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Abstract This paper investigates the development of a kriging surrogate model for storm

surge prediction utilizing an existing database of high-fidelity, synthetic storms. This

surrogate model (metamodel) provides a fast-to-compute mathematical approximation to

the input/output relationship of the computationally expensive simulation model that

created this database. The implementation is considered over a large coastal region

composed of nearshore nodes (locations where storm surge is predicted) and further

examines the ability to provide time-series forecasting. This setting creates a high-di-

mensional output (over a few thousand surge responses) for the surrogate model with

anticipated high spatial/temporal correlation. Kriging is considered as a surrogate model,

and special attention is given to the appropriate parameterization of the synthetic storms,

based on the characteristics of the given database, to determine the input for the metamodel

formulation. Principal component analysis (PCA) is integrated in this formulation as a

dimension reduction technique to improve computational efficiency, as well as to provide

accurate and continuous predictions for time-dependent outputs without the need to

introduce time averaging in the time-series forecasting. This is established by leveraging

the aforementioned correlation characteristics within the initial database. A range of dif-

ferent implementation choices is examined within the integrated kriging/PCA setting, such

as the development of single or multiple metamodels for the different outputs. The

metamodel accuracy for inland nodes that have remained dry in some of the storms in the

initial database is also examined. The performance of the surrogate modeling approach is

evaluated through a case study, utilizing a database of 446 synthetic storms for the Gulf of

Mexico (Louisiana coast). The output considered includes time histories for 30 locations

over a period of 45.5 h with 92 uniform time steps, as well as peak responses over a grid of
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545,635 nearshore nodes. High accuracy and computational efficiency are observed for the

proposed implementation, whereas including the prediction error statistics provides esti-

mations with significant safety margins.

Keywords Surrogate model � Kriging � Principal component analysis � Time-dependent

output � Storm surge � High-fidelity hurricane surge model

1 Introduction

The devastating flooding effects of recent storms (Blake and Gibney 2011; Blake et al.

2013) have emphasized the importance of efficient (fast) and accurate tools that can

facilitate real-time predictions of storm surge (Glahn et al. 2009; Das et al. 2010; Smith

et al. 2011) or support probabilistic risk assessment (Resio et al. 2009; Toro et al. 2010; Jia

and Taflanidis 2013), with the ultimate intention to reduce the economic- and life-loss

potential of such events. Computational efficiency is an essential feature for these tools,

especially when utilized to guide emergency management decisions (Cheung et al. 2003)

made days prior to storm landfall utilizing NOAA National Hurricane Center (NHC)

forecasts of hurricane track, size and intensity, including the uncertainty in these forecasts.

NHC’s storm surge prediction framework is frequently used for this purpose, utilizing an

ensemble of runs of the low-fidelity numerical storm surge model SLOSH (Glahn et al.

2009; Forbes and Rhome 2012). Though computationally efficient, the approach lacks

fidelity due to low near-coast resolution and negligence of key processes such as wave

forcing (Resio and Westerink 2008; Kerr et al. 2015). Depending on the application of

interest, the lower accuracy resulting from this lower fidelity may be an important con-

sideration. On the other hand, recent numerical advances in storm surge prediction

(Cheung et al. 2003; Resio and Westerink 2008) have produced high-fidelity simulation

models (Luettich et al. 1992; Zijlema 2010), including coupling waves and surge (Dietrich

et al. 2011; Kennedy et al. 2012), that permit a detailed representation of the hydrodynamic

processes and therefore support high accuracy forecasting (Bunya et al. 2010). Addition-

ally, these high-fidelity model applications facilitate estimation of a variety of enhanced

outputs such as inundation depths, waves, winds and currents. Unfortunately, the com-

putational cost associated with their implementation is large, requiring thousands of CPU

hours for each simulation (Tanaka et al. 2011), which limits their applicability. For

example, during landfalling events they can be utilized, with advanced high-performance

computational resources, to provide a small number of high-fidelity, deterministic pre-

dictions, but cannot facilitate thousand-run ensembles to examine the impact of forecasting

errors in the predicted track or provide a quick updated prediction once new storm track

information becomes available. Their implementation for regional hurricane risk assess-

ment, requiring evaluation of response for a large number of scenarios (Toro et al. 2010),

faces similar challenges.

This conundrum (fast versus accurate) has provided the incentive for researchers to

examine surrogate and interpolation/regression methodologies that can provide fast pre-

dictions using a database of high-fidelity, synthetic storms, with the ultimate goal to

maintain the accuracy of the numerical model utilized to produce this database while

providing greatly enhanced computational efficiency. This is facilitated by providing a

fast-to-compute approximation to the input/output relationship of the numerical model,
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exploiting information within this database. These efforts have been further motivated by

the fact that various such databases are constantly created and updated for regional

flooding and coastal hazard studies (IPET 2008; Niedoroda et al. 2010; Kennedy et al.

2012; USACE 2015). The underlying foundation of all these methodologies is the

parameterization of each synthetic storm through a small number of variables, representing

the input for the surrogate/regression model. Surge-response functions have been a popular

approach examined within this context (Irish et al. 2009; Song et al. 2012; Taylor et al.

2015). So far, these methods can provide information only for the peak surge and they may

impose limitations with respect to the variables that can be utilized for the aforementioned

storm parameterization (Irish et al. 2009), stemming from challenges in developing/tuning

dimensional response functions for a wide range of input parameters. Another methodol-

ogy is the interpolation based on the concept of storm similarity index (Das et al. 2010).

This approach can exhibit, though, reduced accuracy for storms that deviate from the

backside database.

More recently, surrogate modeling concepts (also referenced as metamodels) have been

introduced for this purpose. This approach allows a versatile parameterization of storms

and supports calculation of a variety of different response outputs (surge, significant wave

height, run-up). The first implementation within this family of methods examined the use

of moving least squares response surface approximations (Taflanidis et al. 2013). Subse-

quent enhancements (Jia and Taflanidis 2013) considered kriging metamodeling and

examined potential integration with principal component analysis (PCA) to improve

computational efficiency when output dimension is large (over a few thousand different

responses predicted). The implementation in Jia and Taflanidis (2013) was restricted,

though, to only the peak responses and to nearshore nodes, avoiding challenges in pre-

dicting the surge for inland locations that might remain dry (‘‘dry nodes’’) in some of the

storms within the database, and preference for development of multiple metamodels was

given to support high accuracy, something that reduces, though, computational efficiency.

Additionally, in both these studies (Jia and Taflanidis 2013; Taflanidis et al. 2013) the

database adopted was developed with the intention to support the surrogate modeling,

something that provided an a priori simple storm parameterization. More recently, artificial

neural networks (Kim et al. 2015) were examined for predicting time-dependent surge

estimations. This is an important advancement as time-series forecasting is essential for

emergency response managers to understand how inundation will develop and recede as

the storm passes. A moving averaging was introduced in Kim et al. (2015) to avoid

discontinuous oscillations of the predictions in the time series, which might, like any such

low-pass filter, reduce accuracy. This application was restricted to a small number of

locations on the coast of Louisiana, whereas a limitation of this point-based method is that

it does not take advantage of the high degree of spatial continuity in storm surge estimates.

The current paper addresses the research gaps identified in the previous paragraph,

offering a surrogate model with high computational efficiency that can support estimation

of high-dimensional responses (extending over a large coastal region) while addressing the

existence of dry nodes within the utilized database and the time-dependence of the output

without the need to adopt moving averaging for facilitating continuous predictions. The

foundation of the implementation, as in Jia and Taflanidis (2013), is the integration of

kriging metamodeling with PCA, with the latter leveraging the correlation within the

database to derive a lower-dimensional output for the development of the surrogate model.

To support the intended implementation, and different from (Jia and Taflanidis 2013), the

following advancements are provided in this paper: (a.i) The time-series prediction

capabilities of the kriging metamodel are examined by (a.ii) leveraging the PCA to

Nat Hazards (2016) 81:909–938 911

123



facilitate high accuracy and continuity in the forecasts without the need to use time

averaging; (a.iii) development over significantly higher output dimension than in Jia and

Taflanidis (2013) is considered and (a.iv) the impact of dry nodes is addressed, providing a

detailed assessment of the influence of both these features on accuracy/efficiency; (a.v)

modifications are examined for the integrated kriging ? PCA so that a single metamodel

can provide high accuracy; and (a.vi) the implementation for a new database that does not

provide an a priori, simple parameterization is considered. These six topics establish the

novel contributions of this paper. The performance of the surrogate modeling approach is

evaluated through a case study, utilizing a database of 446 storms for the Gulf of Mexico

(USACE 2009; Kim et al. 2015). The output includes time histories for 30 locations over a

period of 45.5 h with a total of 92 uniform time steps as well as peak responses for 545,635

nearshore nodes.

In the following section, an overview of the kriging metamodeling implementation is

provided. In Sect. 3 the database characteristics are presented, and in Sect. 4 the param-

eterization of the storm scenarios and the modification of the output, corresponding to

augmentation of information for dry nodes, are discussed. In Sect. 5 mathematical details

for the framework for kriging metamodeling with PCA are reviewed and modifications to

facilitate predictions utilizing a single surrogate model are proposed. Section 6 discusses in

detail the case study, examining separately the implementation for outputs with temporal

and spatial correlation.

2 Overview of surrogate modeling implementation

The surrogate modeling approach considered here provides a simplified, fast-to-compute

mathematical approximation to the input/output relationship of a computationally expen-

sive numerical model. This is established by utilizing a database of simulations from this

numerical model that ultimately provides implicit information for the input/output rela-

tionship. For storm surge forecasting this database corresponds to synthetic storms created

through a specific simulation model. The accuracy of the metamodel may be improved if

the database is properly designed for this purpose (Sacks et al. 1989), for example through

sequential selection of each synthetic storm to maximize the anticipated benefits (Kleijnen

and Van Beers 2004). Even when an already established database is utilized, as is the case

examined in this paper, the metamodel can be still tuned to provide good accuracy as will

be shown later.

An important characteristic of this metamodeling approach is that no explicit infor-

mation is utilized for the input/output relationship. This means that any chosen, adequate

parameterization can be adopted for the synthetic storms, whereas any desired output can

be predicted. Therefore, predictions may be established for any output quantity, such as

waves, runup or surge, whereas the output vector may even have a large dimension (over a

few thousand different responses). The latter will be the case when implementation over a

large coastal region is examined that includes a large number of locations we need to know

the output for. Each component of the output vector corresponds to the output at a specific

location (within the coastal region examined) or specific time instance (when time-series

forecasting is established). Ultimately each of these components is separately predicted

through the metamodel. Information about spatial distribution of the outputs or temporal

relationship between outputs (whether output is a peak response or response at a specific

time instance) is not utilized.
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The surrogate model ultimately exploits the available database to establish the desired

approximation to the input/output relationship. For kriging this is expressed through simple

matrix expressions (more details in Sect. 5.2 later), something that facilitates high com-

putational efficiency. Kriging has been also shown in a number of studies (Kleijnen 2009)

to be capable of providing accurate predictions even for complex numerical models, i.e.,

models resulting in highly nonlinear relationships between inputs and outputs, as long as

the database informing its formation is sufficiently large. The latter can be evaluated

through assessment of its accuracy based on cross-validation criteria (more details in

Sect. 5.5). This further supports the transferability of the approach, i.e., its independence of

the database utilized; not only is this a data-driven method using no explicit information

for the input/output relationship as discussed in the previous paragraph, but also it has the

potential to accurately approximate any high-fidelity numerical model.

After the metamodel is developed it may be utilized to provide predictions for the

output for any new input, i.e., storm. This can be established for a specific storm or for

providing probabilistic forecasts, examining a large number of storm scenarios, for

example, by addressing forecasting errors in the predicted storm track (Taflanidis et al.

2013). The computational efficiency of the metamodel can be further exploited to facilitate

the development of standalone forecasting tools, as demonstrated in Smith et al. (2011) for

the Hawaiian islands, or even support the cyber implementation of rapid risk assessment,

as shown in Kijewski-Correa et al. (2014). For such type of applications, especially when

implementation over an extended coastal domain is examined, the computational effi-

ciency as well as the memory requirements can be improved through integration of a

dimension reduction technique. This approach reduces the dimensionality of the output

vector by extracting a smaller number of outputs, frequently called latent outputs, to

represent the initial high-dimensional output. Considering the potential strong correlation

between responses at different locations or at different time instances, this approach can

significantly improve the computational efficiency without compromising accuracy (Chen

et al. 2011; Jia and Taflanidis 2013). Principal component analysis (PCA), which is a data-

driven dimension reduction technique (Jolliffe 2002), will be adopted here for this purpose

(more details in Sect. 5.1). Like the kriging metamodel, this approach does not utilize any

spatial/temporal information for the outputs; rather it simply exploits the implicit corre-

lation within the database.

The emphasis in this paper is on the metamodel development utilizing an existing

database of synthetic storms. Further details on use of such metamodels as forecasting tools

may be found in the aforementioned studies (Smith et al. 2011; Taflanidis et al. 2013;

Kijewski-Correa et al. 2014). Next, relevant details of the database used in the case study

are provided, before moving on to the remaining aspects of the surrogate model

development.

3 Details for synthetic storm database and output

The database utilized in this study is the same as in Kim et al. (2015) and corresponds to

the greater New Orleans area and the southeast Louisiana region. This database was

initially developed for evaluation of the regional hurricane protection system (IPET 2008;

USACE 2009), not with the intention of supporting the formulation of surrogate models. It

consists of 304 high-intensity storms and 142 low-intensity storms for a total of 446

storms, simulated by a coupled high-fidelity numerical hydrodynamic model composed of
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steady-state spectral wave model (STWAVE) (Smith et al. 2001) and advanced circulation

model (ADCIRC) (Luettich et al. 1992), with the planetary boundary layer (PBL) model

providing wind and pressure input to this coupled hydrodynamic model (Westerink et al.

2008). The computational domain for generating the synthetic storms consists of 2,137,978

nodes. Further details about the atmospheric and hydrodynamic model utilized may be

found in (IPET 2008).

The synthetic storms have been generated utilizing the joint probability method (JPM)

optimal sampling approach (Niedoroda et al. 2008; Toro et al. 2010), considering the

historic characteristics of regional storms. Two separate families of 223 storms each,

consisting of 152 high-intensity and 71 low-intensity storms, have been considered with

respect to landfall locations in eastern and western Louisiana. These storms correspond to

probable combinations of central pressure, radius of maximum winds, forward speed, as

well as track for the region. Holland B number (Holland 1980) was kept constant for all

storms and a uniform steric water-level adjustment of 0.36576 m from terrestrial datum

(NAVD88 2004.65) was applied over the simulation domain to account for seasonal local

water-level changes resulting from thermal expansion of the Gulf. With respect to the high-

intensity storms, 50 storms are in Category 3, 52 in Category 4 and 50 in Category 5

according to the Saffir-Simpson intensity scale, with return periods ranging from 50 to

3500 years.

For the characterization of each of these storms, the input that is available within the

database corresponds to the longitude, xlon, and latitude, xlat, of storm track, the central

pressure in mbar, cp, the heading direction, h, the forward speed in knots (kn), vf, and the

radius of the exponential pressure profile for the PBL wind pressure model in nautical

miles (nm) Rp, which is related to the radius of maximum wind speed. Location of landfall

for each synthetic storm is explicitly characterized within the database, whereas the input

information extends a few days before and a day after that landfall with a time step of 1 h.

Typical input extends over a total of 97 h, and an example is provided in Appendix A. For

each storm the central pressure cp decreases as the storm intensifies approaching the coast,

then reaches its minimum value which is representative of the storm category and finally

increases again as the storm makes landfall, with the exact distance inland from the coast

that the latter happens depending upon Rp. The minimum value for cp relates to the

category of the storm and is 900, 930 or 960 mbar for storms in Category 5, 4 and 3,

respectively, and 975 mbar for low-intensity storms. Values for Rp and vf remain practi-

cally constant before landfall but exhibit strong variation after storm makes landfall.

The different tracks and landfall locations for the storms within the database for eastern

and western Louisiana are shown in Fig. 1. Three track groups can be distinguished in each

region, reported in the figure with different line types and with identifiers T1, T2 and T3.

For eastern Louisiana, two secondary track groups can also be distinguished, corre-

sponding to storms with different forward speeds within the T2 family. Table 1 provides

details for each of the track groups: the total number of storms as well as the combination

of parameters examined for each track.

Two different outputs are examined here. The first output corresponds to the peak storm

surge over 545,635 output points, corresponding to nearshore nodes for the computational

grid (IPET 2008) within the region between 87.5 W and 93.5 W longitude and latitude

greater than 28.5 N (Louisiana coast). The second output corresponds to time histories for

30 selected nodes, corresponding to critical points for the regional flood protection system

as well as points in identified vulnerable areas. The location of these points is reported in

Kim et al. (2015). At these 30 nodes, the time-series information for each of these inputs is

provided with a time step of 30 min for a total of 92 steps (46.5 h), extending 21.5 h before
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Table 1 Characteristics for the different synthetic storms in the database

Track
group case

c�p
(mbar)

# of
storms

# of different primary
landfall locations

Different R�
p (nm)

values considered

Different v�f (kn)

values considered

T1 975 33 9 [11, 17.7, 21, 35.6] [17, 11, 6]

960 28 9 [11, 17.7, 21, 35.6] [11, 6]

930 24 5 [8, 17.7, 25.8] [11, 17]

900 28 9 [6, 14.9, 17.7, 21.8] [11, 6]

T2 975 19 7 (11)? [17.7, 18.2, 24.6] [6, 11, 17]

960 11 4 (6)? [17.7, 18.2, 24.6] [11]

930 14 7 (11)? [17.7] [6, 17]

900 11 4 (6)? [12.5, 17.7, 18.4] [11]

T3 975 19 7 [17.7, 18.2, 24.6] [6, 11, 17]

960 11 7 [17.7, 18.2, 24.6] [11]

930 14 7 [17.7] [6, 17]

900 11 7 [12.5, 17.7, 18.4] [11]

Numbers # reported correspond to each of western and eastern Louisiana storms

* For cp, Rp and vf the values reported correspond to the ones at max intensity of the storm
? Numbers for eastern Louisiana are different due to secondary tracks and are reported in parenthesis

95o W 90o W 85o W 80o W   

20o N

25o N

30o N

35o N

T1

T2

T3

T3
T2
T1

Fig. 1 Storm track groups for eastern (black) and western (gray) Louisiana
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and 24 h after the landfall (times when significant surge is expected). This leads to an

additional 2760 different outputs (92 outputs for each of the 30 nodes).

4 Parameterization of database and augmentation of output

4.1 Parameterization of storms

For establishing a surrogate model, the appropriate parameterization of the database of

synthetic storms is required to provide the model input. This parameterization needs to

capture all important features that distinguish the different storms from one another but

also avoid over-parameterization, since this can lead to reduction in computational accu-

racy as well as numerical problems when input parameters exhibit high correlation within

the available database (Lophaven et al. 2002). Characteristics of storms at or close to

landfall are commonly selected for this purpose, considering their strong correlation to

peak surge responses (Resio et al. 2009; Taflanidis et al. 2013). Of course, track/strength

variability prior to landfall can also be important, depending on the output examined (for

example, higher importance is anticipated when examining time-series forecasting). The

underlying assumption is that this variability is addressed by appropriate selection of each

track history when creating the initial database. Since the synthetic storms considered here

have been generated utilizing the JPM approach, they satisfy this criterion. Therefore, a

parameterization through a small number of parameters is justifiable.

Two separate families of inputs may be distinguished in this parameterization, inten-

sity/size/speed related and track related. For the former, the values of cp, vf and Rp at peak

hurricane intensity prior to landfall (which are the ones reported in Table 1) are chosen

since these were the ones also utilized within the JPM approach for creating the synthetic

storms. Because the intention for developing such surrogate models is to eventually use

them in forecasting mode, the radius of maximum wind speed Rm is chosen over Rp since

the former is the one provided by the NHC during landfalling events. Following the

recommendations in Kim et al. (2015), the relationship between Rp and Rm is obtained as

Rm ¼ 0:5387þ 0:9524Rp � 0:00575R2
p þ 1:17� 10�5R3

p ð1Þ

where both radii are in nautical miles.

For the track characterization, it is evident from Fig. 1 that an adequate parameteri-

zation can be established based on a reference location and angle of approach (heading

direction). These two inputs uniquely define each track as also shown in Fig. 2 for family

T1 in eastern and western Louisiana. Two different parameterizations will be examined

here, both also demonstrated in the latter figure. The first adopts the suggestions by

Taflanidis et al. (2013); the reference landfall is determined at a specific reference latitude,

in this case when each storm crosses 29.5 N. This leads then to the longitude for the

reference landfall, xlon, and the heading direction h at that time step as inputs. The second

parameterization utilizes the conventional landfall location (instead of the reference

landfall), which as discussed earlier is explicitly defined within the storm input provided.

Only the landfall longitude (and not additionally the latitude) is adopted as input, as this is

sufficient for a unique definition of each storm based on the shape of the coast in the

examined region. As evident in Fig. 2, additionally adopting the landfall latitude in the

characterization of each storm would lead to an over-parameterization of the storm input

(landfall latitude and longitude are correlated for a specific coastal region).
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Therefore, the nx = 5 dimensional input vector for parameterization of each synthetic

storm corresponds to the (i) reference landfall location xlon, (ii) heading direction h at that

location, (iii) central pressure cp, (iv) forward speed vf and (v) radius of maximum winds

Rm when each storm reaches its maximum intensity.

x ¼ ½ xlon h cp vf Rm �T ð2Þ

Based on the characteristics of the database discussed in Sect. 3, the following variability

exists for these input parameters: cp has four different values [900, 930, 960, 975] mbar,

forward speeds vf has three different values [6, 11, 17] kn, radius of max winds Rm takes

thirteen values [6.05, 7.80, 10.33, 11.57, 13.50, 15.65, 16.04, 16.19, 18.11, 18.69, 20.66,

21.48, 27.69] nm and 50 different values are considered for the reference location and

heading, with landfall locations spanning from 94.5� to 88.5� west and heading direction

ranging from 120� to 223� (north = 180�).
A final important issue to note is that since no tide variation has been considered in the

generation of the synthetic storms, the tide cannot be considered as an explicit input. Its

influence can be approximated in forecasting applications by first subtracting the excess

steric adjustments used for the synthetic storms from the predicted storm surge and then

adding the actual tide over a specific area (Resio et al. 2009; Kim et al. 2015). Here, the

subtraction of the steric adjustments, used to account for seasonal local water-level changes

resulting from thermal expansion of the Gulf, is because all synthetic storms already

include the influence of this thermal expansion.

4.2 Adjustment for dry nodes

Before developing the surrogate model, an adjustment is required for inland locations. The

challenge with these locations is that they do not always get inundated; in other words dry

locations might remain dry for some storms. For example, in the implementation con-

sidered here, 59,867 nodes, corresponding to 11 % of the total output, have only been

94o W 93o W 92o W 91o W

28o N

29o N

30o N

31o N

T1

27o N 91o W 90o W 89o W 88o W

28o N

29o N

30o N

31o N

T1

27o N

(a) Western Louisiana (b) Eastern Louisiana

Reference 
landfall

Conventional 
landfall

Conventional 
landfall
Reference 
landfall

Fig. 2 Illustration of track characterization for the T1 track groups in western (left) and eastern (right)
Louisiana
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inundated in 10 % or fewer of the synthetic storms. For such cases the only information

available is that the location remained dry.

One approach to address this challenge would be to develop a separate surrogate model

(Burges 1998) for the binary output representing the condition of the location, i.e., either

wet or dry. If we prefer to avoid this, or if we additionally need to know exactly the storm

surge, the initial database can be augmented to show an approximate storm water elevation

at each node without regard to whether that water elevation is above or below ground level.

To facilitate this, the approach proposed in Taflanidis et al. (2012) is adopted. The storm

water elevation is described with respect to the mean sea level as reference point. When a

location remains dry, the storm water elevation corresponding to the nearest location

(nearest node in the high-fidelity numerical model) that was inundated is used as an

approximation. The database is adjusted for the scenarios for which each location remained

dry, and the updated response database is used as the basis data for the surrogate model.

Comparison of the predicted storm water elevation to the ground elevation of the location

indicates whether the location was inundated or not, whereas the storm surge is calculated

by subtracting these two quantities. The latter is defined here as the height of inundation

with respect to the ground. Thus, this approach allows us to gather simultaneous infor-

mation about both the inundation (binary answer; yes or no) and the storm surge, although

it does involve the aforementioned approximation for enhancing the database with com-

plete information for the surge elevation for all nodes/storms.

5 Kriging surrogate modeling with principal component analysis

After appropriate parameterization of the input and modification of the output, each syn-

thetic storm is characterized by the nx dimensional input vector x ¼ ½x1 . . . xi . . . xnx �
(nx = 5 for the application considered here) and provides ny dimensional output vector

y(x). As discussed in Sect. 3, each component of y(x), denoted yk(x) herein, pertains to a

specific response output at a specific coastal location or specific instant in time, whereas ny
can be high. For the specific applications examined here, ny = 545,635 for the peak storm

surge response and ny = 2760 for the time-series forecasting. A database of n (n = 446 for

the application considered here) high-fidelity simulations (observations) is available with

evaluations of the response vector {yh; h = 1, …, n} for different storm scenarios {xh;

h = 1, …, n}. We will denote by X ¼ ½x1 . . . xn�T 2 Rn�nx and Y ¼ ½y1 . . . yn�T 2 Rn�ny

the corresponding input and output matrices, respectively. These observations are fre-

quently referenced as the training set or support points.

Various formulations can be considered for the surrogate model for prediction over the

different output components: A separate metamodel can be trained for each of the outputs,

a single metamodel can be considered for all of them, or a small number of metamodels

can be established, each representing a sub-group of outputs (based on some desired

classification for definition of the sub-groups). The first choice might be impractical if the

number of outputs is large, and it additionally provides non-smooth predictions, as will be

also demonstrated later, for time-series forecasting since it does not explicitly incorporate

information about the relationship for each response output at different times. For a large

dimensional output, as is the case examined here, the development of a single metamodel

(or of a relatively small number of metamodels) is preferable to facilitate computational

efficiency. To further improve this efficiency, integration with PCA is adopted, as dis-

cussed in Sect. 2, for reduction in the dimension of the output. This is established simply
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by exploiting the correlation within the observation matrix Y. PCA provides a low-di-

mensional space of outputs (latent outputs), and the surrogate model can then be developed

in this space, with the metamodel predictions first established in the latent space and then

transformed back to the initial, high-dimensional output space. An overview of the overall

approach is summarized in Fig. 3. In the following three sub-sections the mathematical

framework is briefly reviewed, with sufficient details to facilitate the discussions around

the novel aspects of the paper. Some details related to the tuning/optimization of the

kriging metamodel are also discussed in Sect. 5.4. Then, specifics for the kriging and PCA

integration are examined, and the validation framework for the metamodel accuracy is

presented.

5.1 Output dimension reduction by PCA

PCA is implemented by first converting output into zero mean and unit variance under the

statistics of the observation set through the linear transformation

y
k
¼ yk � lyk

ryk
; with lyk ¼

1

n

Xn

h¼1

yhk ; r
y
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

h¼1

yhk � lyk
� �2

s
ð3Þ

The corresponding (normalized) vector for the output is denoted by y and the observation

matrix by Y. The eigenvalue problem for the covariance matrix YTY is then considered

and only the mc largest eigenvalues, along with associated eigenvectors, are retained. These

correspond to the principal directions that represent the components with largest variability

Perform PCA 
to obtain latent space z

Synthetic storm database, 
established through high-
fidelity modeling

Augment database for nodes that have 
remained dry for some storms 

Develop kriging model in latent space. 
Obtain mean predictions and statistics for 

prediction error

Parameterize storms in database 
to define input vector x

Obtain the mean predictions and, if 
desired,  statistics for error associated 

with these predictions

Assemble output vector y

Establish kriging approximation in 
latent space

Transform back to original space 

For each new 
scenario 

Fig. 3 Schematic for kriging with PCA implementation
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within the initial database (Jolliffe 2002), and each equivalently defines a latent output zj,

j = 1, …, mc. The relationship between the initial output vector and the vector of the latent

outputs z ¼ ½z1 . . . zmc
�, facilitating the transformation back to the original space, is

y ¼ Pz ð4Þ

where P is the ny � mc projection matrix containing the eigenvectors corresponding to the

mc largest eigenvalues. The n� mc observation matrix Z for z, needed for the surrogate

model development, is ZT ¼ P�1YT , whereas mc can be chosen so that latent outputs

account at least for ro [say 99 %] of the total variance of the data (Tipping and Bishop

1999). If kj is the jth largest eigenvalue, then this is facilitated by selecting mc so that the

ratio

rc ¼
Xmc

j¼1
kj

Xny

j¼1
kj

.
ð5Þ

is greater than ro. It is then mc\min(n, ny), with mc being usually a small fraction of

min(n, ny). For n � ny, obviously, mc � ny, leading to a significant reduction in the

dimension of the output.

5.2 Kriging surrogate model

The kriging metamodel is established for vector z with observation matrix Z. If PCA is not

adopted, then these would have been replaced by y and Y, respectively. Kriging provides a

metamodel approximation to z, denoted ẑðxÞ, as well as the variance of the approximation

error for each component zj, denoted r2j ðxÞ. This error follows a Gaussian distribution,

stemming from the fact that kriging is a Gaussian process metamodel (Sacks et al. 1989).

The fundamental building blocks of kriging are the np dimensional basis vector, f(x) [for
example, linear or quadratic polynomial], and the correlation function R(xj,xk) with tuning

parameters s. An example for the latter (the one used in the case study here) is the

generalized exponential correlation,

Rðxl; xmÞ ¼
Ynx

i¼1
exp½�sijxli � xmi j

snxþ1 �; s ¼ ½s1 � � � snxþ1�: ð6Þ

For the set of n observations with input matrix X and corresponding latent output matrix Z,

we then define the n� np basis matrix F ¼ ½fðx1Þ . . . fðxnÞ�T and the correlation matrix R

with the j, k elements defined as R(xj , xk), j, k = 1, …, n. Also for every new input x we

define the n-dimensional correlation vector r(x) = [R(x, x1) … R(x, xn)]T between the

input and each of the elements of X. The kriging prediction is finally (Sacks et al. 1989)

ẑðxÞ ¼ fðxÞTa� þ rðxÞTb� ð7Þ

where a� ¼ ðFTR�1FÞ�1FTR�1Z and b� ¼ R�1ðZ� Fa�Þ are the np � mc dimensional

and n� mc dimensional, respectively, coefficient matrices.

Through the proper tuning of the parameters s of the correlation function, kriging can

efficiently approximate very complex functions. The optimal selection of s is typically

based on the maximum likelihood estimation (MLE) principle (Lophaven et al. 2002),

leading to optimization problem
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s� ¼ argmin
s

Rj j1n
Xmc

j¼1

1

cj
~r2j

" #
ð8Þ

where |.| stands for determinant of a matrix, cj is a weight for each output quantity,

equivalently representing scaling for the output and typically chosen as the variance over

the observations Z, and ~r2j corresponds to the process variance (mean square error) and is

given by the diagonal elements of the matrix ðZ� Fa�ÞTR�1 ðZ� Fa�Þ=n. Standard
approaches for solving this optimization are given in Lophaven et al. (2002) and involve in

general small computational effort. Note that Eq. (8) supports tuning of the kriging

metamodel to maximize accuracy in the latent output space. Though this is evidently

correlated to establishing high accuracy for the original output y, it is not guaranteed to

provide optimal accuracy for y. In other words, there might be a different selection for

s that provides higher accuracy when specifically examining error statistics over y. Iden-
tifying this, though, will entail a very challenging optimization (involving transformation

of the predictions for each s examined back to the high-dimensional space y and opti-

mization over some error measure there) and should be avoided since the approach in

Eq. (8) can facilitate high accuracy and is very efficiently performed.

If multiple metamodels are established for the different output components, then this

process needs to be separately implemented for each one of them, leading to vectors

a�j (with dimension np) and b
�
j (with dimension n) and tuning parameters sj that are different

for each output (Jia and Taflanidis 2013). The metamodel predictions, expressed through

Eq. (7), are then established for each output separately, with the correlation vector

rj(x) being also different for each output (stemming from the differences in sj).
Beyond the approximation Eq. (7), kriging also provides an estimate for the approxi-

mation error variance r2j ðxÞ. This is a local estimate, meaning that it is a function of the

input x and not constant over the entire domain X, and for output zj is given by

r2j ðxÞ ¼ ~r2j ½1þ uðxÞTðFTR�1FÞ�1uðxÞ � rðxÞTR�1rðxÞ� ð9Þ

where uðxÞ ¼ FTR�1rðxÞ � fðxÞ. This statistical information about the kriging error can be

utilized when predictions for the different outputs are established, as will be also

demonstrated later, while it additionally can be incorporated in risk assessment applica-

tions (Jia and Taflanidis 2013).

5.3 Transformation to the original space

The predictions provided by the surrogate model need to be transformed from the latent

space to the original space. Utilizing Eqs. (4) and (3) leads to the following prediction for

y(x), ŷðxÞ ¼ Ry PẑðxÞð Þ þ ly, where Ry is the diagonal matrix with elements ryk and ly is
the vector with elements lyk k = 1, …, ny. The variance r2kðxÞ of the approximation error

for yk(x) corresponds to the diagonal elements of the matrix Ry½PrðxÞPT þ t2I�Ry (Jia and

Taflanidis 2013), where r(x) is the diagonal matrix with elements r2j ðxÞ, j = 1, …, mc, and

t2I stems from truncation errors in PCA. An estimate for the latter is given by

t2 ¼
Pny

j¼mcþ1 kj=ðny � mcÞ, corresponding to the average variance of the discarded

dimensions when formulating the latent output space. Since PCA is a linear projection, the

prediction error for y also follows a Gaussian distribution (same as z).
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5.4 Characteristics for kriging and for its integration with PCA

Kriging offers as a metamodel a few important advantages for the implementation

examined here (storm surge prediction with potential high-dimensional output). Firstly, the

kriging predictions are efficiently performed through the matrix manipulations in Eq. (7);

this requires keeping in memory only matrices a� and b� and calculating for each new x of

vectors f(x) and r(x). Implementation involves no matrix inversions, which provides high

computational efficiency when compared to other metamodels with similar accuracy, such

as moving least squares response surface approximation. Furthermore, when the initial

database is sufficiently large, kriging provides better behavior than such metamodels when

used for extrapolation (Noon and Winer 2009), that is, when providing predictions for

inputs that are outside the range covered by the initial database (though this practice should

be, in general, avoided). Additionally, training of kriging through optimization of Eq. (8)

for identification of the optimal vector s can be very efficiently performed, and kriging

facilitates an estimate for the prediction accuracy through Eq. (9). Finally kriging is an

exact interpolation, which means that when the new input is the same as one of the initial

support points, the prediction will match the actual response, or equivalently variance

r2j ðxÞ for each output will be zero at support points.

Integration, now, of PCA with kriging reduces the dimension of matrices a� and b� from
ny to mc (np � mc rather than np � ny for a� and n� mc rather than n� ny for b

�), reducing
significantly the memory requirements and facilitating higher computational efficiency in

establishing the kriging predictions through Eq. (7). This also contributes to matrix

manipulation that, due to the low dimension of the involved matrices, can be very easily

vectorized (more details discussed in Jia and Taflanidis 2013). The latter is important when

the surrogate model is utilized to provide forecasts, examining a large number of storm

scenarios resulting from the NHC estimation errors for track/intensity. The ability to

vectorize the matrix manipulations allows estimation for all these scenarios with only a

very small additional computational burden compared to predictions for a single storm/

scenario. Furthermore, the significantly reduced memory requirements are essential for

supporting real-time forecasting tools that can be easily distributed and even implemented

within cyber platforms (Smith et al. 2011; Kijewski-Correa et al. 2014). With respect to the

cyber implementation, this allows platforms that can simultaneously support multiple users

within a collaborative environment.

Additionally, the correlation between responses at different locations or different time

instances are directly captured through PCA, and for predictions at new inputs this cor-

relation is automatically recovered when the predictions in the latent space are transformed

back to the original space. This means, for example, that continuity for the output in time-

series forecasting can be automatically established, without the need to introduce remedies

such as the time averaging discussed earlier. Furthermore, since the number of latent

outputs is typically small, development of metamodels for each of them separately can be

considered. The more efficient application is, though, to consider a single metamodel. Of

particular importance in this case is the fact that the components of z have an associated

relevance, represented by their variance, which is proportional to eigenvalue kj, the portion
of the variability within the initial database represented from each latent output. This

means that, contrary to common approaches for normalizing vector z within the surrogate

model optimization of Eq. (8) through the introduction of weights cj, in this case no

normalization should be established, i.e., cj = 1. This equivalently corresponds to latent
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outputs with larger values of kj being given higher priority in the surrogate model

optimization.

Of course the incorporation of PCA and consideration of only a smaller number of latent

outputs introduce an additional source of error (truncation error). However, a proper

selection of the number of latent outputs, so that a large portion of the total variance of the

initial observation matrix Y is retained, can lead to small errors stemming from this trun-

cation. In addition, PCA requires that transformation matrix P with dimension ny � mc is

kept in memory. Since this can be a large dimensional matrix, maintaining a smaller value

for mc (but large enough to minimize PCA errors) offers significant advantages. It should be

stressed here that despite the requirement to additionally keep P in memory, PCA still

supports great computational savings, as will be demonstrated in the example later.

5.5 Assessment of metamodel accuracy

The accuracy of the metamodel can be evaluated directly by the process variance ~r2j which
assesses, though, the performance with respect to the latent outputs, not the actual outputs.

An alternative is to calculate different error statistics for the components of the actual

output vector y using some validation method (Kohavi 1995), the common ones being test

sample or cross-validation approaches. The first one compares the metamodel predictions

on storms not used in the metamodel development process and requires new observations

(storm simulations), or, equivalently, splitting of the initial database to a training set and a

validation set. Only the training set is used in the metamodel formulation discussed in

Sects. 5.1 and 5.2. The second approach, which is the popular one, repeats comparisons of

the accuracy over different divisions of the entire database to a learning sample and a test

sample and has the benefit that it requires no new observations, though it might provide

pessimistic predictions of accuracy if the database is small (Iooss 2009). Here a leave-one-

out cross validation is adopted, which is the recommended practice for efficient assessment

of metamodel accuracy (Meckesheimer et al. 2002). This cross-validation approach is

performed as follows: Each of the observations from the database is sequentially removed,

then the remaining support points are used to predict the output for it, and the error

between the predicted and real responses is evaluated. The validation statistics are obtained

by averaging the errors established over all observations. It should be stressed that this

validation approach assesses the metamodel accuracy against the simulation model used

for generating the database of synthetic storms, but addresses no other modeling errors.

Further details on this issue, which falls out of the scope of this study, are provided in

(Resio et al. 2009).

The remaining question is then what statistics to adopt in this validation. For scalar

outputs, two commonly used measures to assess the accuracy are the coefficient of

determination RD2
k and the mean error MEk given, respectively, by

RD2
k ¼ 1�

Pn
h¼1 ykðxhÞ � ŷkðxhÞ

� �2

Pn
h¼1 ykðxhÞ �

Pn
j¼1 ykðxhÞ=n

� �2

MEk ¼
Pn

h¼1 jykðxhÞ � ŷkðxhÞjPn
h¼1 jykðxhÞj

ð10Þ

Larger value of RD2
k (closer to 1) and smaller values for MEk (closer to zero) indicate a

good fit. In addition the mean square error can be used as an error statistic
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MSEk ¼
1

n

Xn

h¼1
ykðxhÞ � ŷkðxhÞ
� �2 ð11Þ

which, contrary to the aforementioned two others, is not a normalized measure (follows

units of surge). For evaluating the efficiency across multiple outputs, the average versions

of these expressions can be used. This then provides the average coefficient of determi-

nation, ARD2, and average mean error, AME, and the average mean square error, AMSE,

given respectively by

ARD2 ¼ 1

ny

Xny

k¼1
RD2

k

AME ¼ 1

ny

Xny

k¼1
MEk

AMSE ¼ 1

ny

Xny

k¼1
MSEk

ð12Þ

For the peak surge response another accuracy measure is the mean misclassification,

representing the percentage of nodes that have been classified erroneously with respect to

their wet/dry conditions, i.e., dry nodes predicted as wet and vice versa. This is given by

AMC ¼ 1

nny

Xny

k¼1

Xn

h¼1
Ikh ð13Þ

where Ikh is an indicator function for misclassification (one if misclassified and zero if not)

of the kth output for the hth storm.

6 Case study for Louisiana coast

This section discusses the implementation of the surrogate model framework to the

Louisiana coast, utilizing the database presented in Sect. 3. The implementation for peak

surge response and time-series forecasting is separately discussed to better illustrate the

advantages of PCA for nodes that have spatial or temporal correlation. For each case, a

range of different settings will be examined with respect to the kriging implementation to

illustrate the key points/novelties discussed in the previous sections.

6.1 Peak surge response over an extended coastal region

For the peak surge, as discussed earlier, a total of ny = 545,635 outputs are considered. In

addition, results are reported for subsets of this group, corresponding to nodes that were

inundated in at least 5, 10, 30, 50 and 100 % of the storms in the initial database, to

examine how the percentage of dry nodes impacts the predictive capabilities of the sur-

rogate model. The number of nodes within the subsets mentioned above is, respectively,

510,011, 485,768, 447,347, 433,561 and 354,070. It is immediately evident, as also dis-

cussed earlier, that a large portion of the outputs considered correspond to nodes that have

remained dry for a large portion of the available database.

PCA is first implemented to reduce the dimension of the output. For the ny = 545,635

dimensional output and the database of 446 storms, PCA is efficiently performed within

only 160 s in a workstation with 4 core 3.2 GHz Xeon CPU and 8 GB of Ram (same

machine is used in all results reported herein). mc = 50 latent outputs are retained which
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accounts for rc = 98 % of the total variability in the initial outputs and facilitates a

significant reduction in the size of matrices that need to be stored in memory by 89 %. The

choice to only keep 50 latent outputs was made since it was observed that further increase

in mc facilitated a very slow increase of rc. Further insights for this challenge will be

provided later.

A metamodel is then established, and different approaches (all mentioned within

Sect. 5.2) are examined with respect to kriging implementation: (i) a single kriging for all

latent outputs, (ii) a separate kriging for each latent output and (iii) a single kriging for the

initial high-dimensional output without integrating PCA. These cases will be denoted

herein as (k.i) pca-single, (k.ii) pca-separate and (k.iii) single, respectively. The average

time for the optimization of the kriging characteristics, described in Eq. (8), is less than

20 s for pca-single adopting standard kriging tuning techniques (Lophaven et al. 2002).

The pca-separate requires 20 s for each of the latent outputs (same optimization imple-

mented every time), whereas the required time for single is very high, close to 50 min,

stemming from the high dimension of the matrices involved, which reduces computational

efficiency for the matrix manipulations required (Lophaven et al. 2002). Note that the latter

computational burden is similar (probably a conservative estimate) to the one that would be

required even for pca-single if an optimization for the error statistics of the actual output

was adopted, as discussed in Sect. 5.2, instead of the approach in Eq. (8).

With respect to implementation efficiency, single prediction through pca-single takes

close to 0.08 s (this includes metamodel predictions and transformation back to the original

space). For pca-separate the implementation time is 0.2 s and for single around 0.3 s. For

predictions over 1000 different storms the numbers are 8, 8.1 and 22 s. This demonstrates

the advantages that lower-dimensional matrix manipulations, facilitated through PCA, can

provide in estimating outputs over different storm scenarios (vectorized matrix calcula-

tions). Overall, these comparisons demonstrate the high computational efficiency estab-

lished through integrating PCA in the approach; significant memory reduction is

established and times for training and implementation of the metamodel are also reduced.

Moving now to accuracy assessment, the two different landfall characterizations provided

very similar results with the reference landfall approach providing slightly improved perfor-

mance (not sufficiently different to justify a clear preference, though). This is the case pre-

sented herein; due to space limitation the alternative input characterization is not discussed

further. Results for the three examined surrogate models over the entire output are presented in

Table 2, utilizing the error statistics (performance measures) discussed in Sect. 5.5.

All three approaches yield a similar level of high accuracy (differences are fairly small

from a statistical perspective), as demonstrated by the high values of the coefficient of

determination (values close to 0.95 are always considered as very accurate results) and

smaller than 7–8 % error with additionally, very small misclassification percentage. These

results clearly show that the metamodel replicates the results of the high-fidelity simula-

tions with high accuracy and therefore can be considered as an adequate surrogate for the

high-fidelity model. An important feature to stress is that pca-single provides comparable

results to single and slightly better than pca-separate. The latter is opposite to the trends

reported in Jia and Taflanidis (2013) and should be attributed to the normalization that was

proposed here in the tuning of pca-single through Eq. (8), i.e., recommendation to use

cj = 1, that equivalently provided higher importance to latent outputs that represent the

larger variability of the initial database. The overall comparisons justify the preference

toward pca-single as it facilitates higher computational efficiency and high accuracy (no

significant reduction in accuracy by incorporating PCA or considering a single metamodel

rather than a seperate metamodel for each output).
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The impact of dry nodes is further examined considering the pca-single metamodeling

implementation. This impact is examined by considering the error statistics averaged over

nodes that have been inundated at least in 5, 10, 30, 50 and 100 % of the storms in the

initial database. This is performed by changing the summation within Eqs. (10) and (12) to

consider just those nodes and not the entire output. The comparison allows us to examine

how the quality of information in the initial database (larger portions of storms providing

complete information for the storm surge and therefore not augmented with neighboring

storm water level as described in Sect. 4.2) influences prediction accuracy. Results are

reported in Table 3 for the error statistics discussed in Sect. 5.5. Two additional statistics

are reported in this table (last two rows) that will be discussed later. It is evident from this

table that there is a strong influence of the quality of initial information within the database

on the kriging accuracy, with error statistics significantly improving (coefficient of

determination over 0.96) even when the evaluation is restricted within the nodes that were

inundated in 10 % of the available storms. Note that this comparison corresponds to the

metamodel that has been optimized considering all outputs, simply the prediction accuracy

is evaluated over different output cases.

Another interesting comparison is whether a metamodel that is tuned for such a specific

output case could offer any further advantages in the performance for that specific output

case. For this reason another implementation is examined and presented in parenthesis in

Table 3, for which the metamodel is formulated specifically for the output that corresponds

to nodes that were inundated in at least 30 % of the storms (therefore ny = 447,347 in this

case). For the PCA to account for ro = 98 % of the total variability, only mc = 19 latent

outputs are needed, compared to 50 required previously, when all nodes are examined. If

mc = 50 latent outputs were adopted for this implementation, then rc = 99.32 %. This

demonstrates that the challenges discussed earlier in establishing a high value of rc stem

from the dry nodes within the initial observation matrices. Results for pca-single and

mc = 19 are reported in Table 3 in parenthesis. For the case with mc = 50 (not reported in

Table 3), the error statistics are calculated as ARD2 = 0.972, AME = 4.68 %,

AMSE = 0.0253 and AMC = 0.58 %. The comparison illustrates that for the same PCA

accuracy, the metamodel explicitly optimized for the output corresponding to nodes

inundated in at least 30 % of the storms offers negligible advantages over the metamodel

established considering all outputs. On the other hand, increasing the number of latent

outputs and therefore reducing the errors coming from the PCA truncation can have a

considerable effect on accuracy (compare the results in parenthesis in Table 3 with the

statistics provided above for increased mc). Of course a larger value of mc decreases

computational efficiency in terms of memory requirements, although the result is depen-

dent on the case examined. For example, for a new metamodel implementation that

examines the entire output and increases mc for PCA to 103 (representing in this case

Table 2 Prediction accuracy of
three different surrogate model-
ing approaches for peak surge
considering average statistics
over the entire output

Performance measures Surrogate modeling approaches

pca-single pca-seperate single

ARD2 0.942 0.941 0.934

AME (%) 6.79 7.23 6.80

AMSE (m2) 0.0403 0.0411 0.0407

AMC (%) 1.17 1.27 1.18
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rc = 99 % of total variability), the performance will show very small improvement; the

error statistics for this case are calculated as ARD2 = 0.942, AME = 6.47 %,

AMSE = 0.0430 and AMC = 1.12 % (compare these results to first column in Table 3).

The overall discussion demonstrates that the mc value should be selected with care,

examining the benefits between accuracy and computational efficiency. This can be

established, as suggested by Jia and Taflanidis (2013), by gradually increasing mc and

evaluating its impact on ARD2 and AME, and judging if the benefits are justifiable against

the decreased computational efficiency, depending also upon the implementation examined

for the metamodel. For example, for standalone tools usually there is no concern about

memory requirements, while for applications within a cyber platform these requirements

become critical.

Finally, a demonstration for the utilization of the kriging approximation error is pro-

vided. This error can be used to perform probabilistic assessment for storm surge risk

(Resio et al. 2009; Jia and Taflanidis 2013) or for facilitating conservative estimates. The

latter is demonstrated here by focusing on the false-negative misclassifications, i.e., when a

node is predicted dry but it was supposed to be wet. This error measure is denoted by

AMC-FN and is calculated through Eq. (13), but with the indicator function being one only

if the condition as stated above is satisfied (node predicted dry when it is actually wet). The

unbiased prediction for AMC-FN is established by utilizing the kriging approximation,

ŷkðxÞ. A conservative estimation for AMC-FN, denoted AMCe-FN, may be established by

utilizing a prediction ŷkðxÞ þ b � rkðxÞ that incorporates the approximation error, where b is

some chosen coefficient (some portion of the standard deviation is added to the kriging

prediction in this case). AMC-FN and AMCe-FN are reported in Table 3 earlier for a value

of b = 1. Considering that the approximation error is Gaussian, this approach is equivalent

to declaring a node is wet if the probability of the storm elevation exceeding the ground

elevation is over 84 %. The comparison between AMC-FN and AMCe-FN demonstrates

that including the error facilitates the desired conservativeness as the rate for AMCe-FN

significantly reduces.

6.2 Time-series forecasting

For the time-series forecasting, examining the metamodel performance for time-dependent

outputs, the 30 different locations discussed in Sect. 3 are examined, and for each location

Table 3 Prediction accuracy of pca-single metamodel when evaluated over all nodes (All) or over nodes
that have been inundated at least for certain percentage (%) of storms in the database

Performance measures Output cases examined

All 5 % 10 % 30 % 50 % 100 %

ARD2 0.942 0.954 0.960 0.965 (0.966)? 0.967 0.969

AME (%) 6.79 6.56 6.07 5.21 (5.18)? 4.99 4.51

AMSE 0.0403 0.0370 0.0332 0.0245 (0.0242)? 0.0204 0.0136

AMC (%) 1.17 1.19 1.04 0.76 (0.68)? 0.66 0.43

AMC-FN (%) 0.58 0.55 0.47 0.35 0.30 0.18

AMCe-FN (%) 0.25 0.22 0.18 0.12 0.09 0.04

? Results in parenthesis correspond to metamodel explicitly optimized for this output case
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92 different time steps (with time interval of 30 min) are considered with conventional

landfall corresponding to the 44th step. Two different applications are examined with

respect to the definition of the output: (o.i) establishing a metamodel for each location

(ny = 92 for each of the 30 locations) and (o.ii) establishing a metamodel for all locations

together (ny = 2760). The terms each-location and all-locations will be utilized herein to

distinguish these two output cases. With respect to the kriging formulation, for each of

these output cases, the three metamodel implementations discussed in Sect. 6.1 are

examined, (k.i) pca-single, (k.ii) pca-separate and (k.iii) single, as well as a fourth one,

(k.iv) considering a separate kriging for each output without integrating PCA, referenced

as seperate. This latter implementation is only examined for the each-location output case

since this is the only case that the dimension of output (ny = 92) would practically allow

development of a separate kriging metamodel for each initial output. Note that the PCA for

all-locations simultaneously addresses the temporal (92 time steps) and spatial (30 loca-

tions) correlation of the total 2760 outputs.

The overall performance of the metamodel (across all points) as well as the performance

of four specific critical locations in eastern Louisiana are discussed. The same points as in

Kim et al. (2015) are chosen and are identified, following the terminology in that paper, as

3, 4, 9 and 18. The longitude and latitude for these points are [-90.3680� 30.0503�],
[-89.4067� 28.9317�], [-89.6730� 29.8702�] and [-90.1131� 30.0262�], respectively.

For the PCA, the number of latent outputs is selected so that rc is greater than 99.9 %,

yielding mc equal to 9, 14, 8 and 9 for locations 3, 4, 9 and 18, respectively. For the all-

locations output case, this yields mc = 113. Note that due to the lower dimension ny of the

initial output, reducing the value of mc is not so critical in this case as it was when

examining the peak surge in Sect. 6.1 (matrix P, which depends on both ny and mc, is still

relatively small even for larger mc value). This is the reason why a higher value of rc has

been allowed here.

Results for computational burden for training and implementation of the metamodel

follow exactly the same trends as in Sect. 6.1, simply with higher efficiency in this case

due to the smaller value of ny. For example, for the all-locations output case, the evaluation

times for 1000 storms are below 0.5 s for all kriging implementations. This computational

burden is not further discussed here. The focus is on accuracy of the metamodel, and

results are reported in Table 4 where the performance is assessed for each of the four

identified locations. For this assessment the summations in Eq. (10) are established with

respect to only the 92 outputs for the specific location. Results are reported for the two

different output cases as well as the four different kriging implementations examined.

Following the recommendation by Kim et al. (2015) for time-dependent outputs, in

addition to the error statistics from Sect. 5.5, the correlation coefficient, defined as the

normalized covariance between the actual and predicted storm surge forecast, is also

utilized here. This is defined for each separate location considered and for the hth storm is

given by

cch ¼
Pny

k¼1 yhk � �yh
� �

ŷkðxhÞ � �̂yðxhÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPny
k¼1 yhk � �yh

� �2Pny
k¼1 ŷkðxhÞ � �̂yðxhÞ

� �2q ;

�yh ¼ 1

ny

Xny

k¼1
yhk ;

�̂yðxhÞ ¼ 1

ny

Xny

k¼1
ŷkðxhÞ

ð14Þ

where summations are expressed with respect to the 92 time steps for each location. The

average correlation coefficient is then provided by averaging over all storms as
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cc ¼ 1

n

Xn

h¼1
cch ð15Þ

Overall all implementations yield very high accuracy, with coefficient of determination

close to or over 0.97, average error below 3 %, small mean square error and correlation

coefficient over 0.95. The accuracy level is similar to the ones reported in Kim et al.

(2015). Again this demonstrates the potential of the kriging metamodel to become a

surrogate for the high-fidelity model. With respect to the output cases, as expected,

implementation separately for each-location provides better performance over all-loca-

tions, but with a very small margin of improvement. This shows that the spatial correlation

of the outputs does allow for tuning of metamodels for all locations (all-locations

implementation) without sacrificing accuracy. With respect to the kriging approaches

examined, separate and pca-separate yield better performance, but with very small dif-

ferences over the pca-single. Since the latter can offer substantial computational savings

(especially for larger ny), it establishes a very good compromise between accuracy and

efficiency. Note that if output had even higher dimension, for example more locations or

larger time span examined, then there would have been a stronger preference for pca-

single.

To verify the performance of the metamodeling for the entire output, the accuracy

assessment over all outputs is evaluated and results are presented in Table 5 for each-

location output (i.e., kriging is tuned for each specific output but performance averaged

over all locations) and for all locations (i.e., kriging tuned over all outputs to start with).

This further demonstrates the efficiency of a single kriging metamodel trained over all the

outputs, since no substantial difference is shown between the two different applications.

Further assessment of the metamodel performance is illustrated in Figs. 4 and 5, for

locations 4 and 9, respectively. These figures show the time-series forecasting by different

kriging implementations for 8 different storms (sub-plots in each figure) with character-

istics shown in Table 6 (input vector for each of them is provided). Note that the scale in

each subplot is different, so that differences are better demonstrated, whereas the x-axis in

each figure corresponds to the time step (44th step represents conventional landfall).

All sub-plots in Figs. 4 and 5 verify the accuracy of the metamodel that has been

already demonstrated in the results in Table 4: Close agreement between the surrogate and

high-fidelity predictions is reported, whereas cases that are characterized by larger

Table 5 Prediction accuracy for time-series forecasting averaged over all 30 examined locations

Output cases Kriging approaches All locations

ARD2 AME (%) cc AMSE (m2)

each-location seperate 0.958 3.57 0.949 0.0109

single 0.954 3.62 0.955 0.0117

pca-seperate 0.961 3.52 0.952 0.0105

pca-single 0.949 3.55 0.958 0.0104

all-locations single 0.954 3.57 0.960 0.0105

pca-seperate 0.952 3.85 0.951 0.0096

pca-single 0.950 3.48 0.978 0.0124
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discrepancies correspond to lower values for the surge. It should be noted that the latter

instances have small contribution toward the overall error and therefore are given lower

priority in the surrogate model optimization. More importantly, the results in these fig-

ures demonstrate the capabilities of the framework in seamlessly facilitating smooth time-

series predictions. When a separate metamodel is developed for each actual output (sep-

arate implementation), then the resultant predictions contribute to a time-series forecast

that is non-smooth (but still provides good accuracy). This stems from the fact that cor-

relation information between the inputs at different time steps is not considered (either

explicitly or implicitly) in the development of the metamodel. This is the same challenge

encountered in Kim et al. (2015) in a similar context (considering neural network meta-

model implementation for each output). In that study a low-pass filtering in the form of

time averaging (with a carefully selected window size) was suggested to facilitate smooth
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Fig. 4 Time-series forecasting at location 4 for different storms. Subplots (a)-(h) correspond to the
different storms (reported in Table 6)
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predictions. This is not necessary, though, if single or even if pca-separate approaches are

adopted; smooth predictions are automatically provided. For single, since a single meta-

model is utilized to provide simultaneous information for all outputs, smoothness of the

predictions is facilitated by implicitly addressing the correlation. The case of pca-separate

is more interesting; in this case separate metamodels are utilized for each latent output, so

one could expect similar challenges as in the separate approach, but when transformed into

the original space the smoothness of the predictions is maintained. This should be

attributed to the fact that PCA explicitly considers the correlation of the output and

demonstrates the advantages argued earlier that PCA automatically captures and recovers

any correlation features of the high-fidelity model predictions.

Finally, and similar to the last investigation considered in Sect. 6.1, a demonstration for

the utilization of the kriging approximation error is provided in Fig. 6. This figure shows
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Fig. 5 Time-series forecasting at location 9 for different storms. Subplots (a)-(h) correspond to the
different storms (reported in Table 6)
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results for location 9 in a similar format as Figs. 4 and 5. As in the previous figures, the

scale in each subplot is also different, so that differences are better demonstrated, whereas

the x-axis in each figure corresponds to the time step (44th step represents conventional

landfall). The results shown in this figure correspond to the pca-single implementation

without (ŷkðxÞ is plotted) and with consideration of the approximation error

(ŷkðxÞ � b � rkðxÞ for b = 1 is plotted). First note that rkðxÞ is not constant over the

different storms (corresponding to different input values x); rather it is larger for storms for

which the difference from the target is larger. This demonstrates the benefits of kriging in

providing a local estimation error and the fact that this error is well aligned with the actual

accuracy of the metamodel. Furthermore, considering one standard deviation around the

mean predictions (b = 1), the error band envelopes the actual storm surge. This demon-

strates, again, that conservative results can be facilitated by introducing the approximation

error in the metamodel predictions.

7 Conclusions

The development of surrogate models for prediction of storm surge utilizing an existing

database of high-fidelity synthetic storms was discussed in this paper. The outputs corre-

sponded to peak response over an extended coastal region as well as time series for the

surge over selected, critical, coastal locations. These settings create a high-dimensional

output with significant temporal or spatial correlation. The motivation for establishing the

metamodels is to ultimately facilitate fast predictions during landfalling storms to support

development of real-time tools (and potential implementation in cyber platforms) and

guide the decisions of emergency response managers, as well as to support regional risk

assessment studies. Therefore, both accuracy and computational efficiency are important

aspects for the surrogate modeling, and both of them were extensively discussed. As a case

study, the development of a metamodel utilizing a database of 446 synthetic storms for the

Gulf of Mexico (Louisiana coast) was examined.

The metamodeling implementation requires appropriate parameterization of the existing

database of the synthetic storms, to provide the input vector for the surrogate model, and

Table 6 Input characteristics for the storms used in Figs. 4, 5 and 6

Storm identifier Reference landfall cp (mbar) vf (kt) Rp (nm) Track

xlat (�) xlon (�) h (�)

S.1 29.5 -90.7238 135.57 960 11 18.2 T2 E?

S.2 29.5 -90.4540 166.26 900 6 17.7 T1 E?

S.3 29.5 -90.6068 205.01 930 17 17.7 T3 E?

S.4 29.5 -93.2636 125.79 960 11 18.2 T2 W?

S.5 29.5 -94.2244 146.02 900 6 17.7 T1 W?

S.6 29.5 -94.254 189.90 930 6 17.7 T3 W?

S.7 29.5 -93.2833 194.81 975 11 18.2 T3 W?

S.8 29.5 -90.9941 199.95 975 11 24.6 T3 E?

? E is eastern Louisiana and W western Louisiana
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guidelines were provided to establish this, examining the characteristics of these storms

with respect to two groups of parameters (i) track and (ii) intensity/speed/size of the storm.

For the storm output, a modification was also discussed for nodes that for some storms

remained dry within the database. Kriging was considered as the surrogate model, due to

its potential in approximating complex responses and its numerical efficiency, while for

addressing the high dimensionality of the output principal component analysis (PCA) was

adopted as a data-driven dimension reduction technique. The integration of PCA was

shown to provide significant improvements in computational efficiency as well as in

reduction of memory requirements. The surrogate model is built with respect to the low-

dimensional latent outputs provided by PCA, with predictions ultimately transformed back

to the original output space. Beyond the computational savings, this approach captures the

correlation between responses at different locations or different time instances, and for
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Fig. 6 Time-series forecasting at location 9 for different storms through pca-single approach with and
without considering kriging prediction error. Subplots (a)-(h) correspond to the different storms (reported in
Table 6)
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predictions at new inputs this correlation is automatically recovered. This allows, for

example, the continuity for the output in time-series forecasting to be automatically

established, without the need to introduce additional remedies, such as time averaging.

The case study for the Louisiana coast showed that the kriging metamodel can support

high accuracy estimation of all quantities examined (peak storm surge, time-series surge

forecasting), with coefficient of determination close to 95 % or better, while the integration

of PCA improves significantly computational efficiency and captures well the spatial/

temporal correlations of responses. For peak surge predictions, the accuracy of kriging

significantly improved when looking at nodes for which higher-quality information was

available, i.e., for nodes that were inundated for a larger number of the storms. For time-

series surge prediction, surrogate modeling combined with PCA provided much smoother

predictions, compared to applying a separate surrogate model for responses at each time

step, which led to jagged predictions. PCA was demonstrated to very effectively capture

and recover the spatial and temporal correlation of the outputs. Also, explicitly considering

the approximation error stemming from the metamodel was shown to seamlessly facilitate

reasonably conservative estimates, with actual surge consistently lower than the conser-

vative estimates.

Overall, the study demonstrated that integration of surrogate modeling with PCA can

facilitate high efficiency and accuracy; the predictions are provided fast and have a very

good match to the high-fidelity database. The kriging metamodel framework developed

here should be considered an appropriate surrogate model for the high-fidelity model that

provided the synthetic storms, which can, therefore, support the development of accu-

rate/efficient forecasting tools. These tools could be of great value for guiding emergency

responses, especially since the approach can be further leveraged to provide approxima-

tions for a range of different outputs.
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Appendix

The following table, Table 7, provides an example of the inputs that have been made

available for the characterization of each synthetic storm in the database.

Table 7 Example of time-series input for characterization of each synthetic storm in the given database

Time (h) xlat (�) xlon (�) cp (mbar) vf
(kn)

h� (�) Rp

-70? 24.43 -79.38 980 10.9 120 25.8

-69 24.44 -79.58 980 10.9 123.1 25.8

…
-33 24.97 -86.64 933 11.1 142.1 25.8

-32 25.04 -86.82 931.5 10.6 143.2 25.8

-31 25.11 -87.01 930 11.1 142.1 25.8

-30 25.18 -87.19 930 10.6 143.2 25.8

-29 25.25 -87.38 930 11.1 142.1 25.8

…
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