment coefficients; D is a difference operator; ECM is the lagged

error correction term derived from the long-run cointegrating relationship; k is the number

of lags determined by the Schwarz information criterion (SIC); and e is the serially

uncorrected error term. Using the specification in Eq. (2a, 2b) allows us to test for both

short-run and long-run causality.

Masih and Masih (1997) interpreted weak Granger causality as short-run causality in the

sense that the dependent variable responds only to short-term shocks to the stochastic

environment. The long-run causality can be tested by looking at the significance of the

coefficient of the error correction term from Eq. (2a) and Eq. (2b). We can identify the

sources of causation by testing for the significance of the coefficients for the lagged

dependent variables from Eq. (2a) and Eq. (2b). To obtain the short-run causality, we first

test H1 : h12 ¼ h11 for all i in Eq. (2a), or H2 : h21 ¼ h23 for all i in Eq. (2b).

The coefficients ki of the error correction term (ECT) represent how fast deviations

from the long-run equilibrium are eliminated following changes in each variable. The
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sources of causation are determined by testing the joint hypothesis of H1 : k1 ¼ h12 ¼ h11
in Eq. (2a) and H2 : k2 ¼ h21 ¼ h23 in Eq. (2b). Granger causality of the dependent

variables is tested using a simple t test of ki (Asafu-Adjaye 2000).

4.2 Empirical results

4.2.1 Panel unit root results

Table 1 shows the results of the panel unit root tests at the national level from LLC, IPS,

Fisher ADF, Fisher PP, Breitung, and Hadri tests for the level and first differenced series of

LEI, LGT, and LIS. For the three variables in level form, the null hypothesis of the unit

root cannot be rejected for the IPS, Fisher ADF, Fisher PP, and Breitung tests, but the

Hadri and LLC tests reject the null hypothesis with 1 % significance. By taking the first

difference, the null hypothesis is rejected for all five tests at the 1 % level. When the panel

unit root test is applied to the first difference of the variables in other groups, we can reject

the null hypothesis of the unit root for each of the variables at the 1 % level. Overall, all the

panel unit test techniques reject the null hypothesis for the differenced series and thus show

that LEI, LGT, and LIS have integration of order one.

4.2.2 Panel cointegration test

Table 2 shows the results of the panel cointegration from the seven statistics of Pedroni

(1999). The null hypothesis is accepted at the 5 % significance level according to Panel V,

and the resulting value of the test statistic is rejected at the 1 % significance level with the

other methods. There are cointegration relationships among green technology, industry

structure, and energy intensity at the national level after allowing for a province-specific

effect. Next, we test each of the low-carbon, contemporary, conventional, and gradational

groups with the same method, and the results show a cointegration relationship among the

four groups. The next step is to estimate this relationship.

4.2.3 Panel cointegration estimation

Given the evidence of panel cointegration, the long-run relationships can be further esti-

mated. There are several methods for panel cointegration estimation, such as the bias-

corrected OLS (BCOLS) estimator, the fully modified OLS (FMOLS) estimator proposed

by Phillips and Moon (1999) and Pedroni (1999), and the dynamic OLS (DOLS) estimator

proposed by Kao and Chiang (2000). Because DOLS exhibits the least bias in small

samples, we mainly use the DOLS estimators.

Table 3 reports the estimated long-run elasticities, which are significant at the 1 %

level. The elasticity coefficients between energy intensity and green technology are

-0.0005, -0.0006, -0.0020, and -0.0213 for the low-carbon, contemporary, conven-

tional, and gradational groups, respectively, which shows there is a difference among

groups.

The panel long-run green technology elasticity is -0.0016 at the national level, sta-

tistically significant at the 1 % level, and the effect is negative. This implies that a 1 %

increase in green technology will reduce energy intensity by 0.0016 %. Moreover, the

panel long-run industrial structure elasticity at the national level is -0.0244, which is
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statistically significant at the 1 % level. This implies that a 1 % increase in tertiary industry

will reduce energy consumption by around 0.0244 %.

In line with expectations, for the gradational group, long-run green technology elasticity

is -0.0213, which is the highest green technology elasticity coefficient among the four

groups. For the low-carbon group, the elasticity of green technology is significantly lower

than in the other groups because of the group’s high industrialization level, so there is little

room for green technologies to reduce energy intensity. If the data are not classified, the

elasticity is -0.0016, and the weak relationship between the two variables cannot be

detected. Table 3 also indicates that the elasticities of industrial structure are negative,

which means that the increase in tertiary industry does reduce energy intensity. Further-

more, the conventional group with low industrialization may see a quick decline in energy

intensity when the developmental level of tertiary industry is improved.

4.2.4 Granger causality results

Once the variables are found to be cointegrated, the next step in the Engle–Granger

methodology is to model the short-run variations of the variables. This is done by esti-

mating the coefficient of ECT. Table 4 reports the results of the short- and long-run

Granger causality tests. With respect to Eq. (2a), industrial structure has a positive and

statistically significant impact on green technology innovation in the short run. An

examination of the coefficients of the industrial structure indicates the gradational group

has a greater impact on green technology innovation, whereas the low-carbon group has a

lesser impact. Moreover, the error correction term is statistically significant at the 10 %

level, also denoting a relatively slow speed of adjustment to long-run equilibrium in the

low-carbon group. Energy intensity has different impacts on green technology innovation

in the short run. We can see that the fluctuation of energy intensity has a statistically

significant impact on green technology innovation in the contemporary and low-carbon

groups. Conversely, for the conventional and gradational groups, energy intensity has

insignificant impacts on green technology innovation. In light of the short- and long-run

results, energy intensity may be considered exogenous to the other variables in the model,

except in the low-carbon and contemporary groups.

In terms of Eq. (2b), it appears that green technology innovation and industrial structure

do have statistically significant impacts on energy intensity in the short run. In general, an

increase in green technology innovation will reduce energy intensity, but the effect is

Table 3 Panel cointegration estimation

Dependent variable LEI

Regressor National Conventional Gradational Contemporary Low-carbon

LGT -0.0016
(0.0022)

-0.0020
(0.0000)

-0.0213
(0.0000)

-0.0006
(0.0000)

-0.0005
(0.0000)

LIS -0.0244
(0.0000)

-0.0591
(0.0000)

-0.0416
(0.0000)

-0.0090
(0.0000)

-0.0163
(0.0000)

F-statistic 112.3671 79.5720 668.9918 576.3118 2017.6090

Sample 348 36 96 108 108

a P values are in parentheses
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greatest in the low-carbon group. For the gradational group, an increase in green tech-

nology does not lead to energy intensity decreasing faster than it does in the contemporary

and conventional groups. The estimation results of the error correction models in Eq. (2b)

indicate that the lagged error correction terms have negative signs, as expected. This

implies that the change in the level of green technology innovation does respond rapidly to

any deviation in the long-run equilibrium. However, the return to equilibrium occurs at

different rates: It is faster for the low-carbon and gradational groups and very slow for the

other two groups.

To summarize, it is clear from the causality test results that the coefficients of DEI are
not significant individually in Eq. (2a). This indicates that there is no short-run causality

from energy intensity to green technology innovation for our sample during the study

period. We believe the cause of the reduction on energy intensity might be industrial

structure adjustment rather than green technology innovation.

5 Conclusion and policy implications

5.1 Conclusions

This paper attempts to determine the relationship between green technology innovation and

energy intensity in different regions of China. The 29 provinces are divided into four

groups according to their changes in energy intensity. Our empirical results confirm a

significant and negative relationship between green technology and energy intensity, and

our study shows that the relationship is stronger for the gradational and conventional

groups. Green technologies do not necessarily reflect inventions in the region based on its

own R&D, but rather the adoption of a technology new to the region. Like dirty technology

Table 4 Panel causality test
results

* and ** indicate that the null
hypothesis of no causation is
rejected at the 1 and 5 % levels,
respectively

Dependent variable Source of causation (independent variables)

Short run Long run

DGT DEI DIS ECT

National

(2a)DGT -1.473** -0.007 0.006** -0.509*

(2b)DEI -1.125** -0.011*

Conventional

(2a)DGT -1.595** 0.006 0.046** -0.641*

(2b)DEI -1.990** -0.007*

Gradational

(2a)DGT -0.474** -0.009 0.056* -0.103**

(2b)DEI -2.321** -0.024*

Contemporary

(2a)DGT -3.526** -.005** 0.007** -0.416*

(2b)DEI -0.309** -0.003*

Low-carbon

(2a)DGT -7.056* -0.009** 0.003** -2.464*

(2b)DEI -1.346** -0.545*
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transfer, green technology transfer has both a direct effect on energy consumption deci-

sions and an indirect effect via changes in goods prices; this will improve the effectiveness

of green technology innovation. Gathering information of green technology transfer is

quite difficult, as the green technology patents information does not include green tech-

nology transfer, which may lead us to underestimate the role of green technology inno-

vation. In spite of this, we draw some conclusions based on the facts in China.

The result suggests that green innovation’s beneficial effect on energy intensity is not

uniform across the groups, and that the differences across groups should be of interest for

policymakers. For the short-run relationship, there is negative unidirectional causality from

green technology innovation to energy intensity in all but the gradational and contempo-

rary groups. It is important to stimulate new green investment to facilitate green tech-

nology diffusion. The reasons that green technology has relatively small long-term effects

on reducing energy intensity in the low-carbon group are as follows: Economic develop-

ment and green technology in the low-carbon group have developed rapidly, and there is

little room to reduce energy consumption. The low-carbon group applies for an annual

average of 136 green technology patents, which is enough to maintain the energy con-

sumption level. In 2010, the low-carbon group entered into a low-carbon development

pattern with average energy intensity reduced to 0.6 tons standard coal/10,000 yuan.

However, the conventional group applies for an annual average of 19.4 green technology

patents, which is far lower than the national average level. It is expected that green

technology innovation will play an important role in energy intensity reduction in the

future. For the gradational group, energy intensity reduction in the short run can be

achieved through more efficient industrial structure adjustment.

In contrast to most previous studies, we need to consider interregional differences in

energy intensity when energy consumption policies are made. A comparison of our

econometric models and empirical results with the recent publication by Feng et al. (2012)

suggests that the conclusions in this paper seem to be more consistent with this require-

ment. The low-carbon group is recommended to reduce dependence on fossil fuel energy

because it has enough green patents. The contemporary group should pursue a continual

energy consumption decrease. A green technology innovation incentive policy should be

enacted for the conventional and gradational groups. In sum, a one-size-fits-all policy will

not work well, as it may fail to implement the correct policies for the different groups.

5.2 Policy recommendations

In order to make effective energy and technical policies, policymakers need to understand

the relationship between energy intensity and green technology. This study put forward the

following suggestions:

First, each province should set and pursue a positive energy intensity goal to facilitate

the accomplishment of an optimal national-level strategy. For the conventional and gra-

dational groups, green technology innovation is the key to reducing energy intensity. The

Chinese government should enact technology-pushing policies to save energy. China’s

current investment in green technology R&D is insufficient, although the number of green

technology patents has increased greatly. The Chinese government should emphasize

increasing R&D investment in green technologies, especially in the conventional group.

Second, the Chinese government should encourage green technology diffusion from the

low-carbon group to the conventional group. During the Eleventh Five-Year Plan, many

compulsory measures were taken to achieve the goal of energy intensity, including power

rationing. These measures may reduce energy intensity in the short term, but they cannot
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fundamentally reduce energy intensity. Therefore, energy intensity targets should be

drafted to improve the green technology level.
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